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This paper investigates the problems of stability and 𝑙
1
-gain controller design for positive switched systems with time-varying delays

via delta operator approach.Thepurpose is to design a switching signal and a state feedback controller such that the resulting closed-
loop system is exponentially stablewith 𝑙

1
-gain performance. Based on the average dwell time approach, a sufficient condition for the

existence of an 𝑙
1
-gain controller for the considered system is established by constructing an appropriate copositive type Lyapunov-

Krasovskii functional in delta domain. Moreover, the obtained conditions can unify some previously suggested relevant methods
in the literature of both continuous- and discrete-time systems into the delta operator framework. Finally, a numerical example is
presented to explicitly demonstrate the effectiveness and feasibility of the proposed method.

1. Introduction

Positive systems mean that their states and outputs are
nonnegative whenever the initial conditions and inputs are
nonnegative [1, 2]. A positive switched system consists of a
family of positive subsystems and a switching signal, coordi-
nating the operation of various subsystems to specify when
and how the switching takes place among the subsystems.
Recently, due to the broad applications in communication
systems [3, 4], formation flying [5], viral mutation dynamics
under drug treatment [2], and systems theories [6–10],
positive systems have been highlighted and investigated by
many researchers [11–14]. It has been shown that a linear
copositive Lyapunov functional is powerful for the analysis
and synthesis of positive systems [15–17].

The delta operator, a novel method with good finite word
length performance under fast sampling rates, has drawn
considerable interest in the past three decades. As we know,
the standard shift operator was mostly adopted in the study
of control theories for discrete-time systems. However, the
dynamic response of a discrete system does not converge
smoothly to its continuous counterpart when the sampling
period tends to zero; namely, data are taken at high sampling
rates. Until Goodwin et al. proposed a delta operator method

in [18] to take the place of the traditional shift operator, the
above problem is avoided. It was shown that delta operator
requires smaller word length when implemented in fixed-
point digital control processors than shift operator does
[19]. The delta operator model can be regarded as a useful
approach to deal with discrete-time systems under high
sampling rates through the analysis methods of continuous-
time systems [20–23]. Based on significant early investi-
gations such as [24–26] studying the basic properties and
performance of delta operator model, numerical properties
and practical applications of delta operator model have been
extensively investigated [27–29].The delta operator is defined
by

𝛿𝑥 (𝑡) =

{{{

{{{

{

𝑑𝑥 (𝑡)

𝑑𝑡
, 𝑇 = 0

(𝑥 (𝑡 + 𝑇) − 𝑥 (𝑡))

𝑇
, 𝑇 ̸= 0,

(1)

where 𝑇 is a sampling period. When 𝑇 → 0, the delta
operator model will approach the continuous system before
discretization and reflect a quasicontinuous performance.

In real engineering, time delays are involved in many
fields, such as mechanics, medicine, chemistry, biology,
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physics, economics, engineering, and control theory [30–33].
The existence of time delay may give rise to the deterioration
of system performance and instability. Many results have
been reported for time-delay systems [34–39].

In addition, exogenous disturbances are commonly
unavoidable in practical process, and the output will be
inevitably affected by the disturbance in a system. Because of
the peculiar nonnegative property of positive systems, the 𝑙

1
-

gain (or 𝐿
1
-gain) index [39] can characterize the disturbance

rejection property, by means of which we can limit the effect
of disturbance in a prescribed level. Some results on 𝑙

1
-gain

(or 𝐿
1
-gain) analysis and control for positive systems have

been reported in the literature [39, 40]. However, few results
on the issue of 𝑙

1
-gain performance for positive switched

systems via delta operator approach are proposed, which
motivates the current research.

In this paper, we focus our attention on investigating the
stability and 𝑙

1
-gain controller design for positive switched

systemswith time-varying delays via delta operator approach.
The main contributions of this paper are fourfold. (1) The
positive switched systems via delta operator approach are
investigated for the first time. (2) By applying the average
dwell time approach, sufficient conditions of exponential
stability for positive switched delta operator systems are
derived. Moreover, the results obtained can be applied to
both continuous-time systems and discrete-time systems.
(3) 𝑙

1
-gain performance analysis of the underlying system is

developed. (4) A state feedback controller design scheme is
proposed such that the corresponding closed-loop system is
exponentially stable with an 𝑙

1
-gain performance.

The remainder of the paper is as follows. The problem
formulation and some necessary lemmas are provided in
Section 2. In Section 3, the issues of stability, 𝑙

1
-gain perfor-

mance analysis, and control of the underlying system are
developed. A numerical example is presented to demon-
strate the feasibility of the obtained results in Section 4. In
Section 5, concluding remarks are given.

Notations. 𝐴 ⪰ 0 (⪯, ≻, ≺) means that all entries of matrix
𝐴 are nonnegative (nonpositive, positive, and negative); 𝐴 ≻

𝐵 (𝐴 ⪰ 𝐵) means that 𝐴 − 𝐵 ≻ 0 (𝐴 − 𝐵 ⪰ 0); 𝐴𝑇 means
the transpose of matrix𝐴; 𝑅(𝑅

+
) is the set of all real (positive

real) numbers;𝑅𝑛
(𝑅

𝑛

+
) is an 𝑛-dimensional real (positive real)

vector space; 𝑅𝑚×𝑛 is the set of all 𝑚 × 𝑛-dimensional real
matrices;𝑍

+
refers to the set of all positive integers; the vector

1-norm is denoted by ‖𝑥‖ = ∑
𝑛

𝑘=1
|𝑥

𝑘
|, where 𝑥

𝑘
is the 𝑘th

element of 𝑥 ∈ 𝑅
𝑛; 1

𝑛
∈ 𝑅

𝑛 denotes a column vector
with 𝑛 rows containing only 1 entry; 𝑙

1
[𝑘

0
,∞) is the space

of absolute summable sequence on [𝑘
0
,∞); that is, we say

𝑧 : [𝑘
0
,∞) → 𝑅

𝑝 is in 𝑙
1
[𝑘

0
,∞) if ∑∞

𝑘=𝑘0
‖𝑧(𝑘)‖ < ∞.

2. Problem Formulation

Consider the following switched delta operator system with
time-varying delays:

𝛿𝑥 (𝑘) = 𝐴
𝜎(𝑘)

𝑥 (𝑘) + 𝐴
𝑑𝜎(𝑘)

𝑥 (𝑘 − 𝑑
𝑘
) + 𝐷

𝜎(𝑘)
𝑤 (𝑘) ,

𝑥 (𝑘
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 = −𝑑, −𝑑 + 1, . . . , 0,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)

𝑥 (𝑘) + 𝐸
𝜎(𝑘)

𝑤 (𝑘) ,

(2)

where 𝑥(𝑘) ∈ 𝑅
𝑛 denotes the state; 𝑧(𝑘) ∈ 𝑅

𝑙 is the controlled
output; and 𝑤(𝑘) ∈ 𝑅

𝑤 is the disturbance input, which
belongs to 𝑙

1
[𝑘

0
,∞). 𝑘 means the time 𝑡 = 𝑘𝑇 and 𝑇 > 0 is

the sampling period; 𝑘
0
is the initial time. 𝜎(𝑘) : [𝑘

0
,∞) →

𝑚 = {1, 2, . . . , 𝑚} is the switching signal with𝑚 representing
the number of subsystems. 𝐴

𝑝
, 𝐴

𝑑𝑝
, 𝐶

𝑝
, 𝐷

𝑝
, and 𝐸

𝑝
are

constant matrices with appropriate dimensions. 𝑑
𝑘
denotes

the time-varying discrete delay which satisfies 0 ≤ 𝑑 ≤ 𝑑
𝑘
≤

𝑑 for known integers 𝑑 and 𝑑; {𝜑(𝜃), 𝜃 = −𝑑, −𝑑+1, . . . , 0} is
a given discrete vector-valued initial condition. The switch is
assumed to only occur at the sampling time in this paper.

Remark 1. To illustrate the main advantage of delta operator
systems directly, we consider a typical continuous system
without time delays as follows:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐷𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐸𝑤 (𝑡) .

(3)

Using the traditional shift operator approach to discretize
the system, the following discrete form in 𝑧-domain can be
obtained (𝑘 = 0, 1, 2, . . .):

𝑥 ((𝑘 + 1) 𝑇) = 𝐴
𝑧
𝑥 (𝑘𝑇) + 𝐷

𝑧
𝑤 (𝑘𝑇) ,

𝑧 (𝑘𝑇) = 𝐶
𝑧
𝑥 (𝑘𝑇) + 𝐸

𝑧
𝑤 (𝑘𝑇) ,

(4)

where 𝐴
𝑧

= 𝑒
𝐴𝑇, 𝐷

𝑧
= (∫

𝑇

0
𝑒
𝐴𝑡

𝑑𝑡)𝐷, 𝐶
𝑧

= 𝐶, and 𝐸
𝑧

= 𝐸.
When 𝑇 → 0, lim

𝑇→0
𝐴

𝑧
= 𝐼 and lim

𝑇→0
𝐷

𝑧
= 0.

The movement of the system poles towards stable boundary
makes the system defective with the increase in the sampling
rates. However, by utilizing the delta operator approach, we
can obtain the following system expressed in delta domain:

𝛿𝑥 (𝑘𝑇) = 𝐴
𝛿
𝑥 (𝑘𝑇) + 𝐷

𝛿
𝑤 (𝑘𝑇) ,

𝑧 (𝑘𝑇) = 𝐶
𝛿
𝑥 (𝑘𝑇) + 𝐸

𝛿
𝑤 (𝑘𝑇) ,

(5)

where 𝐴
𝛿

= (𝐴
𝑧
− 𝐼)/𝑇, 𝐷

𝛿
= 𝐷

𝑧
/𝑇, 𝐶

𝛿
= 𝐶, and 𝐸

𝛿
= 𝐸.

When 𝑇 → 0, lim
𝑇→0

𝐴
𝛿

= 𝐴 and lim
𝑇→0

𝐷
𝑧

= 𝐷. It
can be seen that the system matrices are the same as those
of the original continuous system, alleviating the problems
encountered with fast sampling.

Remark 2. Since a delta operator system can be regarded as
a quasicontinuous system when 𝑇 → 0, the term 𝛿𝑥(𝑘) can
be utilized like 𝑥̇(𝑡) in normal continuous-time systems.

Definition 3. System (2) is said to be positive if, for any initial
conditions 𝜑(𝜃) ⪰ 0, 𝜃 = −𝑑, −𝑑 + 1, . . . , 0, any inputs
𝑤(𝑘) ⪰ 0, and any switching signals 𝜎(𝑘), the corresponding
trajectories 𝑥(𝑘) ⪰ 0 and 𝑧(𝑘) ⪰ 0 hold for all 𝑘 ≥ 𝑘

0
.

Remark 4. Definition 3 follows the general positivity defini-
tion of a positive system, which means that the state and
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output are nonnegative whenever the initial condition and
input are nonnegative [1, 2].

Lemma 5. System (2) is positive if and only if (𝐼 + 𝑇𝐴
𝑝
) ⪰ 0,

𝐴
𝑑𝑝

⪰ 0, 𝐷
𝑝
⪰ 0, 𝐶

𝑝
⪰ 0, and 𝐸

𝑝
⪰ 0, for all 𝑝 ∈ 𝑚.

Proof. From the definition of delta operator 𝛿, the discrete
form of system (2) can be obtained as follows:

𝑥 (𝑘 + 1) = (𝐼 + 𝑇𝐴
𝜎(𝑘)

) 𝑥 (𝑘) + 𝑇𝐴
𝑑𝜎(𝑘)

𝑥 (𝑘 − 𝑑
𝑘
)

+ 𝑇𝐷
𝜎(𝑘)

𝑤 (𝑘) ,

𝑥 (𝑘
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 = −𝑑, −𝑑 + 1, . . . , 0,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)

𝑥 (𝑘) + 𝐸
𝜎(𝑘)

𝑤 (𝑘) .

(6)

Combining Lemma 2 in [41] and Lemma 1 in [42], one can
obtain the remaining proof easily.

Remark 6. When𝑇 → 0, system (2) degenerates to a general
continuous-time positive switched system as follows:

𝑥̇ (𝑡) = 𝐴
𝜎(𝑡)

𝑥 (𝑡) + 𝐴
𝑑𝜎(𝑡)

𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐷
𝜎(𝑡)

𝑤 (𝑡) ,

𝑥 (𝑡
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 ∈ [−𝑑

2
, 0] ,

𝑧 (𝑡) = 𝐶
𝜎(𝑡)

𝑥 (𝑡) + 𝐸
𝜎(𝑡)

𝑤 (𝑡) ,

(7)

where 𝑑(𝑡) denotes the time-varying delay which is every-
where time differentiable and satisfies 0 ≤ 𝑑

1
≤ 𝑑(𝑡) ≤ 𝑑

2

and ̇𝑑(𝑡) ≤ 𝑑
𝑑
< 1 for known constants 𝑑

1
, 𝑑

2
, and 𝑑

𝑑
. Then

according to [39], system (7) is positive if and only if 𝐴
𝑝
are

Metzler matrices, and 𝐴
𝑑𝑝

⪰ 0, 𝐶
𝑝
⪰ 0, 𝐷

𝑝
⪰ 0, and 𝐸

𝑝
⪰ 0,

for all 𝑝 ∈ 𝑚.

Remark 7. In the light of Lemma 2.1 of [43], it is clear that
the 𝑝th subsystem in system (2) is positive if and only if (𝐼 +

𝑇𝐴
𝑝
) ⪰ 0, Α

𝑑𝑝
⪰ 0, 𝐷

𝑝
⪰ 0, 𝐶

𝑝
⪰ 0, and 𝐸

𝑝
⪰ 0, for all 𝑝 ∈

𝑚. Thus we can have an equivalent expression of Lemma 5:
system (2) is positive under any switching signals if and only
if it consists of a family of positive subsystems.

Definition 8 (see [44]). System (2) with 𝑤(𝑘) = 0 is said to
be exponentially stable under 𝜎(𝑘) if, for constants 𝛼 > 0 and
𝛽 > 0, the solution 𝑥(𝑘) satisfies

‖𝑥 (𝑘)‖ ≤ 𝛼
󵄩󵄩󵄩󵄩𝑥 (𝑘

0
)
󵄩󵄩󵄩󵄩𝑐
𝑒
−𝛽(𝑘−𝑘0)

, ∀𝑘 ≥ 𝑘
0
, (8)

where ‖𝑥(𝑘
0
)‖

𝑐
= sup

−𝑑≤𝜃≤0
‖𝑥(𝑘

0
+ 𝜃)‖.

Definition 9 (see [45]). For any switching signal 𝜎(𝑘) and any
𝑘
2
> 𝑘

1
≥ 0, let 𝑁

𝜎
(𝑘

1
, 𝑘

2
) denote the number of switches of

𝜎(𝑘) over the interval [𝑘
1
, 𝑘

2
). For given 𝜏

𝑎
> 0 and𝑁

0
≥ 0, if

the inequality

𝑁
𝜎
(𝑘

1
, 𝑘

2
) ≤ 𝑁

0
+

𝑘
2
− 𝑘

1

𝜏
𝑎

(9)

holds, then the positive constant 𝜏
𝑎
is called an average dwell

time and 𝑁
0
is called a chattering bound.

Without loss of generality, one chooses 𝑁
0

= 0 in this
paper.

Definition 10. For 0 < 𝛼 < 1/𝑇 and 𝛾 > 0, system (2) is said
to have a prescribed 𝑙

1
-gain performance level 𝛾 if there exists

a switching signal 𝜎(𝑘) such that the following conditions are
satisfied:

(a) system (2) is exponentially stable when 𝑤(𝑘) = 0;

(b) under zero initial condition, that is, 𝜑(𝜃) = 0, 𝜃 = −𝑑,

−𝑑 + 1, . . . , 0, system (2) satisfies

∞

∑

𝑘=𝑘0

(1 − 𝑇𝛼)
(𝑘−𝑘0)

‖𝑧 (𝑘)‖ ≤ 𝛾

∞

∑

𝑘=𝑘0

‖𝑤 (𝑘)‖ ,

∀𝑤 (𝑘) ∈ 𝑙
1
[𝑘

0
,∞) , 𝑤 (𝑘) ̸= 0.

(10)

Remark 11. In Definition 10, as proposed in [39], 𝑙
1
-gain

performance index 𝛾 characterizes system’s suppression to
exogenous disturbances. The smaller the value of 𝛾 is, the
better the performance of the system is, that is, the lesser the
effect of the disturbance input on the control output is.

The purposes of this paper are (1) to find a class of switch-
ing signals 𝜎(𝑘) under which system (2) is exponentially
stable and possesses an 𝑙

1
-gain performance and (2) to deter-

mine a class of switching signals and a state feedback con-
troller 𝑢(𝑘) = 𝐾

𝜎(𝑘)
𝑥(𝑘) for the following positive switched

delta operator system with time-varying delays:

𝛿𝑥 (𝑘) = 𝐴
𝜎(𝑘)

𝑥 (𝑘) + 𝐴
𝑑𝜎(𝑘)

𝑥 (𝑘 − 𝑑
𝑘
)

+ 𝐵
𝜎(𝑘)

𝑢 (𝑘) + 𝐷
𝜎(𝑘)

𝑤 (𝑘) ,

𝑥 (𝑘
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 = −𝑑, −𝑑 + 1, . . . , 0,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)

𝑥 (𝑘) + 𝐸
𝜎(𝑘)

𝑤 (𝑘)

(11)

such that the resulting closed-loop system is exponentially
stable with an 𝑙

1
-gain performance.

3. Main Results

This section will focus on the problems of stability analysis
and 𝑙

1
-gain controller design for positive switched delta

operator systems with time-varying delays.

3.1. Stability Analysis. First, we consider the following
switched positive delta operator system:

𝛿𝑥 (𝑘) = 𝐴
𝜎(𝑘)

𝑥 (𝑘) + 𝐴
𝑑𝜎(𝑘)

𝑥 (𝑘 − 𝑑
𝑘
) ,

𝑥 (𝑘
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 = −𝑑, −𝑑 + 1, . . . , 0,

(12)

where 𝐼 + 𝑇𝐴
𝑝
⪰ 0, 𝐴

𝑑𝑝
⪰ 0 for 𝑝 ∈ 𝑚, and 𝑑

𝑘
is defined the

same as system (2).
Sufficient conditions of exponential stability of system

(12) are provided in the following theorem.
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Theorem 12. Given a positive constant 0 < 𝛼 < 1/𝑇, if there
exist ]

𝑝
, 𝜐

𝑝
, 𝜗

𝑝
∈ 𝑅

𝑛

+
, such that, for all 𝑝 ∈ 𝑚,

𝐴
𝑇

𝑝
]
𝑝
+ 𝛼]

𝑝
+ (1 − 𝑇𝛼) (𝑑 − 𝑑 + 1) 𝜐

𝑝
+ (1 − 𝑇𝛼) 𝜗

𝑝
⪯ 0,

𝐴
𝑇

𝑑𝑝
]
𝑝
− (1 − 𝑇𝛼)

𝑑+1
𝜐
𝑝
⪯ 0,

(13)

where ]
𝑝

= []
𝑝1

, ]
𝑝2

, . . . , ]
𝑝𝑛

]
𝑇, 𝜐

𝑝
= [𝜐

𝑝1
, 𝜐

𝑝2
, . . . , 𝜐

𝑝𝑛
]
𝑇, and

𝜗
𝑝

= [𝜗
𝑝1

, 𝜗
𝑝2

, . . . , 𝜗
𝑝𝑛

]
𝑇, then system (12) is exponentially

stable for any switching signals 𝜎(𝑘) with average dwell time

𝜏
𝑎
> 𝜏

∗

𝑎
= −

ln 𝜇

ln (1 − 𝑇𝛼)
, (14)

where 𝜇 ≥ 1 satisfies

]
𝑝
⪯ 𝜇]

𝑞
, 𝜐

𝑝
⪯ 𝜇𝜐

𝑞
, 𝜗

𝑝
⪯ 𝜇𝜗

𝑞
, ∀𝑝, 𝑞 ∈ 𝑚. (15)

Furthermore, the state decay of system (12) is given by

‖𝑥 (𝑘)‖ ≤ 𝑎𝑏
(𝑘−𝑘0)󵄩󵄩󵄩󵄩𝑥 (𝑘

0
)
󵄩󵄩󵄩󵄩𝑐
, (16)

where

𝑎 =
𝜀
2

𝜀
1

+
𝑇𝜀

3
𝑑

𝜀
1

+

0.5𝑇𝜀
3
(𝑑 + 𝑑 − 1) (𝑑 − 𝑑)

𝜀
1

+
𝑇𝜀

4
𝑑

𝜀
1

,

𝑏 = 𝜇
1/𝜏𝑎

(1 − 𝑇𝛼) ,

𝜀
1
= min

(𝑟,𝑝)∈𝑛×𝑚
{]

𝑝𝑟
} ,

𝜀
2
= max

(𝑟,𝑝)∈𝑛×𝑚

{]
𝑝𝑟
} ,

𝜀
3
= max

(𝑟,𝑝)∈𝑛×𝑚

{𝜐
𝑝𝑟
} ,

𝜀
4
= max

(𝑟,𝑝)∈𝑛×𝑚

{𝜗
𝑝𝑟
} ,

󵄩󵄩󵄩󵄩𝑥 (𝑘
0
)
󵄩󵄩󵄩󵄩𝑐

= sup
−𝑑≤𝜃≤0

󵄩󵄩󵄩󵄩𝑥 (𝑘
0
+ 𝜃)

󵄩󵄩󵄩󵄩 , 𝑛 = {1, 2, . . . , 𝑛} .

(17)

Proof. Choose the following piecewise copositive type Lya-
punov functional for the 𝑝th subsystem in system (12):

𝑉
𝑝
(𝑘, 𝑥 (𝑘)) = 𝑉

𝑝1
(𝑘, 𝑥 (𝑘)) + 𝑉

𝑝2
(𝑘, 𝑥 (𝑘)) + 𝑉

𝑝3
(𝑘, 𝑥 (𝑘))

+ 𝑉
𝑝4

(𝑘, 𝑥 (𝑘)) ,

(18)

where

𝑉
𝑝1

(𝑘, 𝑥 (𝑘)) = 𝑥
𝑇
(𝑘) ]

𝑝
,

𝑉
𝑝2

(𝑘, 𝑥 (𝑘)) = 𝑇

𝑘−1

∑

𝑠=𝑘−𝑑𝑘

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝
,

𝑉
𝑝3

(𝑘, 𝑥 (𝑘)) = 𝑇

−𝑑

∑

𝑙=−𝑑+1

𝑘−1

∑

𝑠=𝑘+𝑙

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝
,

𝑉
𝑝4

(𝑘, 𝑥 (𝑘)) = 𝑇

𝑘−1

∑

𝑠=𝑘−𝑑

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇
(𝑠) 𝜗

𝑝
, ∀𝑝 ∈ 𝑚.

(19)

For simplicity, 𝑉
𝑝
(𝑘, 𝑥(𝑘)) is written as 𝑉

𝑝
(𝑘) (corre-

spondingly, 𝑉(𝑘, 𝑥(𝑘)) is written as 𝑉(𝑘)) in the later section
of the paper.

The Lyapunov function in delta domain has the following
form:

𝛿𝑉
𝑝1

(𝑘, 𝑥 (𝑘)) = 𝛿 (𝑥
𝑇
(𝑘) ]

𝑝
)

= (𝛿𝑥
𝑇
(𝑘)) ]

𝑝

= 𝑥
𝑇
(𝑘) 𝐴

𝑇

𝑝
]
𝑝
+ 𝑥

𝑇
(𝑘 − 𝑑

𝑘
) 𝐴

𝑇

𝑑𝑝
]
𝑝
,

𝛿𝑉
𝑝2

(𝑘, 𝑥 (𝑘)) =
1

𝑇
[𝑉

𝑝2
(𝑘 + 1) − 𝑉

𝑝2
(𝑘)]

=
1

𝑇

[

[

𝑇

(𝑘+1)−1

∑

𝑠=𝑘+1−𝑑𝑘+1

(1 − 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝

− 𝑇

𝑘−1

∑

𝑠=𝑘−𝑑𝑘

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝
]

]

≤ −𝑇𝛼

𝑘−1

∑

𝑠=𝑘−𝑑𝑘

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝

+ (1 − 𝑇𝛼) 𝑥
𝑇
(𝑘) 𝜐

𝑝

− (1 − 𝑇𝛼)
𝑑+1

𝑥
𝑇
(𝑘 − 𝑑

𝑘
) 𝜐

𝑝

+

𝑘−𝑑

∑

𝑠=𝑘+1−𝑑

(1 − 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝
,

𝛿𝑉
𝑝3

(𝑘, 𝑥 (𝑘)) =
1

𝑇
[𝑉

𝑝3
(𝑘 + 1) − 𝑉

𝑝3
(𝑘)]

=
1

𝑇

[

[

𝑇

−𝑑

∑

𝑙=−𝑑+1

(𝑘+1)−1

∑

𝑠=𝑘+1+𝑙

(1 − 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝

−𝑇

−𝑑

∑

𝑙=−𝑑+1

𝑘−1

∑

𝑠=𝑘+𝑙

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝
]

]

= −𝑇𝛼

−𝑑

∑

𝑙=−𝑑+1

𝑘−1

∑

𝑠=𝑘+𝑙

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝

+ (1 − 𝑇𝛼) (𝑑 − 𝑑) 𝑥
𝑇
(𝑘) 𝜐

𝑝

−

𝑘−𝑑

∑

𝑠=𝑘+1−𝑑

(1 − 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝
,

𝛿𝑉
𝑝4

(𝑘, 𝑥 (𝑘)) =
1

𝑇
[𝑉

𝑝4
(𝑘 + 1) − 𝑉

𝑝4
(𝑘)]

=
1

𝑇

[

[

𝑇

(𝑘+1)−1

∑

𝑠=𝑘+1−𝑑

(1 − 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜗

𝑝

−𝑇

𝑘−1

∑

𝑠=𝑘−𝑑

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇
(𝑠) 𝜗

𝑝
]

]
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= −𝑇𝛼

𝑘−1

∑

𝑠=𝑘−𝑑

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇
(𝑠) 𝜗

𝑝

+ (1 − 𝑇𝛼) 𝑥
𝑇
(𝑘) 𝜗

𝑝

− (1 − 𝑇𝛼)
𝑑+1

𝑥
𝑇
(𝑘 − 𝑑) 𝜗

𝑝
.

(20)

According to (20), we have

𝛿𝑉
𝑝
(𝑘, 𝑥 (𝑘)) + 𝛼𝑉

𝑝
(𝑘, 𝑥 (𝑘))

≤ 𝑥
𝑇
(𝑘) 𝐴

𝑇

𝑝
]
𝑝
+ 𝑥

𝑇
(𝑘 − 𝑑

𝑘
) 𝐴

𝑇

𝑑𝑝
]
𝑝
+ 𝛼𝑥

𝑇
(𝑘) ]

𝑝

+ (1 − 𝑇𝛼) 𝑥
𝑇
(𝑘) 𝜐

𝑝
− (1 − 𝑇𝛼)

𝑑+1
𝑥
𝑇
(𝑘 − 𝑑

𝑘
) 𝜐

𝑝

+

𝑘−𝑑

∑

𝑠=𝑘+1−𝑑

(1 − 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝

+ (1 − 𝑇𝛼) (𝑑 − 𝑑) 𝑥
𝑇
(𝑘) 𝜐

𝑝

−

𝑘−𝑑

∑

𝑠=𝑘+1−𝑑

(1 − 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝

+ (1 − 𝑇𝛼) 𝑥
𝑇
(𝑘) 𝜗

𝑝
− (1 − 𝑇𝛼)

𝑑+1
𝑥
𝑇
(𝑘 − 𝑑) 𝜗

𝑝

≤ 𝑥
𝑇
(𝑘) [𝐴

𝑇

𝑝
]
𝑝
+ 𝛼]

𝑝
+ (1 − 𝑇𝛼)

× (𝑑 − 𝑑 + 1) 𝜐
𝑝
+ (1 − 𝑇𝛼) 𝜗

𝑝
]

+ 𝑥
𝑇
(𝑘 − 𝑑

𝑘
) [𝐴

𝑇

𝑑𝑝
]
𝑝
− (1 − 𝑇𝛼)

𝑑+1
𝜐
𝑝
] .

(21)

From (13), we obtain

𝛿𝑉
𝑝
(𝑘) + 𝛼𝑉

𝑝
(𝑘) ≤ 0

󳨐⇒ 𝛿𝑉
𝑝
(𝑘) =

𝑉
𝑝
(𝑘 + 1) − 𝑉

𝑝
(𝑘)

𝑇

≤ −𝛼𝑉
𝑝
(𝑘)

󳨐⇒ 𝑉
𝑝
(𝑘 + 1) ≤ 𝑉

𝑝
(𝑘) − 𝑇𝛼𝑉

𝑝
(𝑘)

󳨐⇒ 𝑉
𝑝
(𝑘 + 1) ≤ (1 − 𝑇𝛼)𝑉

𝑝
(𝑘) .

(22)

Let 𝑘
1

< ⋅ ⋅ ⋅ < 𝑘
𝑔
denote the switching instants of 𝜎(𝑘)

over the interval [𝑘
0
, 𝑘). Consider the following piecewise

Lyapunov functional candidate for system (12):

𝑉 (𝑘) = 𝑉
𝜎(𝑘)

(𝑘) . (23)

From (15) and (18), we obtain

𝑉
𝜎(𝑘𝑖)

(𝑘) ≤ 𝜇𝑉
𝜎(𝑘
−

𝑖
)
(𝑘) , 𝑖 = 1, 2, . . . , 𝑔. (24)

Then, it follows from (22), (24), and the relation 𝑁
𝜎
(𝑘

0
, 𝑘) ≤

(𝑘 − 𝑘
0
)/𝜏

𝑎
that, for [𝑘

𝑖
, 𝑘

𝑖+1
),

𝑉
𝜎(𝑘)

(𝑘) = 𝑉
𝜎(𝑘𝑖)

(𝑘) ≤ (1 − 𝑇𝛼)
(𝑘−𝑘𝑖)

𝑉
𝜎(𝑘𝑖)

(𝑘
𝑖
)

≤ 𝜇(1 − 𝑇𝛼)
(𝑘−𝑘𝑖)

𝑉
𝜎(𝑘
−

𝑖
)
(𝑘

−

𝑖
)

≤ 𝜇(1 − 𝑇𝛼)
(𝑘−𝑘𝑖)+(𝑘𝑖−𝑘𝑖−1)

𝑉
𝜎(𝑘𝑖−1)

(𝑘
𝑖−1

)

= 𝜇(1 − 𝑇𝛼)
(𝑘−𝑘𝑖−1)

𝑉
𝜎(𝑘𝑖−1)

(𝑘
𝑖−1

)

= 𝜇
𝑁𝜎(𝑘𝑖−1 ,𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑘𝑖−1)

𝑉
𝜎(𝑘𝑖−1)

(𝑘
𝑖−1

)

≤ ⋅ ⋅ ⋅

≤ 𝜇
𝑁𝜎(𝑘0 ,𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑘0)

𝑉
𝜎(𝑘0)

(𝑘
0
)

≤ 𝜇
(𝑘−𝑘0)/𝜏𝑎

(1 − 𝑇𝛼)
(𝑘−𝑘0)

𝑉
𝜎(𝑘0)

(𝑘
0
)

≤ (𝜇
1/𝜏𝑎

(1 − 𝑇𝛼))
(𝑘−𝑘0)

𝑉
𝜎(𝑘0)

(𝑘
0
) .

(25)

Considering the definition of 𝑉
𝜎(𝑘)

(𝑘), 𝜀
1
, 𝜀

2
, 𝜀

3
, and 𝜀

4
in

Theorem 12, it yields that

𝑉
𝜎(𝑘)

(𝑘) ≥ 𝜀
1 ‖𝑥 (𝑘)‖ ,

𝑉
𝜎(𝑘0)

(𝑘
0
) ≤ (𝜀

2
+ 𝑇𝜀

3
𝑑 + 0.5𝑇𝜀

3
(𝑑 + 𝑑 − 1)

× (𝑑 − 𝑑) + 𝑇𝜀
4
𝑑) sup

−𝑑≤𝜃≤0

󵄩󵄩󵄩󵄩𝑥 (𝑘
0
+ 𝜃)

󵄩󵄩󵄩󵄩 .

(26)

Combining (25)-(26), we obtain

‖𝑥 (𝑘)‖ ≤(
𝜀
2

𝜀
1

+
𝑇𝜀

3
𝑑

𝜀
1

+

0.5𝑇𝜀
3
(𝑑 + 𝑑 − 1) (𝑑 − 𝑑)

𝜀
1

+
𝑇𝜀

4
𝑑

𝜀
1

)

× (𝜇
1/𝜏𝑎

(1 − 𝑇𝛼))
(𝑘−𝑘0)󵄩󵄩󵄩󵄩𝑥 (𝑘

0
)
󵄩󵄩󵄩󵄩𝑐
,

(27)

where ‖𝑥(𝑘
0
)‖

𝑐
= sup

−𝑑≤𝜃≤0
‖𝑥(𝑘

0
+ 𝜃)‖.

Therefore, according to Definition 8, system (12) is expo-
nentially stable for any switching signals 𝜎(𝑘) with average
dwell time (14).

This completes the proof.

Remark 13. When 𝜇 = 1 in (15), which leads to ]
𝑝
= ]

𝑞
, 𝜐

𝑝
=

𝜐
𝑞
, 𝜗

𝑝
= 𝜗

𝑞
, for all 𝑝, 𝑞 ∈ 𝑚, and 𝜏

∗

𝑎
= 0 by (14), system (12)

possesses a common copositive type Lyapunov-Krasovskii
functional, and the switching signal can be arbitrary.

When 𝑑
𝑘
= 0, system (12) can be represented by

𝛿𝑥 (𝑘) = 𝐴
𝜎(𝑘)

𝑥 (𝑘) , (28)

where 𝐴
𝑝

= 𝐴
𝑝
+ 𝐴

𝑑𝑝
satisfies 𝐼 + 𝑇𝐴

𝑝
⪰ 0, for all 𝑝 ∈ 𝑚.

Then we have the following corollary.
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Corollary 14. Given a positive constant 0 < 𝛼 < 1/𝑇, if there
exist ]

𝑝
∈ 𝑅

𝑛

+
, such that, for all 𝑝 ∈ 𝑚,

𝐴
𝑇

𝑝
]
𝑝
+ 𝛼]

𝑝
⪯ 0, (29)

then system (28) is exponentially stable for any switching
signals 𝜎(𝑘) with average dwell time (14), where 𝜇 ≥ 1 satisfies

]
𝑝
⪯ 𝜇]

𝑞
, ∀𝑝, 𝑞 ∈ 𝑚. (30)

When the sampling period 𝑇 → 0, system (12) becomes a
continuous-time system as follows:

𝑥̇ (𝑡) = 𝐴
𝜎(𝑡)

𝑥 (𝑡) + 𝐴
𝑑𝜎(𝑡)

𝑥 (𝑡 − 𝑑 (𝑡)) ,

𝑥 (𝑡
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 ∈ [−𝑑

2
, 0] ,

(31)

where 𝐴
𝑝
are Metzler matrices and 𝐴

𝑑𝑝
⪰ 0, for all 𝑝 ∈ 𝑚.

𝑑(𝑡) denotes the time-varying delay which satisfies 0 ≤ 𝑑
1

≤

𝑑(𝑡) ≤ 𝑑
2
and ̇𝑑(𝑡) ≤ 𝑑

𝑑
< 1 for known constants 𝑑

1
, 𝑑

2
, and

𝑑
𝑑
.

We can obtain sufficient conditions of exponential stabil-
ity of system (31) byTheorem 12.

Corollary 15. Given a positive constant 𝛼, if there exist
]
𝑝
, 𝜐

𝑝
, 𝜗

𝑝
∈ 𝑅

𝑛

+
, such that, for all 𝑝 ∈ 𝑚,

𝐴
𝑇

𝑝
]
𝑝
+ 𝛼]

𝑝
+ (𝑑

2
− 𝑑

1
+ 1) 𝜐

𝑝
+ 𝜗

𝑝
⪯ 0,

𝐴
𝑇

𝑑𝑝
]
𝑝
− (1 − 𝑑

𝑑
) 𝑒

−𝛼𝑑2
𝜐
𝑝
⪯ 0,

(32)

then system (31) is exponentially stable for any switching signals
𝜎(𝑡) with average dwell time

𝜏
𝑎
> 𝜏

∗

𝑎
=
ln 𝜇

𝛼
, (33)

where 𝜇 ≥ 1 satisfies (15).
Let 𝐴

𝜎(𝑘)
= 𝐴

𝜎(𝑘)
+ 𝐼. When the sampling period 𝑇 = 1,

system (12) becomes a discrete-time system as follows:

𝑥 (𝑘 + 1) = 𝐴
𝜎(𝑘)

𝑥 (𝑘) + 𝐴
𝑑𝜎(𝑘)

𝑥 (𝑘 − 𝑑
𝑘
) ,

𝑥 (𝑘
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 = −𝑑, −𝑑 + 1, . . . , 0,

(34)

where 𝐴
𝑝

⪰ 0 and 𝐴
𝑑𝑝

⪰ 0, for all 𝑝 ∈ 𝑚. One can obtain
sufficient conditions of exponential stability of system (34) by
Theorem 12.

Corollary 16. Given a positive constant 0 < 𝛼 < 1, if there
exist ]

𝑝
, 𝜐

𝑝
, 𝜗

𝑝
∈ 𝑅

𝑛

+
, such that, for all 𝑝 ∈ 𝑚,

𝐴
𝑇

𝑝
]
𝑝
+ 𝛼]

𝑝
+ (1 − 𝛼) (𝑑 − 𝑑 + 1) 𝜐

𝑝
+ (1 − 𝛼) 𝜗

𝑝
⪯ 0,

𝐴
𝑇

𝑑𝑝
]
𝑝
− (1 − 𝛼)

𝑑+1
𝜐
𝑝
⪯ 0,

(35)

then system (34) is exponentially stable for any switching
signals 𝜎(𝑘) with average dwell time

𝜏
𝑎
> 𝜏

∗

𝑎
= −

ln 𝜇

ln (1 − 𝛼)
, (36)

where 𝜇 ≥ 1 satisfies (15).

3.2. 𝑙
1
-Gain Analysis. The following theorem establishes

sufficient conditions of exponential stability with 𝑙
1
-gain

property for system (2).

Theorem 17. For given positive constants 0 < 𝛼 < 1/𝑇 and 𝛾,
if there exist ]

𝑝
, 𝜐

𝑝
, 𝜗

𝑝
∈ 𝑅

𝑛

+
, such that, for all 𝑝 ∈ 𝑚,

𝐴
𝑇

𝑝
]
𝑝
+ 𝛼]

𝑝
+ (1 − 𝑇𝛼) (𝑑 − 𝑑 + 1) 𝜐

𝑝

+ (1 − 𝑇𝛼) 𝜗
𝑝
+ 𝑐

𝑝
⪯ 0,

𝐴
𝑇

𝑑𝑝
]
𝑝
− (1 − 𝑇𝛼)

𝑑+1
𝜐
𝑝
⪯ 0,

(37)

𝐷
𝑇

𝑝
]
𝑝
+ 𝑒

𝑝
− 𝛾1

𝑤
⪯ 0, (38)

where 1
𝑤

= [1, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑤

]
𝑇, 𝑐

𝑝
= [‖𝑐

𝑝1
‖, ‖𝑐

𝑝2
‖, . . . , ‖𝑐

𝑝𝑛
‖]

𝑇, 𝑐
𝑝𝑗

represents the 𝑗th column of matrix 𝐶
𝑝
, 𝑗 ∈ 𝑛 = {1, 2, . . . , 𝑛},

𝑒
𝑝

= [‖𝑒
𝑝1

‖, ‖𝑒
𝑝2

‖, . . . , ‖𝑒
𝑝𝑤

‖]
𝑇, and 𝑒

𝑝𝑗
represents the 𝑗th

column of matrix 𝐸
𝑝
, 𝑗 ∈ 𝑤 = {1, 2, . . . , 𝑤}, then system

(2) is exponentially stable with an 𝑙
1
-gain performance for any

switching signals𝜎(𝑘)with average dwell time (14), where𝜇 ≥ 1

satisfies (15).

Proof. By Theorem 12, the exponential stability of system (2)
with 𝑤(𝑘) = 0 is ensured if (37) holds. To show the weighted
𝑙
1
-gain performance, we choose the Lyapunov functional (18).

From (15), we have

𝑉
𝜎(𝑘𝑖)

(𝑘
𝑖
) ≤ 𝜇𝑉

𝜎(𝑘
−

𝑖
)
(𝑘

−

𝑖
) , ∀𝑖 = 1, 2, . . . . (39)

For any 𝑘 ∈ [𝑘
𝑖
, 𝑘

𝑖+1
), noticing (37)-(38), we have

𝑉 (𝑘) ≤ (1 − 𝑇𝛼)
(𝑘−𝑘𝑖)

𝑉
𝜎(𝑘𝑖)

(𝑘
𝑖
) −

𝑘

∑

𝑠=𝑘𝑖

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠) ,

(40)

where Λ(𝑠) = ‖𝑧(𝑠)‖ − 𝛾‖𝑤(𝑠)‖.
Combining (39) and (40) leads to

𝑉 (𝑘) ≤ 𝜇(1 − 𝑇𝛼)
(𝑘−𝑘𝑖)

𝑉
𝜎(𝑘
−

𝑖
)
(𝑘

−

𝑖
) −

𝑘

∑

𝑠=𝑘𝑖

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠)

≤ 𝜇(1 − 𝑇𝛼)
(𝑘−𝑘𝑖−1)

𝑉
𝜎(𝑘𝑖−1)

(𝑘
𝑖−1

)

− 𝜇

𝑘𝑖

∑

𝑠=𝑘𝑖−1

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠)

−

𝑘

∑

𝑠=𝑘𝑖

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠)

= 𝜇
𝑁𝜎(𝑘𝑖−1 ,𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑘𝑖−1)

𝑉
𝜎(𝑘𝑖−1)

(𝑘
𝑖−1

)

− 𝜇
𝑁𝜎(𝑘𝑖−1 ,𝑘)

𝑘𝑖

∑

𝑠=𝑘𝑖−1

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠)

−

𝑘

∑

𝑠=𝑘𝑖

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠)

≤ ⋅ ⋅ ⋅
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≤ 𝜇
𝑁𝜎(𝑘0 ,𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑘0)

𝑉
𝜎(𝑘0)

(𝑘
0
)

− 𝜇
𝑁𝜎(𝑘0 ,𝑘)

𝑘1

∑

𝑠=𝑘0

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠)

− 𝜇
𝑁𝜎(𝑘1 ,𝑘)

𝑘2

∑

𝑠=𝑘1

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠) − ⋅ ⋅ ⋅

−

𝑘

∑

𝑠=𝑘𝑖

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠)

= 𝜇
𝑁𝜎(𝑘0 ,𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑘0)

𝑉
𝜎(𝑘0)

(𝑘
0
)

−

𝑘

∑

𝑠=𝑘0

𝜇
𝑁𝜎(𝑠,𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠) .

(41)

Under the zero initial condition, we obtain from (41) that

0 ≤ −

𝑘

∑

𝑠=𝑘0

𝜇
𝑁𝜎(𝑠,𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠) ; (42)

namely,

𝑘

∑

𝑠=𝑘0

𝜇
𝑁𝜎(𝑠,𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑠)

‖𝑧 (𝑠)‖

≤ 𝛾

𝑘

∑

𝑠=𝑘0

𝜇
𝑁𝜎(𝑠,𝑘)

(1 − 𝑇𝛼)
(𝑘−𝑠)

‖𝑤 (𝑠)‖ .

(43)

Multiplying both sides of (43) by 𝜇
−𝑁𝜎(𝑘0 ,𝑘) yields

𝑘

∑

𝑠=𝑘0

𝜇
−𝑁𝜎(𝑘0 ,𝑠)

(1 − 𝑇𝛼)
(𝑘−𝑠)

‖𝑧 (𝑠)‖

≤ 𝛾

𝑘

∑

𝑠=𝑘0

𝜇
−𝑁𝜎(𝑘0 ,𝑠)

(1 − 𝑇𝛼)
(𝑘−𝑠)

‖𝑤 (𝑠)‖ .

(44)

Noticing that 𝑁
𝜎(𝑘)

(𝑘
0
, 𝑠) ≤ (𝑠 − 𝑘

0
)/𝜏

𝑎
, we have

𝜇
−𝑁𝜎(𝑘0 ,𝑠)

≥ (1 − 𝑇𝛼)
(𝑠−𝑘0)

. (45)

Combining (44) and (45) leads to

𝑘

∑

𝑠=𝑘0

(1 − 𝑇𝛼)
(𝑠−𝑘0)

(1 − 𝑇𝛼)
(𝑘−𝑠)

‖𝑧 (𝑠)‖

≤ 𝛾

𝑘

∑

𝑠=𝑘0

(1 − 𝑇𝛼)
(𝑘−𝑠)

‖𝑤 (𝑠)‖ .

(46)

Summing both sides of (46) from 𝑘 = 𝑘
0
to ∞ leads to

∞

∑

𝑘=𝑘0

(1 − 𝑇𝛼)
(𝑘−𝑘0)

‖𝑧 (𝑘)‖ ≤ 𝛾

∞

∑

𝑘=𝑘0

‖𝑤 (𝑘)‖ . (47)

From Definition 10, it can be concluded that system (2) is
exponentially stable with a prescribed 𝑙

1
-gain performance

level 𝛾.
This completes the proof.

Remark 18. When 𝜇 = 1 in Theorem 17, summing both sides
of (44) from 𝑘 = 𝑘

0
to ∞ leads to

∞

∑

𝑘=𝑘0

‖𝑧 (𝑘)‖ ≤ 𝛾

∞

∑

𝑘=𝑘0

‖𝑤 (𝑘)‖ (48)

which gives the standard 𝑙
1
-gain performance.

3.3. Controller Design. In this section, we are interested in
designing a state feedback controller 𝑢(𝑘) = 𝐾

𝜎(𝑘)
𝑥(𝑘) for

positive switched system (11) such that the corresponding
closed-loop system

𝛿𝑥 (𝑘) = (𝐴
𝜎(𝑘)

+ 𝐵
𝜎(𝑘)

𝐾
𝜎(𝑘)

) 𝑥 (𝑘)

+ 𝐴
𝑑𝜎(𝑘)

𝑥 (𝑘 − 𝑑
𝑘
) + 𝐷

𝜎(𝑘)
𝑤 (𝑘) ,

𝑥 (𝑘
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 = −𝑑, −𝑑 + 1, . . . , 0,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)

𝑥 (𝑘) + 𝐸
𝜎(𝑘)

𝑤 (𝑘)

(49)

is exponentially stable with an 𝑙
1
-gain performance.

Theorem 19. Considering system (11), for given positive scalars
0 < 𝛼 < 1/𝑇 and 𝛾, if there exist ]

𝑝
, 𝜐

𝑝
, 𝜗

𝑝
∈ 𝑅

𝑛

+
and 𝑔

𝑝
∈ 𝑅

𝑛,
such that, for all 𝑝 ∈ 𝑚,

𝐴
𝑇

𝑝
]
𝑝
+ 𝑔

𝑝
+ 𝛼]

𝑝
+ (1 − 𝑇𝛼) (𝑑 − 𝑑 + 1) 𝜐

𝑝

+ (1 − 𝑇𝛼) 𝜗
𝑝
+ 𝑐

𝑝
⪯ 0,

(50)

𝐴
𝑇

𝑑𝑝
]
𝑝
− (1 − 𝑇𝛼)

𝑑+1
𝜐
𝑝
⪯ 0, (51)

𝐷
𝑇

𝑝
]
𝑝
+ 𝑒

𝑝
− 𝛾1

𝑤
⪯ 0, (52)

𝐼 + 𝑇 (𝐴
𝑝
+ 𝐵

𝑝
𝐾

𝑝
) ⪰ 0, (53)

where 𝑐
𝑝
and 𝑒

𝑝
have been defined in Theorem 17 and 𝑔

𝑝
=

𝐾
𝑇

𝑝
𝐵
𝑇

𝑝
]
𝑝
, then the corresponding closed-loop system (49) is

positive and exponentially stable with a prescribed 𝑙
1
-gain

performance level 𝛾 for any switching signals 𝜎(𝑘)with average
dwell time (14), where 𝜇 ≥ 1 satisfies (15).

Proof. Denote 𝑔
𝑝

= 𝐾
𝑇

𝑝
𝐵
𝑇

𝑝
]
𝑝
. Following the proof line of

Theorem 17, one can exactly obtainTheorem 19. It is omitted
here.

This completes the proof.

Consider the controller design of the following positive
switched delta operator system without time delay:

𝛿𝑥 (𝑘) = 𝐴
𝜎(𝑘)

𝑥 (𝑘) + 𝐵
𝜎(𝑘)

𝑢 (𝑘) + 𝐷
𝜎(𝑘)

𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)

𝑥 (𝑘) + 𝐸
𝜎(𝑘)

𝑤 (𝑘) ,

(54)
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where 𝐴
𝜎(𝑘)

= 𝐴
𝜎(𝑘)

+ 𝐴
𝑑𝜎(𝑘)

. Then we directly have the
following corollary.

Corollary 20. Considering system (54), for given positive
scalars 0 < 𝛼 < 1/𝑇 and 𝛾, if there exist ]

𝑝
∈ 𝑅

𝑛

+
and 𝑔

𝑝
∈ 𝑅

𝑛,
such that, for all 𝑝 ∈ 𝑚,

𝐴
𝑇

𝑝
]
𝑝
+ 𝛼]

𝑝
+ 𝑔

𝑝
+ 𝑐

𝑝
⪯ 0,

𝐷
𝑇

𝑝
]
𝑝
+ 𝑒

𝑝
− 𝛾1

𝑤
⪯ 0,

𝐼 + 𝑇 (𝐴
𝑝
+ 𝐵

𝑝
𝐾

𝑝
) ⪰ 0,

(55)

where 𝑐
𝑝
and 𝑒

𝑝
have been defined in Theorem 17 and 𝑔

𝑝
=

𝐾
𝑇

𝑝
𝐵
𝑇

𝑝
]
𝑝
, then the corresponding closed-loop system is positive

and exponentially stable with a prescribed 𝑙
1
-gain performance

level 𝛾 for any switching signals 𝜎(𝑘) with average dwell time
(14), where 𝜇 ≥ 1 satisfies (30).

Based onTheorem 19, one is now in a position to present an
effective algorithm for constructing the desired controller.

Algorithm 21. Consider the following.

Step 1. Input the matrices 𝐴
𝑝
, 𝐴

𝑑𝑝
, 𝐵

𝑝
, 𝐶

𝑝
, 𝐷

𝑝
, and 𝐸

𝑝
.

Step 2. Choose the parameters 0 < 𝛼 < 1/𝑇 and 𝛾 > 0. By
solving (50)–(52), one can obtain the solutions of ]

𝑝
, 𝜐

𝑝
, 𝜗

𝑝
,

and 𝑔
𝑝
.

Step 3. By the equation 𝑔
𝑝

= 𝐾
𝑇

𝑝
𝐵
𝑇

𝑝
]
𝑝
with the obtained 𝑔

𝑝

and ]
𝑝
, one can get the gain matrices 𝐾

𝑝
.

Step 4. Check condition (53) inTheorem 19. If it holds, go to
Step 5; otherwise, adjust the parameter 𝛼 and return to Step 2.

Step 5. Construct the feedback controller 𝑢(𝑘) = 𝐾
𝜎(𝑘)

𝑥(𝑘),
where 𝐾

𝑝
, 𝑝 ∈ 𝑚, are the gain matrices.

4. Numerical Example

Consider positive switched delta operator system (11) consist-
ing of two subsystems described by the following.

Subsystem 1:

𝐴
1
= [

1.8 4.5

1.5 −2.8
] , 𝐴

𝑑1
= [

0.5 0.0

0.1 0.0
] , 𝐵

1
= [

0.4

0.1
] ,

𝐶
1
= [0.1 0.2] , 𝐷

1
= [

0.1

0.2
] , 𝐸

1
= [0.1] ,

(56)

Subsystem 2:

𝐴
2
= [

5.2 4.5

3.8 −1.8
] , 𝐴

𝑑2
= [

0.5 0.0

0.1 0.0
] , 𝐵

2
= [

0.5

0.2
] ,

𝐶
2
= [0.2 0.3] , 𝐷

2
= [

0.2

0.1
] , 𝐸

2
= [0.2] ,

(57)
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Figure 1: Switching signal.

and 𝑑 = 2, 𝑑 = 0, 𝛼 = 1.3, 𝛾 = 2, and 𝑇 = 0.25. Then, by
solving (50)–(52) inTheorem 19, we can obtain the following
solutions:

]
1
= [

9.6472

2.5911
] , 𝜐

1
= [

17.4916

1.9008
] , 𝜗

1
= [

0.7312

1.4427
] ,

]
2
= [

6.9694

1.8534
] , 𝜐

2
= [

12.6866

1.3511
] , 𝜗

2
= [

0.3727

1.0628
] ,

(58)

and the state feedback gain matrices can be obtained as
follows:

𝐾
1
= [−14.2263 − 10.7904] ,

𝐾
2
= [−18.2172 − 8.8405] .

(59)

Obviously, condition (53) is satisfied.
According to (15), we have 𝜇 = 2.0193.Then from (14), we

get 𝜏
𝑎
> 𝜏

∗

𝑎
= 1.7880. Choosing 𝜏

𝑎
= 2, the simulation results

are shown in Figures 1 and 2, where the initial conditions
are 𝑥(0) = [0.2 0.3]

𝑇and 𝑥(𝑘) = [0 0]
𝑇, 𝑘 = −2, −1, and

the exogenous disturbance input is 𝑤(𝑘) = 0.05𝑒
−0.5𝑘 which

belongs to 𝑙
1
[0,∞). The switching signal with average dwell

time 𝜏
𝑎

= 2 is shown in Figure 1 and the state responses of
the corresponding closed-loop system are given in Figure 2.
From the simulation results, it can been seen that the closed-
loop system is exponentially stable with a prescribed 𝑙

1
-gain

performance level 𝛾 = 2.

5. Conclusions

In this paper, the stability and 𝑙
1
-gain controller design

problems for positive switched systems with time-varying
delays via delta operator approach have been investigated.
By constructing a copositive type Lyapunov-Krasovskii func-
tional and using the average dwell time approach, we pro-
posed sufficient conditions of exponential stability and 𝑙

1
-

gain performance for the considered system. The desired
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Figure 2: State responses of the closed-loop system.

state feedback 𝑙
1
-gain controller was designed such that the

corresponding closed-loop system is exponentially stable
and satisfies an 𝑙

1
-gain performance. Finally, a numerical

example was presented to demonstrate the feasibility of
the obtained results. In our future work, we will study the
robust stabilization problem of positive switched systems
with uncertainties and time-varying delays via delta operator
approach.
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