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Abstract. 
We develop a path-planning algorithm to guide autonomous
amphibious vehicles (AAVs) for flood rescue support missions. 
Specifically, we develop an algorithm to control multiple AAVs to
reach/rescue multiple victims (also called targets) in a flood
scenario in 2D, where the flood water flows across the scene and
the targets move (drifted by the flood water) along the flood
stream. A target is said to be rescued if an AAV lies within a
circular region of a certain radius around the target. The goal is
to control the AAVs such that each target gets rescued while
optimizing a certain performance objective. The algorithm design
is based on the theory of partially observable Markov
decision process (POMDP). In practice, POMDP problems are hard to
solve exactly, so we use an approximation method called
nominal belief-state optimization (NBO). We compare the
performance of the NBO approach with a greedy approach.
 

1. Introduction
 Various guidance algorithms for autonomous amphibious vehicles (AAVs) are being designed and tested to fight today’s global warming disasters such as flooding, typhoon, and hurricane [1–3]. With this motivation, we present a guidance framework to control multiple AAVs to rescue multiple victims (henceforth called targets) in a flood situation, where the flood water (interchangeably called river) flows along a valley as shown in Figure 1. A target is said to be rescued when an AAV is within the circular region of radius 
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 on the 2D plane around the target. In general, AAVs are equipped with various advanced sensors such as polarized stereo vision, laser scanning, and SONAR [4–6]. The sensors onboard an AAV generate the (noisy) measurements corresponding to the targets and the river. Our goal is to design a path-planning algorithm that guides the AAVs so that every target gets rescued, while maximizing a performance measure (discussed later). The algorithm runs on a notional central fusion node, which collects the measurements from the sensors on-board each AAV, fuses them and updates the tracks on the targets and the river state (discussed later), computes the control commands for the AAVs, and sends the control commands back to the AAVs.


	
		
	

















	
		
			
		
			
		
	


















	
		
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
		
			
		
	


	
		
		
			
		
		
			
		
	


	


	


	


	



	
		
			
		
			
		
		
			
		
	
















	
		
			
		
			
		
	


	
		
			
			
			
		
	


	
		
			
			
			
			
			
		
	


	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	


	
		
	


	
		
	


	
		
			
		
		
			
			
			
		
		
			
		
	



Figure 1: Flood scenario.


Guidance control methods [1, 7–9] for AAVs are normally based on a standard three-layered system architecture that requires human-machine interactions. We design the guidance algorithm based on the theory of partially observable Markov decision process (POMDP) [10, 11]. There are several other autonomous control methods in the literature for AAVs and underwater vehicles, for example, [12–14]. Our approach differs from these existing approaches in that we place the guidance problem in the context of POMDP, wherein this approach has a look-ahead property, which trades off short-term for long-term performance.
2. Problem Specification
  The AAV guidance problem is specified as follows.
2.1. Targets
In this study, we assume that there are multiple mobile targets (flood victims) located in a river, being drifted down by the flood water, as shown in Figure 1. 
2.2. Autonomous Amphibious Vehicles (AAVs)
There are multiple autonomous amphibious vehicles (AAVs) located on the shore, as shown in Figure 1. An AAV is controlled by the following kinematic controls: forward acceleration and steering angle. Each AAV is equipped with on-board sensors that generate measurements of targets and the river depth. In this problem, AAVs float when moving in the river. For the purpose of this study, we assume that the number of AAVs and the number of targets are the same. 
2.3.     Environmental Conditions
The elevation map of the region is known a priori. The landscape for this problem is shown in Figure 1, which shows a river flowing along a valley from the north toward the south. The state of the river includes the depth 
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 at a reference point on the map (lowest point in the landscape, e.g., some location at the bottom of the valley as shown in Figure 1). 
2.4. River Model
Typically a river flows slowly near the coastlines (where the river is shallow) and flows quickly far from the coastlines (i.e., toward the center of the river where the river is deep). In this paper, we assume that the river flows from the north toward the south in a v-shaped channel as shown in Figure 1. We adopt the logarithmic velocity profile to model the velocity of the flow (see [15] for a detailed description). According to this model, the speed of the river, at the surface, at the location 
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 are constants (see [15] for more details). 
2.5. Observations
The sensors onboard an AAV generate noisy observations of target locations and the depth of the river directly beneath the vehicle, that is, the sensors generate the observations of the depth of the river only when the AAV is in the river. 
2.6. Objective
A target is said to be rescued if there is an AAV within a circular region of radius 
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 around the target. The objective is to minimize the average rescue time, where the average is over the number of targets, and the rescue time of a target is defined as the time it takes to rescue the target. 
3. Problem Formulation
 We cast the AAV guidance problem into the framework of a partially observable Markov decision process (POMDP). A POMDP is a mathematical framework useful for solving resource control problems and enables us to exploit approximation methods for POMDPs to design our AAV guidance algorithm. A POMDP evolves in discrete time steps. We use 
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 as the discrete-time index. To cast the AAV guidance problem into the POMDP framework, we need to define the following key components in terms of our guidance problem as follows.
3.1. States
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. The reference point is the lowest point in the elevation map, that is, some location at the bottom of the valley in the landscape, as shown in Figure 1. Here, we assume that the flow direction of the river is the same everywhere and is known a priori. The target state 
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3.2. Observations and Observation Law
The vehicle and the track states are assumed to be fully observable. The river and the target states are only partially observable. The observation of the river state at an AAV is given by 
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 is the measurement variance. The sensors at an AAV generate the measurement of the river state only when the AAV is in the river. In practice, the sensors on an AAV measure the depth of the river exactly below the AAV. We wrote the observation model (2) as if the sensors are generating the observations of the depth of the river at the reference point. The rationale behind this assumption is that we can always calculate the depth of the river at the reference point given the elevation map and the observed depth of the river at a different location. The observation of the 
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 is the measurement covariance matrix. The line-of-sight between the target and the AAV is blocked sometimes, for example, whenever the target sinks in the water.
3.3. Actions
The actions include the controllable aspects of the system. In this problem, the actions include the decisions on the assignment of AAVs to targets, and kinematic control commands for AAVs. Let 
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3.4. State-Transition Law
The state-transition law specifies the next-state distribution given the current state and the action. The transition function for the vehicle state is given by 
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 is the process covariance matrix corresponding to the target state evolution. The track states evolve according to the Kalman filter equations given the observations from the sensors onboard the AAVs. When the observations are not available, the track states evolve according to the Kalman filter equations, where only the prediction step is performed and the update step is not performed.
3.5. Cost
The cost function represents the cost of performing an action at the current state. The cost function is given by 
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3.6. Belief State
The belief state 
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4. Objective and Optimal Policy
  The goal is to find the action sequence 
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 value exactly. There are several approximation methods in the literature: heuristic expected-cost-to-go (ECTG) [17], parametric approximation [18], policy rollout [19], hindsight optimization [20], and foresight optimization [21]. In this paper, we use one such approximation method called nominal belief-state optimization (NBO), which was introduced in [11] along with other approximations and techniques specific to guidance problems. The rationale behind choosing NBO method over other methods to solve POMDP is that it is relatively inexpensive in terms of computation time, that is, the computational requirements are not prohibitive unlike other approximation methods. The following subsection provides a brief description of the NBO method.
4.1. NBO Approximation Method
 The computational requirements of obtaining the optimal assignments of AAVs to targets (
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) over a long horizon are prohibitive. Also, we expect that the optimal assignment of AAVs to targets (
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) over a long horizon does not change with time. For these reasons, in the NBO method, we keep the assignment of AAVs to targets fixed. In other words, in approximating the expected cost-to-go in (10), 
	
		
			

				𝑔
			

			

				𝑘
			

		
	
 remains fixed over the planning horizon 
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. Therefore, we drop the subscript 
	
		
			

				𝑘
			

		
	
 from 
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 in the objective function used in the planning based on (10), that is, 
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. In the NBO approximation method, we use the following objective function, written in terms of belief states: 
								
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝐽
			

			

				𝐻
			

			
				
				𝑏
			

			

				0
			

			
				
				
				=
				E
			

			
				𝐻
				−
				1
			

			

				
			

			
				𝑘
				=
				0
			

			
				𝑐
				
				𝑏
			

			

				𝑘
			

			
				,
				𝑎
			

			

				𝑘
			

			
				
				,
				𝑔
				∣
				𝑏
			

			

				0
			

			
				
				,
			

		
	

							where 
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 represents the kinematic controls for the AAVs, and 
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 is the assignment of AAVs to the targets.
The belief states corresponding to the river state and the target state are given by 
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 are the track states corresponding to the river and the target states, respectively, which evolve according to the Kalman filter equations. In the NBO method, we approximate the objective function as follows: 
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 is a nominal belief-state sequence, and the optimization is over an action sequence 
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. We obtain the nominal belief states by evolving the current belief state with exactly zero-noise sequence over the horizon 
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 (similar to the treatment in [10, 11]). Therefore, the objective function from the NBO method is given by
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th AAV (defined below), 
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							The evolution of vehicle state depends on the river state estimate 
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. In the NBO method, 
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Here, we adopt an approach called “receding horizon control,” according to which we optimize the action sequence for 
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 time steps at the current time step, implement only the action corresponding to the current time step, and again optimize the action sequence for 
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 time steps in the next time step. The length of the planning horizon 
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 should be large enough for an AAV to receive a benefit by moving toward a target. Due to computational constraints, we cannot have an arbitrarily long horizon. Therefore, we truncate the length of the horizon to a few time steps (we set 
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 in our simulations) and append the cost function with an appropriate expected cost-to-go (ECTG). The following is a distance-based ECTG: 
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. Therefore, the objective function from the NBO method is given by  
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4.2. AAV Kinematics
 The kinematic equations of an AAV vary depending on whether the AAV is in the river or on the land. When the AAV is in the river, we take into account the speed of the river to write the kinematic equations. The steering and thrust generation of the vehicle are modeled based on the work done by the authors of [2, 22], which is designed using single drive system. The vehicle is front-wheel driven on land. When the AAV is in the river, it is propelled using the centrifugal pump from the front wheels. The following subsections describe the kinematics of AAV on the land and in the river. 
4.2.1. Kinematics of AAVs on the Land
 This subsection provides the definition of 
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 represents the steering angle of the front wheels. The (simplified) schematic of a basic four-wheeled vehicle is shown in Figure 2. The control variable 
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 can be specified by a set of nonlinear kinematic equations, as shown below: 
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 is the length of the time step, 
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Figure 2: Free body diagram of an AAV.


4.2.2. Kinematics of AAVs on the River
 This subsection provides the definition of 
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, when the vehicle is in the river. The kinematic equations of the AAV motion are as follows: 
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.
5. Simulation
 We implement the NBO method in MATLAB, and we use the command fmincon (MATLAB’s optimization tool) to solve the optimization problem. For performance comparison, we also implement a greedy approach, where we optimize only the current kinematic control for the AAVs such that the following symmetric-distance-based cost is minimized: 
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				‖
				,
			

		
	

					where 
	
		
			
				̂
				𝑠
			

			
				𝑖
				,
			

			
				p
				o
				s
			

			
				𝑘
				+
				1
			

		
	
 and 
	
		
			
				̂
				𝜉
			

			
				𝑗
				,
			

			
				t
				a
				r
				g
			

			

				,
			

			
				p
				o
				s
			

			
				𝑘
				+
				1
			

		
	
 are the nominal positions (obtained by evolving the belief states with zero noise) of the 
	
		
			

				𝑖
			

		
	
th AAV and the 
	
		
			

				𝑗
			

		
	
th target at time 
	
		
			
				𝑘
				+
				1
			

		
	
, respectively. Our simulation environment is two dimensional, that is, the AAVs, the river, and the targets move in 2D. According to the river model, the speed of the river stream 
	
		
			

				𝑤
			

			

				𝑘
			

		
	
 at a location 
	
		
			
				(
				𝑝
				,
				𝑞
				)
			

		
	
 is given by 
	
		
			

				𝑤
			

			

				𝑘
			

			
				(
				𝑝
				,
				𝑞
				)
				=
				𝐶
			

			

				1
			

			
				[
				l
				o
				g
				(
				𝑑
			

			

				𝑘
			

			
				(
				𝑝
				,
				𝑞
				)
				)
				+
				𝐶
			

			

				2
			

			

				]
			

		
	
, where 
	
		
			

				𝑑
			

			

				𝑘
			

			
				(
				𝑝
				,
				𝑞
				)
			

		
	
 is the depth of the river at 
	
		
			
				(
				𝑝
				,
				𝑞
				)
			

		
	
, and 
	
		
			

				𝐶
			

			

				1
			

		
	
 and 
	
		
			

				𝐶
			

			

				2
			

		
	
 are constants. Since the depth of the river is not fully observable, we estimate 
	
		
			

				𝑑
			

			

				𝑘
			

			
				(
				𝑝
				,
				𝑞
				)
			

		
	
 as follows. The elevation map of the landscape is known a priori, that is, if we know the depth of the river at a particular location, we can obtain the depth of the river at all locations. Therefore, we estimate the depth of the river at location 
	
		
			
				(
				𝑝
				,
				𝑞
				)
			

		
	
, that is, 
	
		
			
				
				𝑑
			

			

				𝑘
			

			
				(
				𝑝
				,
				𝑞
				)
			

		
	
 using the estimated depth of the river at the reference point 
	
		
			
				
				𝑑
			

			
				r
				e
				f
			

			

				𝑘
			

		
	
 (
	
		
			
				=
				̂
				𝜉
			

			
				r
				i
				v
			

			

				𝑘
			

		
	
). Therefore, the estimated speed of the river at location 
	
		
			
				(
				𝑝
				,
				𝑞
				)
			

		
	
 is given by 
	
		
			
				
				𝑤
			

			

				𝑘
			

			
				(
				𝑝
				,
				𝑞
				)
				=
				𝐶
			

			

				1
			

			
				
				𝑑
				[
				l
				o
				g
				(
			

			

				𝑘
			

			
				(
				𝑝
				,
				𝑞
				)
				)
				+
				𝐶
			

			

				2
			

			

				]
			

		
	
. We set the length of the horizon 
	
		
			

				𝐻
			

		
	
 to 6 time steps, and the length of the times step 
	
		
			

				𝑇
			

		
	
 to 1 second. In the simulations, the flooded river flows along a valley in the landscape from the north toward the south as shown in Figure 1. Since the simulations are in 2D, the river flows toward the 
	
		
			
				−
				𝑦
			

		
	
 direction, and the river speed in 
	
		
			

				𝑥
			

		
	
 direction (toward the east) is zero at every location. Therefore, the estimated speeds of the river at location 
	
		
			
				(
				𝑝
				,
				𝑞
				)
			

		
	
 in 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 directions are given by 
	
		
			
				
				𝑤
			

			
				𝑥
				𝑘
			

			
				(
				𝑝
				,
				𝑞
				)
				=
				0
			

		
	
 and 
	
		
			
				
				𝑤
			

			
				𝑦
				𝑘
			

			
				(
				𝑝
				,
				𝑞
				)
				=
				−
				𝐶
			

			

				1
			

			
				
				𝑑
				[
				l
				o
				g
				(
			

			

				𝑘
			

			
				(
				𝑝
				,
				𝑞
				)
				)
				+
				𝐶
			

			

				2
			

			

				]
			

		
	
. Here, we model the dynamics of the target motion by the constant velocity model (see [23] for the definition of the variables 
	
		
			

				𝐹
			

		
	
 and 
	
		
			

				𝑈
			

			
				t
				a
				r
				g
			

		
	
 in (5)).
In the simulations, an AAV is represented by a rectangle, and the line connecting the rectangles represents the trajectory of the AAV. We define a performance metric called average rescue time—the average of the rescue times of each target (the rescue time of a target is the time elapsed after the start of the simulation until it is rescued). The POMDP cost function defined in Section 3 is reflective of this performance metric. We simulate three scenarios: Scenario I, Scenario II, and Scenario III. In Scenario I, there are two AAVs, each one located on the opposite banks of the river, and two targets are moving (being drifted by the moving water) in the river, as shown in Figure 3. Figure 3 shows a snapshot of the scenario at the end of the simulation with the NBO approach, where the average rescue time is 36 time steps. We also simulate Scenario I with the greedy approach, as shown in Figure 4, where the average rescue time is 64 time steps. In Scenario II, there are two AAVs on the left bank of the river, and two targets are moving in the river. We simulate this scenario with both the NBO and the greedy approaches. Figure 5 shows the snapshot of the scenario with the NBO approach at the end of the simulation, where the average rescue time is 45 time steps, and Figure 6 shows the simulation of the same scenario with the greedy approach, where the average rescue time is 62 time steps. In Scenario III, there are three AAVs (two on the left bank of the river and one on the right), and three targets are moving in the river. We simulate this scenario with both the NBO and the greedy approaches. Figure 7 shows the scenario with the NBO approach, where the average rescue time is 48 time steps, and Figure 8 shows the simulation of the same scenario with the greedy approach, where the average rescue time is 76 time steps. The simulation of these scenarios demonstrates that the NBO approach achieves a better coordination among the AAVs compared to the greedy approach while rescuing the targets, as evident from the average rescue times.


	
		
			
		
	


	


	


	


	
	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
	
		


	


	
	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
	
		


	


	
	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
	
		


	


	
	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	
		


	


	
	
		


	


	
	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
	


	
		
			
		
			
		
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
		
			
		
	









	
		
		
			
		
	









	
		
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	


	


	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	


	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	



Figure 3: Simulation of Scenario I with NBO approach, average rescue time = 36 steps.




	
		
			
		
	


	


	


	


	
	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
	
		


	


	
	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
	


	


	
	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	
		


	


	


	


	
	
		


	


	
	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
	
		


	


	
	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
	
		


	


	
	


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
	
		


	


	
	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
	


	
		
		
			
		
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	
















	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
		
	


	


	



Figure 4: Simulation of Scenario I with greedy approach, average rescue time = 64 steps.




	
		
			
		
	


	


	


	


	
	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	
	


	


	
	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	
	


	


	
	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	
	


	


	
	


	


	


	


	


	


	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
		


	


	
	
		


	


	
	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
	


	


	
	
		


	


	


	


	
		


	


	


	


	
		


	


	


	


	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
		
			
		
	


	
		
			
		
			
		
	
















	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	


	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	



Figure 5: Simulation of Scenario II with NBO approach, average rescue time = 45 steps.




	
		
			
		
	


	


	


	


	
	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	
	


	


	
	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	
	


	


	
	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	
	


	


	
	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	
		


	


	


	


	
		


	


	
	
		


	


	
	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	


	


	
		


	


	
	
		


	


	
	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
	
		


	


	
	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
	
		


	


	
	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
	
















	
		
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
			
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	


	
		
			
		
			
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	


	


	



Figure 6: Simulation of Scenario II with the greedy approach, average rescue time = 62 steps.




	
		
			
		
	


	


	


	


	


	


	
	


	


	
		


	


	


	


	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	


	


	
	
		


	


	
	
		


	


	
	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	


	


	
	
		


	


	
	
		


	


	
	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	


	


	
	
		


	


	
	


	


	
	


	


	
		


	


	


	


	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
	
		


	


	
	
		


	


	
	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
	
	















	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
	


	
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	



Figure 7: Simulation of Scenario III with NBO approach, average rescue time = 48 steps.




	
		
			
		
	


	


	


	


	


	


	
	


	


	
		


	


	


	


	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	


	


	
	
		


	


	
	
		


	


	
	


	


	
		


	


	
		


	


	


	


	
		


	


	


	


	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	


	


	
	
		


	


	
	
		


	


	
	


	


	
		


	


	
		


	


	


	


	
		


	


	


	


	


	


	
		


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	
	


	


	
	


	


	
	


	


	


	


	


	


	


	


	
		


	


	


	


	


	


	
		


	


	


	


	


	


	
		


	


	


	


	


	


	
		


	


	
		


	


	


	


	
	
		


	


	
	
		


	


	
	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
	
		


	


	
	
		


	


	
	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
	
		


	


	
	
		


	


	
	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
		


	


	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	


	
		
		
			
		
	


	
		
			
		
			
		
	


	
		
		
			
		
	


	
		
			
		
			
		
	


	
		
		
			
		
	














	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
		
	


	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
		
	


	
		
			
		
			
		
	


	
		
	


	
		
	



Figure 8: Simulation of Scenario III with the greedy approach, average rescue time = 76 steps.


We compare the performance of the NBO approach with that of the greedy approach through Monte-Carlo simulations. We simulate the above scenarios with the NBO and the greedy approaches separately for 50 Monte-Carlo runs. In each scenario, we compute the average rescue time in every run for both the NBO and the greedy approaches. Figures 9, 10, and 11 show the plots of the cumulative frequencies of average rescue times for the NBO and the greedy approaches for Scenarios I, II, and III, respectively. Figures 9, 10, and 11 demonstrate that the NBO approach significantly outperforms the greedy approach.



	
		
		
	



	
		
		
	



	
		
		
	



	
		
		
	



	
		
		
		
	



	
		
		
		
	



	
		
		
		
	



	



	
	
	



	
	
	



	
	
	



	
	
	



	


	


	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	


	


	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		


	


	
		
		
		
		
		
		
		
		
		
		
		
	


	
		


	

Figure 9: Performance comparison for Scenario I: NBO approach versus greedy approach.





	
		
		
	



	
		
		
	



	
		
		
	



	
		
		
	



	
		
		
	



	
		
		
	



	
		
		
	



	
		
		
	



	
		
		
		
	



	



	
	
	



	
	
	



	
	
	



	
	
	



	


	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	


	



	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		



	
		
		
		
		
		
		
		
		
		
		
		
	


	
		


Figure 10: Performance comparison for Scenario II: NBO approach versus greedy approach.





	



	
	
	



	
	
	



	
	
	



	
	
	



	
	
	



	



	
	
	



	
	
	



	
	
	



	
	
	



	


	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	


	



	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		



	
		
		
		
		
		
		
		
		
		
		
		
	


	
		


Figure 11: Performance comparison for Scenario III: NBO approach versus greedy approach.


The algorithm (NBO) runtime to compute the control commands for three AAVs (in Scenario III) in any time step in MATLAB is approximately 4 seconds on a lab computer (Intel Core i7-860 Quad-Core Processor with 8 MB Cache and 2.80 GHz speed). This runtime can be greatly reduced on a better processor and by further optimizing the code. Since the algorithm runtime is not prohibitive, it can be used in real time (i.e., for practical purposes).
6. Conclusions, Remarks, and Future Scope
 We designed a guidance algorithm for autonomous amphibious vehicles (AAVs) to rescue moving targets in a 2D flood scenario, where the flood water flows across the scene, and the targets move in the flood water. We designed this algorithm based on the theory of partially observable Markov decision process (POMDP). Since a POMDP problem is intractable to solve exactly, we used an approximation method called nominal belief-state optimization (NBO). We simulated a few scenarios to demonstrate the coordination among the AAVs achieved by the NBO approach. We defined a performance metric called average rescue time to compare the performance of our approach with a greedy approach. Our results show that the NBO approach outperforms the greedy approach significantly. This was expected because unlike the greedy approach the NBO approach has a lookahead property, that is, the NBO approach trades off the short-term performance for the long-term performance. Although the greedy approach achieves coordination among the AAVs in that the AAVs eventually rescue all the targets, but the performance in terms of average rescue time, which is crucial in these kinds of rescue missions, is poor compared to our NBO approach. In our future work, we would like to develop methods to further improve our NBO approach (e.g., NBO with adaptive horizon). We would also like to extend our approach to a decentralized AAV guidance problem to rescue multiple targets. In this decentralized case, we will induce coordination among the AAVs to rescue multiple targets by appropriately optimizing the communication (at the network level) between the AAVs along with the kinematic controls for the AAVs.
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