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A thermodynamical model for viscoanelastic media is analyzed using the nonholonomic geometry. A 27-dimensional manifold is
introduced, and the differential equations for the geodetics are determined and analytically solved. It is shown that, in thismanifold,
the best specific entropy is a harmonic function. In the linear case the propagation of transverse acoustic waves is studied, and the
theoretical results are compared with some experimental data from a polymeric material (polyisobutylene).

1. Introduction

From macroscopic point of view the most popular mathe-
matical approaches to nonequilibrium thermodynamics are
based both on the Caratheodory theory [1–3] which involves
Pfaff equations and on the contact structure of thermody-
namic state space [4–6]. If these equations are completely
integrable, then the thermodynamics is called holonomic
otherwise nonholonomic.

The theory of nonequilibrium holonomic thermodynam-
ics for mechanical phenomena in continuous media was
developed in the 90s (see e.g., [7] and references therein).
The phenomenological equations were derived [8, 9] by
introducing the tensorial internal variables 𝜀
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𝛼𝛽
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1, 2, 3) which occur in the entropy production.
In particular, if one linearizes this theory by neglecting

the cross effects among the irreversible phenomena (heat
flow, mechanical viscosity, and anelastic deformations), the
following rheological equations for distortional phenomena
are obtained [10]:
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where 𝜏𝛼𝛽 and 𝜀𝛼𝛽 are the deviators of the stress (𝜏𝛼𝛽) and the
strain (𝜀𝛼𝛽) tensors, respectively.
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in which 𝜎 is the relaxation time and 𝑎(1,1) ≥ 𝑎
(0,0)

≥ 0 are the
state coefficients, while 𝜂(0,0)𝑠 and 𝜂(1,1)𝑠 are the phenomenolog-
ical coefficients related to the following physical phenomena:

𝑎
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󳨐⇒ anelasticity,

𝜂
(0,0)

𝑠 󳨐⇒ viscosity,

𝜂
(1,1)

𝑠 󳨐⇒ fluidity.

(3)

In this paper we reconsider the theory from the point of view
of the nonholonomic geometry.
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In Sections 2 and 3 the analytic properties of the entropy
are discussed, and in Section 4 the differential equations of
geodetics in the space of state are obtanied.

Finally, in Section 5 we study the transverse waves and
we will show the connection between complex numbers and
the shear complex modulus. By applying these results to a
polymeric material, as polyisobutylene we will also show that
the expected results of the theoretical model are in agreement
with the experimental data.

2. Gibbs-Pfaff Equation of Viscoanelastic
Media

Let us define the space of states

𝑅
27
= 𝑅
2⋅13+1

= {𝑠, 𝑇, 𝑢, 𝜏
(eq)
𝛼𝛽

, 𝜀𝛼𝛽, 𝜏
(1)

𝛼𝛽
, 𝜀
(1)

𝛼𝛽
} , (4)

where 𝑠 is the specific entropy, 𝑇 is the absolute temperature,
𝑢 is the specific internal energy, 𝜏(eq)

𝛼𝛽
is the symmetric equi-

librium stress tensor, 𝜀𝛼𝛽 is the total symmetric strain tensor,
and 𝜏(1)
𝛼𝛽

is the symmetric affinity stress tensor conjugate to the
anelastic tensor 𝜀(1)

𝛼𝛽
(the symmetric tensorial thermodynamic

internal variable).
Let ] be the specific volume related to the mass density

󰜚 = constant (homogeneous media) by ]󰜚 = 1. The Gibbs-
Pfaff equation of viscoanelastic media is
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This equation defines in 𝑅
27 the nonholonomic contact

distribution of dimension 26 so that the highest dimension
of integral manifold is 13.

The 𝐶∞ representation of this integral manifold (of max-
imum dimension) is usually given as follows:
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This parametrization is based on the arbitrary 𝐶∞-function
Φ. So that we have a family of integralmanifolds of dimension
13 indexed on the arbitrary functionΦ.

The state parameters
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are related by the equations of motion and the equations of
state [8, 9].
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Then the entropy (solution of this PDE) appears as the
potential (9).
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3. Specific Entropy via Least
Squares Lagrangian

The most convenient way to fix a representative Φ of the
specific entropy 𝑠 is to look at (5) as a partial derivative
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evolution equation and to build the least squares method
Lagrangian 𝐿
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The extremals are solutions of the Euler-Lagrange PDE
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So that, by replacing the partial derivatives of 𝐿 in (17), there
follows the Laplace equation for the entropy
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Consequently, we have the following.

Theorem 3. The best entropy for the nonholonomic nonequi-
librium thermodynamics is an harmonic function.

4. Geodesics
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In short, we must solve the problem
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To solve this problem, we use the method of Lagrange mul-
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where 𝑝 is the Lagrangian multiplier.

Theorem 4. The geodesics of the nonholonomic viscoanelastic
distribution are solutions of the Euler-Lagrange ODEs for the
Lagrangian (23)
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be the given (constant) initial values.
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By some explicit computation we can easily show that the
following.

Theorem 5. The geodesics of the nonholonomic viscoanelastic
distribution, as solution of the Cauchy problem (26) and (27),
are the family of curves:

𝑢 (𝑡) = 𝑢̇0𝑡 + 𝑢0

𝑠 (t) =
̇

𝑇0

𝑝

cos𝑝𝑡 +
̇𝑠0

𝑝

sin𝑝𝑡 + (𝑠0 −
̇

𝑇0

𝑝

)

𝑇 (𝑡) =

̇
𝑇0

𝑝

sin𝑝𝑡 −
̇𝑠0

𝑝

cos𝑝𝑡 + (𝑇0 +
̇𝑠0

𝑝

)

𝜏
(eq)
𝛼𝛽

= [𝜏

0

(eq)
𝛼𝛽

−

1

]𝑝
( ̇𝜀

0
𝛼𝛽 + 𝑝]𝜏

0

(eq)
𝛼𝛽

)] cos ]𝑝𝑡

+

1

]𝑝
̇𝜏

0

(eq)
𝛼𝛽

sin ]𝑝𝑡 + 1

]𝑝
( ̇𝜀

0
𝛼𝛽 + 𝑝]𝜏

0

(eq)
𝛼𝛽

)

𝜀𝛼𝛽 = − [𝜏
0

(eq)
𝛼𝛽

−

1

]𝑝
( ̇𝜀

0
𝛼𝛽 + 𝑝]𝜏

0

(eq)
𝛼𝛽

)] sin ]𝑝𝑡

−

1

]𝑝
̇𝜏

0

(eq)
𝛼𝛽

cos ]𝑝𝑡 + (𝜀
0
𝛼𝛽 +

1

]𝑝
̇𝜏

0

(eq)
𝛼𝛽

)

𝜏
(1)

𝛼𝛽
= [𝜏

0

(1)

𝛼𝛽
+

1

]𝑝
( ̇𝜀

0

(1)

𝛼𝛽
+ 𝑝]𝜏
0

(1)

𝛼𝛽
)] cos ]𝑝𝑡

+

1

]𝑝
̇𝜏

0

(1)

𝛼𝛽
sin ]𝑝𝑡 − 1

]𝑝
( ̇𝜀

0

(1)

𝛼𝛽
+ 𝑝]𝜏
0

(1)

𝛼𝛽
)

𝜀
(1)

𝛼𝛽
= − [𝜏

0

(1)

𝛼𝛽
+

1

]𝑝
( ̇𝜀

0

(1)

𝛼𝛽
+ 𝑝]𝜏
0

(1)

𝛼𝛽
)] sin ]𝑝𝑡

−

1

]𝑝
̇𝜏

0

(1)

𝛼𝛽
cos ]𝑝𝑡 − (𝜀

0

(1)

𝛼𝛽
+

1

]𝑝
̇𝜏

0

(1)

𝛼𝛽
) .

(28)

Proof. Let us first solve the simplest equation: from (26)3 we
have

𝑢̇ − 𝑝 = 𝑢̇0 󳨐⇒ 𝑢 = (𝑢̇0 + 𝑝) 𝑡 + 𝑢0. (29)

From (26)1 it is

𝑑

𝑑𝑡

(𝑝𝑠 −
̇

𝑇) = 0 󳨐⇒
̇

𝑇 = 𝑝 (𝑠 − 𝑠0) +
̇

𝑇0 (30)

and deriving (26)2

̈𝑠 + 𝑝
̇

𝑇 = 0. (31)

By replacing ̇
𝑇 with the previous expression we get

̈𝑠 + 𝑝 [𝑝 (𝑠 − 𝑠0) +
̇

𝑇0] = 0, (32)

that is

̈𝑠 + 𝑝
2
𝑠 = (𝑝

2
𝑠0 − 𝑝

̇
𝑇0) . (33)

This is a linear nonhomogeneous second-order (harmonic)
equation whose solution is

𝑠 (𝑡) = (𝑠0 −

̇
𝑇0

𝑝

) +

̇
𝑇0

𝑝

cos𝑝𝑡 +
̇𝑠0

𝑝

sin𝑝𝑡. (34)

With this function, from the expression

̇
𝑇 = 𝑝 (𝑠 − 𝑠0) +

̇
𝑇0, (35)

we can compute also 𝑇(𝑡):

̇
𝑇 = 𝑝 [((𝑠0 −

̇
𝑇0

𝑝

) +

̇
𝑇0

𝑝

cos𝑝𝑡 +
̇𝑠0

𝑝

sin𝑝𝑡) − 𝑠0] +
̇

𝑇0;

(36)

that is,

̇
𝑇 =

̇
𝑇0 cos𝑝𝑡 + ̇𝑠0 sin𝑝𝑡. (37)

The solution is

𝑇 (𝑡) =

̇
𝑇0

𝑝

sin𝑝𝑡 −
̇𝑠0

𝑝

cos𝑝𝑡 + (𝑇0 +
̇𝑠0

𝑝

) . (38)

Concerning (26)4,5,6,7 we can notice that it is enough to solve
(26)4,7 since their solutions are formally equal to the solutions
of (26)5,6 since these equations coincide with (26)4,7 apart
from the substitutions:

𝜀𝛼𝛽 󳨐⇒ 𝜀
(1)

𝛼𝛽
, 𝜏

(eq)
𝛼𝛽

󳨐⇒ −𝜏
(1)

𝛼𝛽
. (39)

Thus from (26)7 it is

̇𝜀𝛼𝛽 + 𝑝]𝜏
(eq)
𝛼𝛽

= ̇𝜀

0
𝛼𝛽 + 𝑝]𝜏

0

(eq)
𝛼𝛽

; (40)

that is,

̇𝜀𝛼𝛽 = −𝑝]𝜏(eq)
𝛼𝛽

+ ( ̇𝜀

0
𝛼𝛽 + 𝑝]𝜏

0

(eq)
𝛼𝛽

) . (41)

If we put this expression in (26)4 we get

𝑝] [−𝑝]𝜏(eq)
𝛼𝛽

+ ( ̇𝜀

0
𝛼𝛽 + 𝑝]𝜏

0

(eq)
𝛼𝛽

)] −

𝑑

𝑑𝑡

̇𝜏
(eq)
𝛼𝛽

= 0, (42)

and by some manipulation we get the (vectorial) linear
second order harmonic equation for 𝜏(eq)

𝛼𝛽
:

𝑑

𝑑𝑡

̇𝜏
(eq)
𝛼𝛽

+ 𝑝
2]2𝜏(eq)
𝛼𝛽

= 𝑝] ( ̇𝜀

0
𝛼𝛽 + 𝑝]𝜏

0

(eq)
𝛼𝛽

) . (43)

The solution is

𝜏
(eq)
𝛼𝛽

=[𝜏

0

(eq)
𝛼𝛽

−

1

]𝑝
( ̇𝜀

0
𝛼𝛽 + 𝑝]𝜏

0

(eq)
𝛼𝛽

)] cos ]𝑝𝑡

+

1

]𝑝
̇𝜏

0

(eq)
𝛼𝛽

sin ]𝑝𝑡 + 1

]𝑝
( ̇𝜀

0
𝛼𝛽 + 𝑝]𝜏

0

(eq)
𝛼𝛽

) ,

(44)



Mathematical Problems in Engineering 5

so that by integrating (41) and using the previous equation,
we can easily get the expression for 𝜀𝛼𝛽

𝜀𝛼𝛽 = − [𝜏
0

(eq)
𝛼𝛽

−

1

]𝑝
( ̇𝜀

0
𝛼𝛽 + 𝑝]𝜏

0

(eq)
𝛼𝛽

)] sin ]𝑝𝑡

−

1

]𝑝
̇𝜏

0

(eq)
𝛼𝛽

cos ]𝑝𝑡 + (𝜀
0
𝛼𝛽 +

1

]𝑝
̇𝜏

0

(eq)
𝛼𝛽

) .

(45)

With similar computations we get also the last two equations
of (28).

The Lagrangian multiplier 𝑝 is obtained by inserting the
functions (28) and derivatives into (20).

It should be noticed that the the projection of the
geodesics (28) into different planes gives rise to well known
curves. For instance, in the plane ⟨𝑇, 𝑠⟩ (28) are the paramet-
ric equations of a cycloid. Moreover, by assuming that all the
initial values are positive, the asymptotic limits give

lim
𝑡→∞

𝑢 (𝑡) = +∞,

lim
𝑡→∞

|𝑇 (𝑡)| ≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑇0 −
̇𝑠0

𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̇
𝑇0

𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̇𝑠0

𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

lim
𝑡→∞

|𝑠 (𝑡)| ≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑠0 −

̇
𝑇0

𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̇
𝑇0

𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̇𝑠0

𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

(46)

which are in agreementwith physical consideration especially
for the entropy 𝑠 which is upper bounded. Analogously we
have similar bounded asymptotic limits for the vectorial
functions.

5. Experimental Approach to the Linear
Response Theory

In a previous paper [11] by the application of the linear
response theory [12–15] numerical values of (1) were consid-
ered, and the results were compared with experimental data.

In this section we study another aspect of the transversal
waves propagation in viscoanelastic media, and we apply the
theoretical results to a polymeric material as the polyisobuty-
lene.

We consider, with respect to the Cartesian orthogonal
axes (𝑥1, 𝑥2, 𝑥3), the following displacement u

𝑢3 = 𝐴𝑒
𝑖(𝑘𝑥
1
−𝜔𝑡)

, 𝑢1 = 𝑢3 = 0 (47)

being 𝑖2 = −1 and 𝑘 = 𝑘1 + 𝑖𝑘2 the complex wave number, so
that

V𝑠 =
𝜔

𝑘1

(48)

is the phase velocity and 𝑘2 is connected with the attenuation
of the waves.

As 𝜀𝛼𝛽 = 1/2(𝜕𝑢𝛼/𝜕𝑥𝛽 + 𝜕𝑢𝛽/𝜕𝑥𝛼), from (1) one obtains

𝑘1 = 𝜔√󰜚{𝐵 (𝜔) (√1 + 𝐷 (𝜔) + 1)}

1/2
,

𝑘1 = 𝜔√󰜚{𝐵 (𝜔) (√1 + 𝐷 (𝜔) − 1)}

1/2
,

(49)
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Figure 1: Generic storage and loss moduli.

where

𝐵 (𝜔) =

𝑅
(𝜏)

(𝑑)0
𝑅
(𝜀)

(𝑑)0
+ 𝜔
2
(𝑅
(𝜀)

(𝑑)1
− 𝑅
(𝜏)

(𝑑)0
𝑅
(𝜀)

(𝑑)2
)

(𝑅
(𝜀)

(𝑑)0
− 𝜔
2
𝑅
(𝜀)

(𝑑)2
)

2
+ (𝜔𝑅

(𝜀)

(𝑑)1
)

2
,

𝐵 (𝜔) =

𝜔
2
(𝑅
(𝜀)

(𝑑)0
− 𝑅
(𝜀)

(𝑑)1
𝑅
(𝜏)

(𝑑)0
− 𝜔
2
𝑅
(𝜀)

(𝑑)2
)

2

{𝑅
(𝜏)

(𝑑)0
𝑅
(𝜀)

(𝑑)0
− 𝜔
2
(𝑅
(𝜀)

(𝑑)1
− 𝑅
(𝜏)

(𝑑)0
𝑅
(𝜀)

(𝑑)2
)}

2
.

(50)

The complex shear velocity is [14]

V𝑐 =
1

V𝑠
+

𝑘2

𝑖𝜔

=

𝐺1 (𝜔) + 𝑖𝐺2 (𝜔)

󰜚

, (51)

where 0 ≤ 𝑠 ≤ 257,𝐺1(𝜔) (storage modulus), and 𝐺2(𝜔) (loss
modulus) are, respectively, linkedwith the nondissipative and
dissipative phenomena, and their experimental curves are
plotted in Figure 1.

From (47) to (50), the following relations are obtained:

𝑘1 =

𝜔√(󰜚𝐺1/2) (
√1 + (𝐺2/𝐺1)

2
+ 1)

𝐺1
√1 + (𝐺2/𝐺1)

2
,

𝑘2 =

𝜔√(󰜚𝐺1/2) (
√1 + (𝐺2/𝐺1)

2
− 1)

𝐺1
√1 + (𝐺2/𝐺1)

2
.

(52)

Let us consider the range of high frequency 𝜔𝐻 ≤ 𝜔 ≤ 𝜔𝑈

and 𝜔𝜏 ≫ 1 (of order 102) so that no relaxation phenomena
occur (see Figure 1).

By putting

𝐺1 = 𝐺1𝐻1, 001
𝑠

𝐺2 = 𝐺2𝐻1, 001
−𝑠
,

(53)
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Figure 2: 𝑘1 and 𝑘2 for Polyisobutilene: (M.w. 106 g/mol; 𝑇0 = 273K) the experimental curves (in black) and the theoretical curves (in red)
obtained by our model.

where 𝐺1𝐻 = 𝐺1(𝜔𝐻) and 𝐺2𝐻 = 𝐺2(𝜔𝐻), (52) becomes

𝑘1 = 𝜔√

󰜚

2

√

√(𝐺1𝐻)
2
1.001
2𝑠
+ (𝐺2𝐻)

2
+ 𝐺1𝐻1.001

𝑠

(𝐺1𝐻)
2
1.001
2𝑠
+ (𝐺2𝐻)

2
,

𝑘2 = 𝜔√

󰜚

2

√

√(𝐺1𝐻)
2
1.001
2𝑠
+ (𝐺2𝐻)

2
− 𝐺1𝐻1.001

𝑠

(𝐺1𝐻)
2
1.001
2𝑠
+ (𝐺2𝐻)

2
.

(54)

For the Polyisobutilene we have [15] the characteristic values
which are

𝜎 = 10
−7 sec., 𝜔𝐻 = 3.2 ⋅ 10

14Hz,

𝜔𝑈 = 6 ⋅ 10
14Hz,

𝐺1𝑈 = 2.4 ⋅ 10
9 Pa, 𝐺2𝑈 = 2.75 ⋅ 10

4 Pa,

(55)

and the graphics confirm (see Figure 2) with experimental
data the validity of the model proposed for viscoanelastic
phenomena in continuous media.

6. Conclusions

From the viewpoint of nonholonomic irreversible thermo-
dynamics, it is shown that the best specific entropy is
an harmonic function in a 27-dimensional manifold. The
differential equations of geodetics are obtained and the cor-
responding curves are explicitly computed. In the linearized
theory it is shown that the theoretical results are in agreement
with the experimental data in the case of polymeric material
(Polyisobutilene) (Figure 2).
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nomic Constraints: Selected Papers, vol. 4 of Monographs and
Textbooks, Geometry Balkan Press, Bucharest, Romania, 2002,
Selected papers.
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