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A double-satellite passive positioning system is constructed based on the theory of space geometry, where two observation
coordinate systems and a fundamental coordinate system exist. In each observation coordinate system, there exists a ray from
the observation satellite to the aircraft. One difficulty lies in that these two rays may not intersect due to the existence of various
errors. Under this situation, this work assumes that the middle point of common perpendicular between two rays is the actual
position of aircraft. Based on the theory of space geometry, the coordinates of aircraft in the fundamental coordinate system can
be determined. A dynamic model with the adjoint method is developed to estimate the trajectory of aircraft during the process of
rocket propulsion. By assimilating observations, the trajectory of aircraft can be calculated. Numerical experiments are designed
to validate the reasonability and feasibility of this model. Simulated results indicate that even by assimilating a small number of
observations, the trajectory of aircraft can be estimated. In addition, the trajectory estimation can become more accurate when
more observations are assimilated to the model.

1. Introduction

The determination of the position of an aircraft by a passive
observer is a typical navigation problem [1]. In this paper,
a double-satellite passive positioning system is constructed
based on the theory of space geometry. In this system, two
observation coordinate systems corresponding to two obser-
vation satellites and a fundamental coordinate system exist.
In each observation coordinate system, there exists a ray from
the observation satellite to the aircraft. In the ideal situa-
tion where no error exists in the double-satellite passive
positioning system, these two rays intersect and the point of
intersection is the aircraft. One difficulty lies in that these
two rays may not intersect due to the existence of various
errors which contain systemic error of observation satellite
and random error of measurement. Under this situation, this
work assumes that the middle point of common perpen-
dicular between two rays is the actual position of aircraft.
Based on the assumption and theory of space geometry, the
coordinates of aircraft in the fundamental coordinate system
can be determined.

Based on observations of aircraft in the fundamental
coordinate system, the trajectory of aircraft could be esti-
mated. Spingarn [1] used an extended Kalman filter to obtain
the estimations of optimal filtered position combined with
observations. Jamilnia and Naghash [2] used two different
approaches, which were separated approach and integrated
approach, to optimize trajectories of multistage launch vehi-
cles simultaneously. In this paper, the adjoint method is used
to estimate the trajectory of aircraft during the process of
rocket propulsion. Based on the theory of inverse problem,
the adjoint method is a useful tool for parameter estimation
by assimilating observations into numerical models. Lardner
[3], Zhang andLu [4], Guo et al. [5], Cao et al. [6], andChen et
al. [7] studied the inversion of open boundary conditions for
ocean dynamic models. As for the inverse problem of other
parameters, Lu and Zhang [8] and Zhang et al. [9] inverted
spatially varying bottom friction coefficient for the two-
dimensional tidal model, and Yu and O’Brien [10] estimated
wind drag coefficient and eddy viscosity coefficients in an
Ekman layer model. Results of their work demonstrate that
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the adjoint method is a useful tool for parameter estimation
and can improve the accuracy of simulated results.

This paper is organized as follows. The double-satellite
passive positioning system is constructed in Section 2. The
dynamic model with the adjoint method is developed to
estimate the trajectory of aircraft in Section 3. In Section 4,
numerical experiments are designed to validate the reasona-
bility and feasibility of this model. Summaries and conclu-
sions are presented in Section 5.

2. Double-Satellite Passive Positioning System

2.1. Transformation of Coordinates. Two coordinate systems,
namely, the fundamental and observation coordinate system,
are used in a passive positioning system. Figure 1 is a snapshot
of these coordinate systems. In the fundamental coordinate
system (𝑂

𝑐
-𝑋
𝑐
𝑌
𝑐
𝑍
𝑐
), the geocenter is taken as the origin.

The earth and observation satellite are simplified as two
particles and constitute a two-body problem under the effect
of gravity. Considering that the time scale of studied problem
is much shorter than that of earth rotation, the fundamental
coordinate system is regarded as an inertial system. The
aircraft ismeasured by observation satellite in the observation
coordinate system (𝑂

𝑠
-𝑋
𝑠
𝑌
𝑠
𝑍
𝑠
). As shown in the observation

coordinate system of Figure 1, the position of observation
satellite (𝑂

𝑠
) is taken as the origin,𝑋

𝑠
-axis is along the vector

→
𝑂
𝑐
𝑂
𝑠
, and 𝑍

𝑠
-axis is perpendicular to 𝑋

𝑠
-axis and pointing

to the north exactly. 𝑌
𝑠
-axis is then ascertained following

right hand system. Generally speaking, observation satellite
would not pass the south and north poles, so the observation
coordinate is definite and reasonable.

Considering that observation satellite is passive detec-
tive satellite which only measures direction, the aircraft is
observed and represented by two dimensionless ratios (𝛼 and
𝛽) in the observation coordinate:

𝛼 =
𝑦
𝑠

𝑥
𝑠

,

𝛽 =
𝑧
𝑠

𝑥
𝑠

,

(1)

where 𝑥
𝑠
, 𝑦
𝑠
, and 𝑧

𝑠
are the coordinates of aircraft in the

observation coordinate system. It should be noted that 𝑥
𝑠
, 𝑦
𝑠
,

and 𝑧
𝑠
are just used to represent the position of aircraft and

cannot be measured by one observation satellite.
The key to achieve double-satellite passive position is to

transform coordinates from the observation coordinate sys-
tem to the fundamental one.The basic idea of transformation
is described as follows. Assume that 𝑄 is an arbitrary point
in the observation coordinate system. Three components of
vector →𝑂

𝑠
𝑄 along →𝑂

𝑠
𝑋
𝑠
, →𝑂
𝑠
𝑌
𝑠
, and

→
𝑂
𝑠
𝑍
𝑠
are set to →𝑄𝑥, →𝑄𝑦 and

→
𝑄𝑧, respectively. Considering that →𝑂

𝑠
𝑋
𝑠
, →𝑂
𝑠
𝑌
𝑠
, and →𝑂

𝑠
𝑧
𝑠
are

well-determined and can be described by the unit vectors ⃗𝑖, ⃗𝑗

and �⃗� in the fundamental coordinate system, →𝑄𝑥, →𝑄𝑦, and →𝑄𝑧
have the following relation with ⃗𝑖, ⃗𝑗, and �⃗�:

→
𝑄𝑥 = 𝐴

1

→
𝑂
𝑠
𝑋
𝑠
+ 𝐵
1

→
𝑂
𝑠
𝑌
𝑠
+ 𝐶
1

→
𝑂
𝑠
𝑍
𝑠
= 𝑎
1

⃗𝑖 + 𝑏
1

⃗𝑗 + 𝑐
1
�⃗�,
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Figure 1: Outline of the fundamental (𝑂
𝑐
-𝑋
𝑐
𝑌
𝑐
𝑍
𝑐
) and observed

(𝑂
𝑠
-𝑋
𝑠
𝑌
𝑠
𝑍
𝑠
) coordinate system.

→
𝑄𝑦 = 𝐴

2

→
𝑂
𝑠
𝑋
𝑠
+ 𝐵
2

→
𝑂
𝑠
𝑌
𝑠
+ 𝐶
2

→
𝑂
𝑠
𝑍
𝑠
= 𝑎
2

⃗𝑖 + 𝑏
2

⃗𝑗 + 𝑐
2
�⃗�,

→
𝑄𝑧 = 𝐴

3

→
𝑂
𝑠
𝑋
𝑠
+ 𝐵
3

→
𝑂
𝑠
𝑌
𝑠
+ 𝐶
3

→
𝑂
𝑠
𝑍
𝑠
= 𝑎
3

⃗𝑖 + 𝑏
3

⃗𝑗 + 𝑐
3
�⃗�,

(2)

where𝐴
1
, 𝐴
2
,𝐴
3
,𝐵
1
,𝐵
2
,𝐵
3
,𝐶
1
,𝐶
2
,𝐶
3
, 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑏
1
, 𝑏
2
, 𝑏
3
, 𝑐
1
,

𝑐
2
, and 𝑐

3
are parameters and will be derived in the following

part. Then →𝑂
𝑠
𝑄 can be rewritten as

→
𝑂
𝑠
𝑄 = (𝑎

1
+ 𝑎
2
+ 𝑎
3
) ⃗𝑖 + (𝑏

1
+ 𝑏
2
+ 𝑏
3
) ⃗𝑗 + (𝑐

1
+ 𝑐
2
+ 𝑐
3
) �⃗�,

(3)

which is the description of 𝑄 in the fundamental coordinate
system. Detailed derivations are displayed as follows.

Assume that 𝑂
𝑠
is (𝑥
0
, 𝑦
0
, 𝑧
0
) in the fundamental coor-

dinate system, 𝑄 is (𝑥
1
, 𝑦
1
, 𝑧
1
) in the observation coordinate

system, and (𝑥
2
, 𝑦
2
, 𝑧
2
) in the fundamental one. Because

→
𝑂
𝑠
𝑋
𝑠
is along vector →𝑂

𝑐
𝑂
𝑠
, the unit vector of →𝑂

𝑠
𝑋
𝑠
in the

fundamental coordinate system is

→V
1
= (

𝑥
0

√𝑥2
0
+ 𝑦2
0
+ 𝑧2
0

,
𝑦
0

√𝑥2
0
+ 𝑦2
0
+ 𝑧2
0

,
𝑧
0

√𝑥2
0
+ 𝑦2
0
+ 𝑧2
0

).

(4)

Considering that
→
𝑂
𝑠
𝑍
𝑠
points to the north exactly,

→
𝑂
𝑠
𝑍
𝑠
lies

in the plane 𝑂
𝑠
𝑂
𝑐
𝑍
𝑐
. As a result, direction vector of →𝑂

𝑠
𝑌
𝑠
is

also the normal vector of𝑂
𝑠
𝑂
𝑐
𝑍
𝑐
.Then unit vector of→𝑂

𝑠
𝑌
𝑠
in

the fundamental coordinate system can be described as

→V
2
= (

−𝑦
0

√𝑥2
0
+ 𝑦2
0

,
𝑥
0

√𝑥2
0
+ 𝑦2
0

, 0) . (5)
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As unit vectors of →𝑂
𝑠
𝑋
𝑠
and →𝑂

𝑠
𝑌
𝑠
have been determined, that

of →𝑂
𝑠
𝑧
𝑠
can be calculated by vector multiplication cross

→V
3
= (

−𝑥
0
𝑧
0

√𝑥2
0
𝑧2
0
+ 𝑦2
0
𝑧2
0
+ (𝑥2
0
+ 𝑦2
0
)
2

,

−𝑦
0
𝑧
0

√𝑥2
0
𝑧2
0
+ 𝑦2
0
𝑧2
0
+ (𝑥2
0
+ 𝑦2
0
)
2

,

𝑥2
0
+ 𝑦2
0

√𝑥2
0
𝑧2
0
+ 𝑦2
0
𝑧2
0
+ (𝑥2
0
+ 𝑦2
0
)
2

).

(6)

Consequently, 𝑄 in the fundamental coordinate system is
described as

(𝑥
2
, 𝑦
2
, 𝑧
2
) = 𝑥
1

→V
1
+ 𝑦
1

→V
2
+ 𝑧
1

→V
3
+ (𝑥
0
, 𝑦
0
, 𝑧
0
) . (7)

2.2. Double-Satellite Passive Positioning System. As described
before, observation satellite is passive detective satellite and
can measure direction only. It means that the position of air-
craft can be determined only when two or more observation
satellites are available. In this paper, a double-satellite passive
positioning system is constructed to study the positioning
problem. This means that there exist two observation coor-
dinate systems, of which the origins are the two observation
satellites, respectively. In each observation coordinate system,
there exists a ray from the observation satellite to the aircraft.
In the ideal situation where no error exists in the double-
satellite passive positioning system, these two rays intersect
and the intersection point is the aircraft. One difficulty lies
in that these two rays may not intersect due to the existence
of various errors. Under this situation, this work assumes that
themiddle point of common perpendicular between two rays
is the actual position of aircraft.

As 𝛼, 𝛽, and the trajectory information of observation
satellites are known, the equation of the ray from the obser-
vation satellite to the aircraft in the fundamental coordinate
system can be obtained as long as (1, 𝛼, 𝛽) is transformed
from the observation coordinate system to the fundamental
one. According to the assumption, the position of aircraft
can be determined based on the theory of space geometry.
Detailed derivation is displayed as follows. (It should be noted
that the unit vector rather than the equation of the ray is used
in the derivation.)

Figure 2 is the schematic diagram of the double-satellite
passive positioning system.𝑀 and𝑁 represent two satellites,
and 𝐴 and 𝐵 represent the observations of the aircraft by
satellites 𝑀 and 𝑁, respectively. Based on the assumption,
the middle point of 𝐴𝐵 is the actual position of the aircraft,
which is represented by 𝐶 in Figure 2. In the fundamental
coordinate system, assume that the coordinates of𝑀 and 𝑁

A

C

𝜃1

B

N

𝜃

M

M



𝜃2

Figure 2: Outline of the double-satellite passive positioning system.

are (𝑥
𝑚
, 𝑦
𝑚
, 𝑧
𝑚
) and (𝑥

𝑛
, 𝑦
𝑛
, 𝑧
𝑛
), and unit vectors of →𝑀𝐴 and

→
𝑁𝐵 are (𝜑

1
, 𝜑
2
, 𝜑
3
) and (𝜙

1
, 𝜙
2
, 𝜙
3
). Consider

𝜃
1

= arccos(
𝜑
1
(𝑥
𝑛
− 𝑥
𝑚
)+𝜑
2
(𝑦
𝑛
− 𝑦
𝑚
)+𝜑
3
(𝑧
𝑛
− 𝑧
𝑚
)

√(𝑥
𝑛
− 𝑥
𝑚
)
2

+ (𝑦
𝑛
− 𝑦
𝑚
)
2

+ (𝑧
𝑛
− 𝑧
𝑚
)
2

),

𝜃
2

= arccos(
𝜙
1
(𝑥
𝑛
− 𝑥
𝑚
)+𝜙
2
(𝑦
𝑛
− 𝑦
𝑚
)+𝜙
3
(𝑧
𝑛
− 𝑧
𝑚
)

√(𝑥
𝑛
− 𝑥
𝑚
)
2

+ (𝑦
𝑛
− 𝑦
𝑚
)
2

+ (𝑧
𝑛
− 𝑧
𝑚
)
2

),

𝜃 = arccos (𝜑
1
𝜙
1
+ 𝜑
2
𝜙
2
+ 𝜑
3
𝜙
3
) .

(8)

Then,



→
𝑀𝐴


=

cos 𝜃
1
+ cos 𝜃

2
⋅ cos 𝜃

sin2𝜃

⋅ √(𝑥
𝑛
− 𝑥
𝑚
)
2

+ (𝑦
𝑛
− 𝑦
𝑚
)
2

+ (𝑧
𝑛
− 𝑧
𝑚
)
2

,



→
𝑁𝐵


=

cos 𝜃
2
+ cos 𝜃

1
⋅ cos 𝜃

sin2𝜃

⋅ √(𝑥
𝑛
− 𝑥
𝑚
)
2

+ (𝑦
𝑛
− 𝑦
𝑚
)
2

+ (𝑧
𝑛
− 𝑧
𝑚
)
2

.

(9)

Finally, the coordinate of aircraft (𝐶) in the fundamental
coordinate system can be calculated as

(𝑥
𝑎
, 𝑦
𝑎
, 𝑧
𝑎
) = (𝑥

𝑚
, 𝑦
𝑚
, 𝑧
𝑚
) +

→
|𝑀𝐴| (𝜑

1
, 𝜑
2
, 𝜑
3
) ,

(𝑥
𝑏
, 𝑦
𝑏
, 𝑧
𝑏
) = (𝑥

𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) +

→
|𝑁𝐵| (𝜙

1
, 𝜙
2
, 𝜙
3
) ,
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(𝑥
𝑐
, 𝑦
𝑐
, 𝑧
𝑐
) =

1

2
[ (𝑥
𝑚
, 𝑦
𝑚
, 𝑧
𝑚
) + (𝑥

𝑛
, 𝑦
𝑛
, 𝑧
𝑛
)

+


→
𝑀𝐴


(𝜑
1
, 𝜑
2
, 𝜑
3
) +



→
𝑁𝐵


(𝜙
1
, 𝜙
2
, 𝜙
3
)] .

(10)

3. Dynamic model

As mentioned in Section 2, the coordinates of aircraft in
the fundamental coordinate system are determined by the
double-satellite passive positioning system, and they will be
used as observations in the dynamic model. If adequate
observations are obtained, the trajectory of the aircraft can
be estimated by using the dynamic model with the adjoint
method.

3.1. Forward Model (Governing Equation). The governing
equation of the aircraft during the process of rocket propul-
sion in the fundamental coordinate system can be described
as follows:

̈⃗𝑟 (𝑡) = �⃗�
𝑒
+ �⃗�
𝑇
, (11)

where ⃗𝑟(𝑡) is the vector of position, 𝑡 is time, ̈⃗𝑟(𝑡) is the
double derivative in time of ⃗𝑟(𝑡), that is, acceleration, 𝐺

𝑚
is

the constant of earth attraction, �⃗�
𝑒
= −(𝐺

𝑚
/| ⃗𝑟(𝑡)|

3

) ⃗𝑟(𝑡) is the
acceleration caused by universal gravitation, and �⃗�

𝑇
is the

acceleration caused by rocket propulsion, which is taken as
the unknown parameter and will be optimized by the adjoint
method. Assume that 𝐹

𝑥
, 𝐹
𝑦
and 𝐹

𝑧
, are the 𝑥-, 𝑦-, and 𝑧-

components of �⃗�
𝑇
, respectively, (11) can be changed into

𝑑
2

𝑥

𝑑𝑡2
= −

𝐺
𝑚

𝑟3
𝑥 + 𝐹
𝑥
,

𝑑2𝑦

𝑑𝑡2
= −

𝐺
𝑚

𝑟3
𝑦 + 𝐹
𝑦
,

𝑑2𝑧

𝑑𝑡2
= −

𝐺
𝑚

𝑟3
𝑧 + 𝐹
𝑧
,

𝑟 = √𝑥2 + 𝑦2 + 𝑧2,

(12)

where 𝑥, 𝑦, and 𝑧 are three components of ⃗𝑟(𝑡).

3.2. Adjoint Model and Corrections. The cost function is
defined as

𝐽 =
𝜅

2
∫
𝑡
2

𝑡
1

[(𝑥 − 𝑥)
2

+ (𝑦 − 𝑦)
2

+ (𝑧 − �̂�)
2

] 𝑑𝑡, (13)

where 𝜅 is the unit matrix [8] 𝑥, 𝑦, �̂�, 𝑥, 𝑥, and 𝑧 are obser-
vations and simulated coordinate of the aircraft, respectively.
Then the Lagrangian function can be expressed as

𝐿 = 𝐽+ ∫
𝑡
2

𝑡
1

[𝜆(
𝑑2𝑥

𝑑𝑡2
+
𝐺
𝑚

𝑟3
𝑥 − 𝐹
𝑥
)

+ 𝜇(
𝑑
2𝑦

𝑑𝑡2
+
𝐺
𝑚

𝑟3
𝑦 − 𝐹
𝑦
)

+](
𝑑2𝑧

𝑑𝑡2
+
𝐺
𝑚

𝑟3
𝑧 − 𝐹
𝑧
)]𝑑𝑡,

(14)

where 𝜆, 𝜇, and ] are the adjoint variables (namely, Lagrangi-
an multipliers) of 𝑥, 𝑦, and 𝑧, respectively.

According to the theory of Lagrangianmultipliermethod,
we obtain the first-order derivatives of Lagrangian function
with respect to all the variables,

𝜕𝐿

𝜕𝜆
= 0,

𝜕𝐿

𝜕𝜇
= 0,

𝜕𝐿

𝜕]
= 0, (15)

𝜕𝐿

𝜕𝑥
= 0,

𝜕𝐿

𝜕𝑦
= 0,

𝜕𝐿

𝜕𝑧
= 0, (16)

𝜕𝐿

𝜕𝐹
𝑥

= 0,
𝜕𝐿

𝜕𝐹
𝑦

= 0,
𝜕𝐿

𝜕𝐹
𝑧

= 0. (17)

Equation (15) give the forwardmodel described by (12). From
(16) the adjoint model can be deduced as

𝑑2𝜆

𝑑𝑡2
+ 𝐺
𝑚

(𝑦2 + 𝑧2 − 2𝑥2) 𝜆 − 3𝑥 (𝑦𝜇 + 𝑧])

𝑟5
+ 𝜅 (𝑥 − 𝑥) = 0,

𝑑2𝜇

𝑑𝑡2
+ 𝐺
𝑚

(𝑥2 + 𝑧2 − 2𝑦2) 𝜇 − 3𝑦 (𝑥𝜆 + 𝑧])

𝑟5
+ 𝜅 (𝑦 − 𝑦) = 0,

𝑑2]

𝑑𝑡2
+ 𝐺
𝑚

(𝑥2 + 𝑦2 − 2𝑧2) ] − 3𝑧 (𝑥𝜆 + 𝑦𝜇)

𝑟5
+ 𝜅 (𝑧 − �̂�) = 0.

(18)

From (17), the corrections of 𝐹
𝑥
, 𝐹
𝑦
, and 𝐹

𝑧
are obtained

𝐹
𝑥
− 𝐹
𝑥
= 𝜆,

𝐹
𝑦
− 𝐹
𝑦
= 𝜇,

𝐹
𝑧
− 𝐹
𝑧
= ],

(19)

where 𝐹
𝑥
, 𝐹
𝑦
, 𝐹
𝑧
and 𝐹

𝑥
, 𝐹
𝑦
, 𝐹
𝑧
are prior and optimized val-

ues, receptively. Because the values of cost function decrease
along the opposite direction of the gradient, by employing
typical steepest descent method [11], 𝐹

𝑥
, 𝐹
𝑦
, and 𝐹

𝑧
can be

optimized during iterations.
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Equations (12), (18) and (19) are discretized using the
finite difference method and are shown as follows:

𝑥
𝑛+1 − 2𝑥𝑛 + 𝑥𝑛−1

Δ𝑡2
= −

𝐺
𝑚

(𝑟𝑛)
3
𝑥
𝑛

+ 𝐹
𝑛

𝑥
,

𝑦𝑛+1 − 2𝑦𝑛 + 𝑦𝑛−1

Δ𝑡2
= −

𝐺
𝑚

(𝑟𝑛)
3
𝑦
𝑛

+ 𝐹
𝑛

𝑦
,

𝑧𝑛+1 − 2𝑧𝑛 + 𝑧𝑛−1

Δ𝑡2
= −

𝐺
𝑚

(𝑟𝑛)
3
𝑧
𝑛

+ 𝐹
𝑛

𝑧

𝑟
𝑛

= √(𝑥𝑛)
2

+ (𝑦𝑛)
2

+ (𝑧𝑛)
2

,

𝜆𝑛−1 − 2𝜆𝑛 + 𝜆𝑛+1

Δ𝑡2

+ 𝐺
𝑚

((𝑦𝑛)
2

+ (𝑧𝑛)
2

− 2(𝑥𝑛)
2

) 𝜆𝑛 − 3𝑥𝑛 (𝑦𝑛𝜇𝑛 + 𝑧𝑛]𝑛)

(𝑟𝑛)
5

+ 𝜅 (𝑥
𝑛

− 𝑥
𝑛

) = 0,

𝜇
𝑛−1

− 2𝜇
𝑛

+ 𝜇
𝑛+1

Δ𝑡2

+ 𝐺
𝑚

((𝑥𝑛)
2

+ (𝑧𝑛)
2

− 2(𝑦𝑛)
2

) 𝜇𝑛 − 3𝑦𝑛 (𝑥𝑛𝜆𝑛 + 𝑧𝑛]𝑛)

(𝑟𝑛)
5

+ 𝜅 (𝑦
𝑛

− 𝑦
𝑛

) = 0,

]𝑛−1 − 2]𝑛 + ]𝑛+1

Δ𝑡2

+ 𝐺
𝑚

((𝑥𝑛)
2

+ (𝑦𝑛)
2

− 2(𝑧𝑛)
2

) ]𝑛 − 3𝑧𝑛 (𝑥𝑛𝜆𝑛 + 𝑦𝑛𝜇𝑛)

(𝑟𝑛)
5

+ 𝜅 (𝑧
𝑛

− �̂�
𝑛

) = 0,

𝐹
𝑛

𝑥
− 𝐹
𝑛

𝑥
= 𝜆
𝑛

,

𝐹
𝑛

𝑦
− 𝐹
𝑛

𝑦
= 𝜇
𝑛

,

𝐹
𝑛

𝑧
− 𝐹
𝑛

𝑧
= ]𝑛.

(20)

The computed process is designed as follows. (a) Run
the forward model with prescribed initial values of 𝐹

𝑥
,

𝐹
𝑦
, and 𝐹

𝑧
. (b) Calculate the value of cost function 𝐽.

(c)Thedifference between simulated results and observations
plays as the external driving force of the adjoint model.
The adjoint variables can then be obtained through the
backward integration of the adjoint model. (d) Based on the
corrections and typical steepest descent method, 𝐹

𝑥
, 𝐹
𝑦
, and

𝐹
𝑧
can be optimized. Repeating the process aforementioned,

the difference between simulated results and observations
is decreased. When the convergence criterion is met, the
optimization stops.

The convergence criterion could be that the number
of iteration steps is prescribed, the last two values of the

Table 1: Difference between simulated coordinates and observed
ones.

Mean absolute difference (m) Mean relative difference (%)
𝑥 𝑦 𝑧 𝑥 𝑦 𝑧

TE1 116 38 71 0.0097 0.00063 0.0057
TE2 124 40 77 0.0010 0.00065 0.0062
TE3 160 40 103 0.0013 0.00065 0.0083
TE4 244 43 162 0.0020 0.00069 0.0130
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Figure 3: Coordinates of observation satellites in the fundamental
coordinate system.

cost function are sufficiently close, the magnitude of the
gradient norm is sufficiently small, the discrepancy between
the updated and old parameters is sufficiently small, or a
combination of these. In this work, the convergence criterion
is that the number of iteration steps is equal to 10000,
which leads to satisfied values of cost function and gradient
norm and is obtained through a trial process. In addition,
this convergence criterion is reasonable and essential to
investigate the influence of the number of observations on the
accuracy of simulated results in the numerical experiments.

4. Numerical Experiments

The data used in the numerical experiments, containing
𝛼, 𝛽, and trajectory information of two observation satel-
lites (satellites 06 and 09), are from problem B of the
ninth National Graduate Mathematical Contest in Modeling
(http://www.njnet.edu.cn/news/16/). These data are from 50
to 170 s with an interval of 0.2 s, corresponding to the process
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Figure 4: 𝛼 and 𝛽 of observation satellites from 50 s to 170 s.
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Figure 5: Trajectory (left) and instantaneous coordinates (right) of the aircraft.

of rocket propulsion.The trajectories of observation satellites
are plotted in Figure 3. 𝛼 and 𝛽 are plotted in Figure 4. Then
the coordinates of aircraft in the fundamental coordinate
system, which are used as observations, are determined
according to formulas in Section 2 and are shown in Figure 5.

Four numerical experiments are designed to validate the
sensitivity to the number of observations in the model. In
experiment one (E1), the trajectory of aircraft is estimated
by assimilating all observations. The number of observations
is 601 in E1 with internal of 0.2 s. In E2–E4, the number of
observations is decreased successively, which is 61, 21, and 13,
respectively. In numerical experiments, the initial values of
𝐹
𝑥
, 𝐹
𝑦
, and 𝐹

𝑧
are all equal to 10m2/s, and the time step is

equal to 0.2 s. Simulated results are illustrated as follows.

Simulated results show good agreement with the
observed ones in all four experiments. However, they are
not plotted in a figure for very small differences with each
other and the observations. Table 1 lists the mean absolute
differences (MADs) and mean relative differences (MRDs)
between simulated results and observations. In all four
experiments, the MADs and MRDs are all very small, indi-
cating the reasonability and feasibility of the model. Log of
cost function and gradient norm are plotted in Figure 6.
Cost function and gradient norm decrease fast during the
iteration, implying the efficiency of the typical steepest
method. Careful inspection shows that the MAD and MRD,
as well as the value of cost function at the end of iterations,
increase fromE1 to E4.This is to say, the trajectory estimation
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Figure 6: Log of cost function and gradient norm during iteration.

of the aircraft becomes worse as the number of observations
is decreased. Combining all these results, we can draw two
conclusions. One is that even by assimilating a small number
of observations, the trajectory of aircraft can be estimated
using the dynamic model with the adjoint method.The other
is that the trajectory estimation can become more accurate
by assimilating more observations.

5. Summary and Conclusions

In this paper, a double-satellite passive positioning system is
constructed based on the theory of space geometry. In this
system, two observation coordinate systems corresponding
to two observation satellites and a fundamental coordinate
system exist. In each observation coordinate system, there
exists a ray from the observation satellite to the aircraft. In
the ideal situationwhere no error exists in the double-satellite
passive positioning system, these two rays intersect and the
point of intersection is the aircraft. One difficulty lies in that
these two rays may not intersect due to the existence of
various errors. Under this situation, this work assumes that
themiddle point of common perpendicular between two rays
is the actual position of aircraft. Based on the assumption and
theory of space geometry, the coordinates of aircraft in the
fundamental coordinate system can be determined.

In order to estimate the trajectory of aircraft during the
process of rocket propulsion, a dynamic model with the
adjoint method is constructed. The forward model is used to
simulate the motion of aircraft, and the adjoint model is used
to optimize parameters. By assimilating observations, which
are the coordinates of aircraft in the fundamental coordinate
system, the trajectory of aircraft can be estimated. Numer-
ical experiments are designed to validate the reasonability
and feasibility of this model. Results indicate that even by
assimilating a small number of observations, the trajectory
of aircraft can be estimated using the dynamic model with

the adjointmethod. In addition, the trajectory estimation can
become more accurate by assimilating more observations.
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