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An improved type of control strategy combining the fractional calculus with nonsingular terminal sliding mode control named
non-singular fractional terminal sliding mode control (NFOTSM) is proposed for the nonlinear tire-road friction control system
of vehicle in this paper. A fractional-order switching manifold is proposed, and the corresponding control law is formulated based
on the Lyapunov stability theory to guarantee the sliding condition. The proposed controller ensures the finite time stability of the
closed-loop system. Then, a terminal attractor is introduced to solve the singularity problem of fractional terminal sliding mode
control (FOTSM). Finally, the performance of the NFOTSM is fully investigated compared with other related algorithms to find
the effectiveness for the tire-road friction system. The results show that the NFOTSM has better performance than other related
algorithms.

1. Introduction

Fractional calculus is an old mathematical with a 300 years
old history [1, 2]. For many years, this branch of science was
considered as a sole mathematical and theoretical subject
with nearly no applications [3]. But, in recent decades,
fractional calculus has become an interesting topic among
researchers, and different applications have been proposed
for this field of science [4–6]. Designing fractional-order
controllers is one of these applications.

The idea of designing a fractional-order (FO) controller
was firstly proposed by Oustaloup in 1988 [7]. He intro-
duced a robust fractional-order control scheme which is
called Commande Robuste d’Ordre Non-Entier (CRONE)
[8, 9]. A frequency domain approach has been introduced
in [10]. Variable order fractional controllers are introduced
by Valério et al. [11]. Tuning FO-PID controller is introduced
by Padula et al. [12]. Model Predictive Control of Fractional-
Order Nonlinear Discrete-Time Systems is proposed by
Domek [13].The adaptive FO controllers [14] and the effect of
fractional order in variable structure control are investigated
and verified by Tenreiro Machado [15].

Sliding mode control (SMC) is a well-known efficient
control scheme which has been widely applied for both linear
and nonlinear systems [16]. This control is also considered as
an effective approach for control of the dynamical systems
with uncertainties. In general, an arbitrary linear manifold
is considered as a sliding surface, which can guarantee the
asymptotic stability and desired performance of the closed-
loop control system. However, the main disadvantage of
SMC scheme is that the system states cannot reach the
equilibrium point in finite time. But, in recent years, a new
control scheme called terminal slidingmode control (TSMC)
is proposed to overcome this drawback utilizing nonlinear
sliding surface [17, 18]. Nonlinear switching hyperplanes in
TSMC can improve the transient performance substantially.
Besides, compared with the conventional SMC with linear
slidingmanifold, TSMC offers some superior properties such
as faster, finite time convergence andhigher control precision.
And a nonsingular terminal sliding mode (NTSM) method
is proposed to avoid the singularity in TSM control systems
[19, 20].

However, TSMC designs are restricted to integer-order
controllers, and there is only few papers in which utilizing the
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means of FO calculus in the design procedure of a fractional-
order TSMC (FOTSMC) is considered, especially for the
nonsingular of the controllers [20]. Therefore, designing an
NFOTSMC for dynamical systems is still an open problem.

This paper is organized as follows: Section 2 presents non-
singular fractional terminal sliding mode control strategy.
The adopted control structure of tire-road friction Ext-ABS
is introduced and realized in Section 3. At last, numerical
simulation results are shown in Section 4.

2. Nonsingular Fractional-Order Terminal
Sliding Mode Control

In this section, nonsingular fractional terminal sliding mode
control strategy is introduced and realized for the tire-road
friction servocontrol system.

2.1. Basic Definition and Preliminaries of Fractional-Order
Calculus. Fractional-order integration and differentiation
are the generalization of the integer-order ones. Efforts to
extend the specific definitions of the traditional integer-order
to the more general arbitrary order context led to different
definitions for fractional derivatives [1, 2, 19]. Two of the
most commonly used definitions are Riemann-Liouville and
Caputo definitions.

Definition 1. The 𝛼th-order Riemann-Liouville fractional
derivative of function 𝑓(𝑡) with respect to 𝑡 and the terminal
value 𝑡

0
is given by

𝐷
𝛼
𝑓 (𝑡) =

𝑑
𝛼
𝑓 (𝑡)

𝑑𝑡
𝛼

=

1

Γ (𝑚 − 𝛼)

𝑑
𝑚

𝑑𝑡
𝑚

∫

𝑡

𝑡0

𝑓 (𝜏)

(𝑡 − 𝜏)
𝛼−𝑚+1

𝑑𝜏

(1)

and the Riemann-Liouville definition of the 𝛼th-order frac-
tional integration is given by

𝑡0
𝐼
𝛼

𝑡
𝑓 (𝑡) = 𝐼

𝛼
𝑓 (𝑡) =

1

Γ (𝛼)

𝑑
𝑚

𝑑𝑡
𝑚

∫

𝑡

𝑡0

𝑓 (𝜏)

(𝑡 − 𝜏)
1−𝛼

𝑑𝜏, (2)

where 𝑚 is the first integer larger than 𝛼 and Γ is the Gamma
function.

Definition 2. The Caputo fractional derivative of order 𝛼 of a
continuous function 𝑓 : 𝑅

+
→ 𝑅 is defined as follows:

𝐷
𝛼
𝑓 (𝑡) =

{
{
{

{
{
{

{

1

Γ (𝑚 − 𝛼)
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𝑓
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(𝜏)
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𝑑
𝑚

𝑑𝑡
𝑚

𝑓 (𝑡) , 𝛼 = 𝑚,

(3)

where 𝑚 is the first integer larger than 𝛼.

Property 1. If the fractional derivative
𝛼
𝐷
𝛼

𝑡
𝑦(𝑡) (𝑘−1 ≤ 𝛼 < 𝑘)

of a function 𝑦(𝑡) is integrable, then
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𝐼
𝛼

𝑡
(
𝛼
𝐷
𝛼

𝑡
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𝑗=1

[
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𝐷
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(𝑡 − 𝛼)
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(4)

Lemma 3. The fractional integration operator
𝛼
𝐼
𝛼

𝑡
with [𝛼] >

0 is bounded





𝐼
𝛼

𝑡
𝑦




𝑝

≤ 𝐾




𝑦




𝑝

, 1 ≤ 𝑝 ≤ ∞. (5)

Theorem 4. Let 𝑥 = 0 be an equilibrium point for the
nonautonomous fractional-order system

𝐷
𝛼
𝑥 (𝑡) = 𝑓 (𝑥, 𝑡) , (6)

where 𝑓(𝑥, 𝑡) satisfies the Lipschitz condition with Lipschitz
constant 𝑙 > 0. Assume that there exists a Lyapunov candidate
𝑉(𝑡, 𝑥(𝑡)) satisfying

𝛼
1‖

𝑥‖
𝛼

≤ 𝑉 (𝑡, 𝑥) ≤ 𝛼
2 ‖

𝑥‖ , �̇� (𝑡, 𝑥) ≤ −𝛼
3 ‖

𝑥‖ , (7)

where 𝛼 > 0, 𝛼
1

> 0, 𝛼
2

> 0, and 𝛼
3

> 0. Then the equilibrium
point of system (6) is Mittag-Leffler stable, and the stability
implies asymptotic stability.

Theorem 5. Let 𝑥 = 0 be an equilibrium point for the
nonautonomous fractional-order system (6). Assume that there
exist a Lyapunov function 𝑉(𝑡, 𝑥(𝑡)) and class-𝐾 functions
𝛼
𝑖

(𝑖 = 1, 2, 3) satisfying

𝛼
1 ‖

𝑥‖ ≤ 𝑉 (𝑡, 𝑥) ≤ 𝛼
2 ‖

𝑥‖ , 𝐷
𝛽
𝑉 (𝑡, 𝑥) ≤ −𝛼

3 ‖
𝑥‖ , (8)

where 𝛽 ∈ (0, 1). Then the equilibrium point of system (6) is
asymptotic stability.

2.2. Review of Integer-Order Nonsingular Terminal Sliding
Mode Control. In this paper, the control problem is to get the
system to track a desired vector 𝑋

𝑑
(𝑋
𝑑

= [𝑥
𝑑
, �̇�
𝑑
]
𝑇). So, the

fractional-order system can be defined as

�̇�
1

= 𝑥
2
,

�̇�
2

= 𝑓 (𝑥
1
, 𝑥
2
, 𝑡) + 𝑢,

(9)

where 𝑢 is the control effort, 𝑥 = [𝑥
1
, 𝑥
2
]
𝑇.

And the tracking error can be defined as

𝑒 (𝑡) = 𝑥 (𝑡) − 𝑥
𝑑

(𝑡) . (10)

The control goal is to design a robust nonsingular
fractional-order terminal sliding mode controller to stabilize
state variables and track the desired vector 𝑋

𝑑
in finite time.

Here, definition and some properties of NTSM are briefly
reviewed for essential preparation of the fractional-order
NTSMC design.

Definition 6. Terminal sliding manifold can be defined as the
following nonlinear differential equation:

𝑠 = ̇𝑒 (𝑡) + 𝜉𝑒(𝑡)
𝑝/𝑞

, (11)

where 𝜉 > 0 is a constant, 𝑝, 𝑞 are the given positive odd
integers, and 𝑝 < 𝑞 < 2𝑝.
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Considering the constraint ̇𝑠 = 0, the control input can be
defined as

𝑢 (𝑡) = �̈�
𝑑

− 𝑓 (𝑥
1
, 𝑥
2
, 𝑡) −

𝜉𝑝

𝑞

̇𝑒 (𝑡) 𝑒(𝑡)
(𝑝/𝑞−1)

+ 𝐾 sign (s) .

(12)
According to finite time stability theory, the equilibrium

point 𝑒 = 0 of error system is globally finite time stable, and
the time is

𝑇
𝑡𝑠𝑚

=

𝑞

𝜉 (𝑞 − 𝑝)

𝑒(0)
(1−𝑝/𝑞)

. (13)

2.3. Nonsingular Fractional Terminal Sliding Mode Controller.
In this section we will develop nonsingular fractional-order
terminal sliding mode control for trajectory tracing of a class
of dynamical systems, for example, the servosystem. For this
purpose, the forms introduced in the previous section are
used. As a result, the high precision tracking can be acquired
with faster convergence speed compared with the integer-
order terminal sliding mode control.

Definition 7. Fractional terminal sliding manifold can be
defined as

𝑠 = 𝐷
𝛼

̈𝑒 (𝑡) + 𝜉𝑒(𝑡)
𝑝/𝑞

, 𝛼 ∈ (0, 1) . (14)
If the terminal sliding mode control law is designed as

(15), then the tracking error converges to zero in finite time
[20]. Consider

𝑢 (𝑡) = �̈�
𝑑

− 𝑓 (𝑥
1
, 𝑥
2
, 𝑡) − 𝐷

−1−𝛼
[

𝜉𝑝

𝑞

̇𝑒 (𝑡) 𝑒(𝑡)
(𝑝/𝑞−1)

]

+ 𝐷
−1−𝛼

[𝐾𝑠 + 𝐾 sign (𝑠) + 𝛿] .

(15)

But this system has a singularity problem because of
(𝑝/𝑞 − 1) < 0. Consequently, to avoid this phenomenon, a
new “terminal attractor” is proposed to develop a singularity
free TSM control.

Definition 8. Nonsingular fractional terminal sliding mani-
fold can be defined as follows:

𝑠 = 𝐷
𝛼

̈𝑒 (𝑡) + 𝜉
1

̇𝑒(𝑡)
𝑝/𝑞

+ 𝜉
2
𝑒(𝑡)
𝑔/ℎ

, 𝛼 ∈ (0, 1) (16)
where 𝑔, ℎ are the given positive odd integers and 1 < 𝑔/ℎ <

2.

And the “terminal attractor” can be defined as
̇𝑠 = (−𝜙𝑠 − 𝛾𝑠

𝜁1/𝜁2
) ̇𝑒
𝑝/𝑞−1

, (17)

where 𝜙 ∈ 𝑅
+; 𝛾 ∈ 𝑅

+; 𝜁
1
and 𝜁
2
are the given positive odd

integers and 0 < 𝜁
1
/𝜁
2

< 1.
From (9), (10), (16), and (17), the NFOTSM control law

can be obtained as follows:
𝑢 (𝑡) = �̈�

𝑑
− 𝑓 (𝑥

1
, 𝑥
2
, 𝑡)

+

𝑞

𝜉
1
𝑝

[ (−𝜙𝑠 − 𝛾𝑠
𝜁1/𝜁2

)

−𝐷
𝛼+1

̈𝑒 ̇𝑒
1−𝑝/𝑞

−

𝜉
2
𝑔

ℎ

𝑒
𝑔/ℎ−1

̇𝑒
2−𝑝/𝑞

] .

(18)

Proof. Firstly, for𝑔/ℎ−1 > 0 and 2−𝑝/𝑞 > 1−𝑝/𝑞 > 0, we can
get that the proposed NFOTSM control law is a singularity
free TSM control.

Secondly, the Lyapunov function is defined in the form

𝑉 =

1

2

𝑠
2
. (19)

Then, we have

�̇� = 𝑠 ̇𝑠

= 𝑠 (𝐷
𝛼+1

̈𝑒 +

𝜉
1
𝑝

𝑞

̇𝑒
𝑝/𝑞−1

̈𝑒 +

𝜉
2
𝑔

ℎ

𝑒
𝑔/ℎ−1

̇𝑒)

= 𝑠 (𝐷
𝛼+1

̈𝑒 +

𝜉
1
𝑝

𝑞

̇𝑒
𝑝/𝑞−1

(𝑓 (𝑥
1
, 𝑥
2
, 𝑡) + 𝑢 − �̈�

𝑑
)

+

𝜉
2
𝑔

ℎ

𝑒
𝑔/ℎ−1

̇𝑒) .

(20)

Substituting (18) into (20) results in

�̇� = 𝑠 (−𝜙𝑠 − 𝛾𝑠
𝜁1/𝜁2

) = −𝜙𝑠
2

− 𝛾𝑠
(𝜁1+𝜁2)/𝜁2

≤ −𝜙𝑠
2
. (21)

So, the sliding condition is satisfied.
According to (16), we get that the tracking error converges

to zero. To show that this happening (exact tracking, 𝑒 = 0)
occurs in finite time, we can define a stopping time as follows:

𝜏
𝑠

= inf { 𝑡 ≥ 𝑡
𝑟

: 𝑒 (𝑡) = 0} , (22)

where 𝑡
𝑟
is the reaching time, the time for the system states to

reach the sliding surface. So, all we need is to prove that there
exists a 𝑡

𝑟
≤ 𝑡
𝑠

< ∞, such that 𝜏
𝑠

≤ 𝑡
𝑠
.

Taking the concept of fractional integral and derivative
operators into account and using (16), assume the reaching
time is 𝑡

𝑟
; one obtains

𝐷
−𝛼

(𝐷
𝛼

̈𝑒 (𝑡)) = −𝐷
−𝛼

(𝜉
1

̇𝑒(𝑡)
𝑝/𝑞

+ 𝜉
2
𝑒(𝑡)
𝑔/ℎ

) . (23)

So, one can conclude that

̈𝑒 (𝑡) − [
𝑡𝑟

𝐷
𝛼−1

̈𝑒 (𝑡)]
𝑡=𝑡𝑟

(𝑡 − 𝑡
𝑟
)
𝛼−1

Γ (𝛼)

= −𝐷
−𝛼

(𝜉
1

̇𝑒(𝑡)
𝑝/𝑞

+ 𝜉
2
𝑒(𝑡)
𝑔/ℎ

) ,

(24)

where

[
𝑡𝑟

𝐷
𝛼−1

̈𝑒(𝑡)]
𝑡=𝑡𝑟

(𝑡 − 𝑡
𝑟
)
𝛼−1

Γ (𝛼)

= 0. (25)

So, it can be concluded that

𝑒 (𝑡) − [
𝑡𝑟

𝐷
𝑡
𝑒 (𝑡)]
𝑡=𝑡𝑟

(𝑡 − 𝑡
𝑟
)

2

− [𝑒 (𝑡)]𝑡=𝑡𝑟

= −𝐷
−𝛼−2

(𝜉
1

̇𝑒(𝑡)
𝑝/𝑞

+ 𝜉
2
𝑒(𝑡)
𝑔/ℎ

) .

(26)
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According to Lemma 3, we have

𝑡𝑟
𝐷
−𝛼−2

( ̇𝑒(𝑡)
𝑝/𝑞

+ 𝑒(𝑡)
𝑔/ℎ

) =
𝑡𝑟

𝐼
𝛼+2

𝑡
( ̇𝑒(𝑡)
𝑝/𝑞

+ 𝑒(𝑡)
𝑔/ℎ

)

≤





 𝑡𝑟

𝐼
𝛼+2

𝑡
( ̇𝑒(𝑡)
𝑝/𝑞

+ 𝑒(𝑡)
𝑔/ℎ

)







≤ 𝑁







̇𝑒(𝑡)
𝑝/𝑞

+ 𝑒(𝑡)
𝑔/ℎ





.

(27)

Substituting (27) into (26) results in

𝑒 (𝑡) − [
𝑡𝑟1

𝐷
𝑡
𝑒 (𝑡)]
𝑡=𝑡𝑟1

(𝑡 − 𝑡
𝑟1

)

2

− [𝑒 (𝑡)]𝑡=𝑡𝑟1

≤ 𝑁






𝜉
1

̇𝑒(𝑡)
𝑝/𝑞

+ 𝜉
2
𝑒(𝑡)
𝑔/ℎ





.

(28)

So, we get











𝑒 (𝑡) − [
𝑡𝑟1

𝐷
𝑡
𝑒 (𝑡)]
𝑡=𝑡𝑟1

(𝑡 − 𝑡
𝑟1

)

2











−






[𝑒 (𝑡)]𝑡=𝑡𝑟1







≤ 𝑁






𝜉
1

̇𝑒(𝑡)
𝑝/𝑞

+ 𝜉
2
𝑒(𝑡)
𝑔/ℎ





.

(29)

Noting that 𝑒(𝑡) = ̇𝑒(𝑡) = 0 at 𝑡 = 𝑡
𝑠
, it yields














[
𝑡𝑟

𝐷
𝑡
𝑒 (𝑡)]
𝑡=𝑡𝑟

2














(𝑡 − 𝑡
𝑟
) ≤






[𝑒 (𝑡)]𝑡=𝑡𝑟







. (30)

Consequently, if [
𝑡𝑟

𝐷
𝑡
𝑒(𝑡)]
𝑡=𝑡𝑟

, then 𝑡
𝑠

= 𝑡
𝑟
. Else, we have

𝑡
𝑠

≤

2






[𝑒 (𝑡)]𝑡=𝑡𝑟














[
𝑡𝑟1

𝐷
𝑡
𝑒 (𝑡)]
𝑡=𝑡𝑟

/2








+ 𝑡
𝑟1

=

2




𝑒 (𝑡
𝑟
)










̇𝑒 (𝑡
𝑟
)





+ 𝑡
𝑟
. (31)

Therefore, it can be concluded that the system trajectories
attain to reference trajectory in finite time.

The proof is complete.

3. Control Structure of Ext-ABS

In this section, Ext-ABS, which is designed to track any slip
ratio based on the exiting antilock system (ABS), is chosen as
illustrative example to verify the effectiveness of the proposed
controllers. Here, we only consider the design of its control
law using the proposed NFOTSM.

3.1. Quarter-Car Model. Tire friction estimation is a pre-
requisite for longitudinal friction control. For an electric
vehicle with in-wheel motors, the brake and drive torque are
measured by transducers mounted in motors. And there has
been an attempt to measure the brake torque of conventional
vehicles by force transducer mounted on the brake caliper
support. In this paper, assume that the brake torque can be
measured, and then the tire friction can be estimated using
the method discussed below.

FZ

u

Fxb

Tb 𝜔

Figure 1: Quarter-car model.

A quarter-car model is shown in Figure 1. The dynamic
equations of motion are as follows:

𝑚

𝑑𝑢

𝑑𝑡

= −𝐹
𝑥𝑏

(32)

𝐽

𝑑𝜔

𝑑𝑡

= 𝑟
𝑏
𝐹
𝑥𝑏

− 𝑇
𝑏

(33)

𝐹
𝑍

= 𝑚𝑔, (34)

where 𝑚 is the mass of the quarter car, 𝑢 is the vehicle
horizontal speed, 𝐹

𝑥𝑏
is the tire friction, 𝐽 is the wheel inertia,

𝜔 is the wheel angular speed, 𝑟
𝑏
is the wheel radius, 𝑇

𝑏
is the

brake torque, 𝐹
𝑍
is the vertical force, and 𝑔 is the acceleration

of gravity.
Then the tire friction can be estimated by the following

equation:

𝐹
𝑥𝑏

=

𝐽

𝑟
𝑏

𝑑𝜔

𝑑𝑡

+

𝑇
𝑏

𝑟
𝑏

. (35)

And the longitudinal slip ratio ̂
𝜆
𝑥𝑏

with respect to 𝐹
𝑥𝑏

is
estimated by

̂
𝜆
𝑥𝑏

=

𝑢 − 𝜔𝑟
𝑏

𝑢

. (36)

The following equation is to describe the nonlinear
relationship of the tire friction 𝐹

𝑥𝑏
and the corresponding 𝜆

𝑥𝑏

𝐹
𝑥𝑏

= 𝐹
𝑍

⋅ 𝜇
𝑥𝑏

(𝜆
𝑥𝑏

) , (37)

where 𝜇
𝑥𝑏

is friction coefficient.
The desired longitudinal slip ratio 𝜆Ref, which is corre-

sponding to the desired tire friction 𝐹Ref, can be calculated
by using the numerical method of nonlinear equations as
follows:

𝐹Ref − 𝐹
𝑍

⋅ 𝜇
∗

Ref
(𝜆Ref) = 0. (38)

3.2. Tire Model. The magic formula is applied in this paper,
which is widely used to calculate steady-state tire force and
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Figure 3: Tracking performance of tire friction.

moment in vehicle dynamics studies. For a constant vertical
load, the longitudinal friction coefficient is given by

𝜇
𝐿

= 𝜇 (𝜆, 𝐵
𝐿
, 𝐶
𝐿
, 𝐷
𝐿
, 𝐸
𝐿
)

= 𝐷
𝐿
sin [𝐶

𝐿
arctan {𝐵

𝐿
𝜆 − 𝐸
𝐿

(𝐵
𝐿
𝜆 − arctan (𝐵

𝐿
𝜆))}] ,

(39)

where 𝜇
𝐿
is the longitudinal friction coefficient, 𝜆 is the

longitudinal slip, 𝐵
𝐿
is the stiffness factor, 𝐶

𝐿
is the shape

factor, 𝐷
𝐿
is the peak value, and 𝐸

𝐿
is the curvature factor.

3.3. NFOTSMControl Law for Ext-ABS. Thecontrol architec-
ture of the Ext-ABS is shown in Figure 2. Firstly, let us define

𝑒 = 𝜆 − 𝜆Ref. (40)

By (32), (33), and (36), we have

̇
𝜆 =

𝑑 ((𝑢 − 𝜔𝑟
𝑏
) /𝑢)

𝑑𝑡

=

−𝑟
2

𝑏
𝐹
𝑥𝑏

/𝐽 + (1 − 𝜆) �̇�

𝑢

+

𝑇
𝑏
𝑟
𝑏

𝑢𝐽

. (41)

So, we get

̇𝑒 =

−𝑟
2

𝑏
𝐹
𝑥𝑏

/𝐽 + (1 − 𝜆) �̇�

𝑢

+

𝑇
𝑏
𝑟
𝑏

𝑢𝐽

−
̇

𝜆Ref. (42)

As it was previously mentioned, we assume that the order
of derivatives in the applied controller is 𝛼 = 0.9. So, the
NFOTSM control input can be obtained as

𝑢 (𝑡) =
̂
𝑇
𝑏

=

𝑢𝐽

𝑟
𝑏

{
̇

𝜆Ref −

−𝑟
2

𝑏
𝐹
𝑥𝑏

/𝐽 + (1 − 𝜆) �̇�

𝑢

−

𝑞

𝜉
2
𝑝

[𝐷
𝛼+1

̈𝑒 ⋅ 𝑒
1−𝑝/𝑞

+

𝜉
1
𝑔

ℎ

̇𝑒
𝑔/ℎ−1

⋅ ̈𝑒 ⋅ 𝑒
1−𝑝/𝑞

− 𝜙𝑠 − 𝛾𝑠
𝜁1/𝜁2

]} .

(43)

4. Simulation Results and Analysis

In this section, simulations are carried out to verify the
effectiveness of the proposed controllers. The tracking ability
of Ext-ABS is tested, and the superiority of the NFOTSM is
compared with nonsingular terminal sliding mode control
(NTSM). For the details, the whole performance of the
friction servocontrol system (Ext-ABS) is shown under 𝜇-
jump road surface and sine input signal.

4.1. Simulation Results under 𝜇-Jump Road Surface. In the
simulation of 𝜇-jump road surface, the desired tire friction
𝐹Ref input is 2500N after 0.5 s. And at 1.5 s, the vehicle drives
from asphalt, dry road to asphalt, wet road. Simulation results
are shown in Figures 3–5.

As is depicted in Figures 3 and 4, with respect to tire fric-
tion, since NFOTSM can use the nonlinear fractional-order
term 𝐷

𝛼
̈𝑒(𝑡) to obtain a corrective control force, the values

of NFOTSM track the reference value in faster response than
that of NTSM after 0.5s and 1.5s. Consequently, the response
of vehicle acceleration of NFOTSM is also more sensitive
than that of NTSM, as is shown in Figure 5. This proves the
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proposed control strategy to be effective in tracking desired
tire friction and in adaptation to the variation in road surface.

4.2. Simulation Results under Sine Input Signal. In the simu-
lation of sine input signal, the desired tire friction 𝐹Ref input
is a sine input. Simulation results are shown in Figures 6–8,
under the proposed NFOTSM control law (41) and NTSM
control law. Figure 6 represents, respectively, the state time
response for tracking a periodic orbit sine input signal. It
can be seen that the dynamics of system states are stabilized
to a periodic motion. Time responses of the corresponding
tracking error of tire friction are depicted in Figure 7. Figure 8
shows the state time responses of the vehicle acceleration.
From the above corresponding responses, it can be concluded
that the obtained theoretic results are feasible and efficient for
controlling dynamical systems, and the proposed controller
guarantees the finite time stability of the closed-loop system.
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Furthermore, it is obvious that the new control lawmakes the
system stable and alleviates the chattering problem.

5. Conclusions

In this paper, the problem of designing NFOTSMC for a class
of dynamical systems is investigated. Based on the Lyapunov
stability criteria, the nonsingular FO terminal sliding mode
control law is designed, and the finite time stability of
the closed-loop system is guaranteed under the proposed
controller. To further verify the control effect, the Ext-ABS
using NFOTSM is designed to realize self-tuning tire friction
control system adaptive to variation of road condition. In
spite of a higher computation load compared with other
control methods, a drastic optimization of the algorithms
allows the controller to provide a fast adaptation to the change
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in road surface condition, and its stability is proven thanks to
a sufficient number of simulation scenarios, such as a sudden
change of road condition and a sudden change of reference
force condition.
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