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The first-order shear deformation plate model, accounting for the exact neutral plane position, is exploited to investigate the
uncoupled thermomechanical behavior of functionally graded (FG) plates. Functionally graded materials are mainly constructed
to operate in high temperature environments. Also, FG plates are used in many applications (such as mechanical, electrical, and
magnetic), where an amount of heat may be generated into the FG plate whenever other forms of energy (electrical, magnetic,
etc.) are converted into thermal energy. Several simulations are performed to study the behavior of FG plates, subjected to
thermomechanical loadings, and focus the attention on the effect of the heat source intensity. Most of the previous studies have
considered the midplane neutral one, while the actual position of neutral plane for functionally graded plates is shifted and should
be firstly determined. A comparative study is performed to illustrate the effect of considering the neutral plane position.The volume
fraction of the two constituent materials of the FG plate is varied smoothly and continuously, as a continuous power function of
the material position, along the thickness of the plate.

1. Introduction

Functionally graded materials (FGMs) are microscopically
inhomogeneous composite materials, in which the volume
fraction of the two or more materials is varied smoothly
and continuously as a continuous function of the material
position along one or more dimension of the structure.
These materials are mainly constructed to operate in high
temperature environments.

In conventional laminated composite structures, homo-
geneous elastic laminae are bonded together to obtain
enhanced mechanical and thermal properties. The main
inconvenience of such an assembly is the creation of stress
concentration sources along the interfaces and specifically
when the structure is exposed to elevated temperatures. This
can lead to many deficiencies such as delaminations, matrix
cracks, and other damage mechanisms which may result
from the abrupt change of the mechanical properties at the
interface between the layers. One of the ways to overcome
this problem is to use functionally graded materials (FGMs)
with continuous material properties variations, which can

lead to a continuity of the material properties.The concept of
functionally gradedmaterial (FGM) was proposed in 1984 by
thematerial scientists in Japan [1]. Alieldin et al. [2] suggested
three approaches to transform the laminated composite
plate, with stepped material properties, to an equivalent
functionally graded (FG) plate with a continuous property
function across the plate thickness. Such transformations
are used to determine the details of a functionally graded
plate equivalent to the original laminated one. In addition
it may provide an easy and efficient way to investigate the
behavior of multilayer composite plates, with direct and less
computational efforts. FGMs are usuallymade of amixture of
ceramic and metals. The ceramic constituent of the material
provides a high temperature resistance due to its low thermal
conductivity, while the ductilemetal constituent, on the other
hand, prevents the fracture caused by thermal stress due to
high temperature gradient in a very short period of time.

The FGM is suitable for various applications, such as
thermal coatings of barrier for ceramic engines, gas tur-
bines, nuclear fusions, optical thin layers, and biomaterial
electronics. Cheng and Batra [3] studied thermo-mechanical
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deformations of the FG plates. Tanigawa et al. [4] studied the
linear thermal bending of FGMplate in steadystate condition.
They also studied the stress in transient heat conduction
with temperature-dependent material properties. Using the
first-order shear deformation theory (FSDT), Praveen and
Reddy [5] analyzed nonlinear static and dynamic responses of
FG ceramic-metal plates in a steady temperature field. They
used finite element method. Lanhe [6] used the FSDT and
derived equilibrium and stability equations of a moderately
thick rectangular plate made of FGM under thermal loads.
He assumed that the material properties varied as a power
law of thickness. Alibeigloo [7] derived an exact solution
for thermoelastic response of functionally graded rectangular
plates subjected to thermo-mechanical loads. A finite element
analysis of thermoelastic field in a rotating FGM circular
disk is studied by Afsar and Go [8]. This study focuses
on the finite element analysis of thermoelastic field in a
thin circular functionally graded material disk subjected to
a thermal load and an inertia force due to rotation of the
disk. Tung and Duc [9] derived a simple analytical approach
to investigate the nonlinear stability of functionally graded
plates under mechanical and thermal loads. Equilibrium and
compatibility equations for FG plates are derived by using
the classical plate theory. The nonlinear behaviors of FGM
plates under transverse distribution load are investigated
by Singha et al. [10] using a high precision plate bending
finite element. Material properties of the plate are assumed
to be graded in the thickness direction according to the
simple power law distribution. The formulation is developed
based on the FSDT considering the exact natural surface
position. A high-order control volume finite element method
is propose by Chareonsuk and Vessakosol [11] to explore
thermal stress analysis for functionally graded materials
(FGMs) at steady state with unstructured mesh capability for
arbitrary-shaped domain. This formulation, also known as
cell-vertex finite volume formulation, is useful for material
engineers and scientists in determining the thermal response
and thermo deformation in FGM that subjected to thermal
and mechanical loads. The heat conduction is considered for
thermal analysis, whereas the plane elasticity is considered
for stress analysis. Wang and Shen performed a nonlinear
bending analysis for a FG plate [12] and also performed a
nonlinear vibration, a nonlinear bending, and a postbuckling
analyses for sandwich plate with FGM face sheets [13]. The
two plates are resting on an elastic foundation and subjected
to thermal environments.

Functionally graded materials are used in many applica-
tions, owing to their stability in high thermal environments.
To this aim, many approaches are developed to study the
thermoelastic behavior of functionally gradedmaterials. One
of these approaches is the finite element analysis of such
material type.

In this paper the boundary value problem of the uncou-
pled thermoelastic behavior of FG plate is formulated and
solved. First, the temperature distribution is predicted to be
used in the thermoelastic analysis of FG plate.Then, the first-
order shear deformation plate theory is proposed, accounting
for the exact neutral plane position, for modeling the func-
tionally graded plates. A parametric study is developed to
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Figure 1: Coordinate system used for a typical FG plate.

investigate the effects of different distributions of thematerial
properties on the response of the plates. Moreover, some
numerical comparisons are performed to show the lack of
accuracy while neglecting the effect of neutral plane position
for FG plates.

2. Mathematical Formulation of the
Uncoupled Thermoelasticity System

In this section, a mathematical model is derived for the
uncoupled thermoelasticity systems considering the exact
neutral plane position. The temperature distribution and the
effective material properties of the FGMs are determined
firstly and used in the developed model as input data. The
effect of neutral plane position is typically neglected in most
previous studies, while the position of neutral plane for func-
tionally graded plates must be predetermined. Modifications
over the model formulated at [2] are presented to account for
the thermal load effects on the finite element model and the
neutral plane position effects on the material stiffnesses.

2.1. Governing Equations. Based on the FSDT assumptions,
the transverse normals would not remain perpendicular
to the midsurface but remain straight after deformation.
Thus, the transverse shear strains and consequently the shear
stresses are constant throughout the laminate thickness. In
practice a convenient shear correction factor, equals to 5/6,
is assumed for the analysis of the plates [14, 15]. So, the
displacement fields based on FSDT assumptions are

𝑢 (𝑥, 𝑦, 𝑧) = 𝑢
0
(𝑥, 𝑦) + (𝑧 + ℎ

0
) 0
𝑥
(𝑥, 𝑦) ,

V (𝑥, 𝑦, 𝑧) = V
0
(𝑥, 𝑦) + (𝑧 + ℎ

0
) 0
𝑦
(𝑥, 𝑦) ,

𝜔 (𝑥, 𝑦, 𝑧) = 𝜔
0
(𝑥, 𝑦) ,

(1)

where (𝑢
0
, V
0
, 𝜔
0
, 0
𝑥
, 0
𝑦
) are unknown functions to be deter-

mined. ℎ
0
denotes the position of the neutral plane (see

Figure 1) where for isotropic homogenous plates ℎ
0
= 0.

The total strain is the variation of the continuum defor-
mation with respect to its volume, so the linear Green-
Lagrange strains components for small deformations and
moderate rotations (100 − 15

0) can be determined from (1)
as follow:

𝑒
𝑥𝑥

= 𝑢
0,𝑥

+ (𝑧 + ℎ
0
) 0
𝑥,𝑥

,

𝑒
𝑦𝑦

= V
0,𝑦

+ (𝑧 + ℎ
0
) 0
𝑦,𝑦

,
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𝛾
𝑥𝑦

= 𝑢
0,𝑦

+ V
0,𝑥

+ (𝑧 + ℎ
0
) (0
𝑥,𝑦

+ 0
𝑦,𝑥

) ,

𝛾
𝑥𝑧

= 𝑤
0,𝑥

+ 0
𝑥
,

𝛾
𝑦𝑧

= 𝑤
0,𝑦

+ 0
𝑦
,

(2)
where 𝑒

𝑖𝑗
are the total strain components. The total strain

components are the sum of the elastic strains 𝜀
𝑖𝑗
, resulting

from the applied mechanical loads and the thermal strains
𝜀
𝑇𝑖
produced due to temperature change. So, the total strains

are given by
𝑒
𝑖𝑗

= 𝜀
𝑖𝑗
+ 𝜀
𝑇𝑖
. (3)

The total strain components could be divided into {𝑒
𝑏
}

bending strain and {𝑒
𝑠
} shear strain components as follows:

{
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(4)
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where {𝑒
0

𝑏
} are the nodal bending strains and {𝑒

0

𝑠
} are the

nodal shear strains. The nodal strain components will be
determined in the coming sections.

The governing equations for the plate equilibrium are
derived based on the principle of minimum total potential
energy. So, the total potential energy takes the form
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𝐴

{𝑒
0

𝑏
}

𝑇

[𝐷𝐸
𝑏
] {𝑒
0

𝑏
} 𝑑𝐴 − ∫

𝐴

{𝑒
0

𝑏
}

𝑇

{𝐷𝑇
𝑏
} 𝑑𝐴)

+ (0.5 ∫

𝐴

{𝑒
0

𝑠
}

𝑇

[𝐷𝐸
𝑠
] {𝑒
0

𝑠
} 𝑑𝐴 − ∫

𝐴

{𝑒
0

𝑠
}

𝑇

{𝐷𝑇
𝑠
} 𝑑𝐴)

− ∑{𝑃} {𝑢
𝑜
} ,

(6)

where {𝐷𝑇
𝑏
} and {𝐷𝑇

𝑠
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(7)

where 𝛼(𝑧) is the thermal coefficient of expansion and 𝛿𝑇(𝑧)

is the continuum temperature change through the plate
thickness.

Based on the concept that the equivalent single-layer
theories are built up, that a heterogeneous plate is treated as
a statically equivalent, single layer having a complex consti-
tutive behavior, reducing the 3D continuum problem to 2D
problem, the equivalent layer of the FG plate can be obtained.
By integrating for the plate material properties through the
plate thickness the equivalent single-layermaterialmatrix can
be determined to be

[𝐷𝐸
𝑏
] = ∫

ℎ/2

−ℎ/2

[𝑍
𝑏
]
𝑇
[𝐷
𝑏
]

𝑇

[𝑍
𝑏
] 𝑑𝑧,

[𝐷𝐸
𝑠
] = ∫
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[𝑍
𝑠
]
𝑇
[𝐷
𝑠
]

𝑇

[𝑍
𝑠
] 𝑑𝑧,

(8)

where [𝐷
𝑏
] and [𝐷

𝑠
] are the bending and shear material

matrices, respectively. These material matrices provide the
stress-strain relations for FG plates as follows:

[𝐷
𝑏
] =

[

[

[

[

𝑄
11

𝑄
12

𝑄
16

𝑄
12

𝑄
22

𝑄
26

𝑄
16

𝑄
26

𝑄
66

]

]

]

]

, [𝐷
𝑠
] = [

𝑄
44

𝑄
45

𝑄
45

𝑄
55

] . (9)

For FG plates, the two equivalent material matrices can be
written in the form

[𝐷𝐸
𝑏
] = [

𝐴
𝑖𝑗

𝐵
𝑖𝑗

𝐵
𝑖𝑗

𝐷
𝑖𝑗

] , [𝐷𝐸
𝑠
] = [

0 0

0 𝑆
𝑖𝑗

] , (10)

where𝐴
𝑖𝑗
are the extensional stiffness components,𝐵

𝑖𝑗
are the

bending-extensional coupling stiffness components, and 𝐷
𝑖𝑗

are the bending stiffness components.
Prior to the determination of the material stiffnesses, the

location of the neutral plane must be given. Clearly, due to
varying young’s modulus of the plate, the neutral plane is
no longer at the midplane but shifted from the midplane
unless for a plate with symmetrical young’s modulus [16].
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The material stiffnesses can be determined considering the
exact neutral plane position to be in the form

𝐴
𝑖𝑗

= ∫

ℎ/2

−ℎ/2

𝑄
𝑖𝑗
(𝑧) 𝑑𝑧 𝑖, 𝑗 = 1, 2, 6,

𝐵
𝑖𝑗

= ∫

ℎ/2

−ℎ/2

(𝑧 + ℎ
0
) 𝑄
𝑖𝑗
(𝑧) 𝑑𝑧 𝑖, 𝑗 = 1, 2, 6,

𝐷
𝑖𝑗

= ∫

ℎ/2

−ℎ/2

(𝑧 + ℎ
0
)
2
𝑄
𝑖𝑗
(𝑧) 𝑑𝑧 𝑖, 𝑗 = 1, 2, 6,

𝑆
𝑖𝑗

= 𝐴
𝑖𝑗

= ∫

ℎ/2

−ℎ/2

𝑄
𝑖𝑗 (

𝑧) 𝑑𝑧 𝑖, 𝑗 = 4, 5.

(11)

Note that 𝑄
𝑖𝑗
(𝑧) are the equivalent material property stiff-

nesses as a function of the material thickness direction 𝑧,
where in FG plate, its material properties vary smoothly and
continuously over the thickness of the structure (plate).

The equivalent material stiffnesses of isotropic FG plate
are

𝑄
11

(𝑧) = 𝑄
22

(𝑧) =

𝐸 (𝑧)

1 − 𝜐
2
, 𝑄

12
(𝑧) = 𝜐𝑄

11
(𝑧) ,

𝑄
66

(𝑧) =

1 − 𝜐

2

𝑄
11

(𝑧) ,

𝑄
44 (

𝑧) = 𝑄
55 (

𝑧) = 𝐾

1 − 𝜐

2

𝑄
11 (

𝑧) ,

𝑄
16 (

𝑧) = 𝑄
26 (

𝑧) = 𝑄
45 (

𝑧) = 0,

(12)

where 𝐾 is the material shear correction factor, 𝐸(𝑧) is the
effective young’smodulus, and 𝜐 is the effective Poisson’s ratio
of the material through the plate thickness. The convenient
shear correction factor has been assumed to be given by 5/6
in our analysis of FG plates.

So, by minimizing the total potential energy (6), the
equilibrium equations for the FG plate can be obtained.

2.2. Thermal Analysis. Knowledge of the temperature distri-
bution within a body is basically important in many engi-
neering problems. This information will be highly required
in computing the capacity of the heat flow in or out the body.
Further, if a body is not free to expand in all the directions,
some stresses may be developed inside the body. The magni-
tude of these thermal stresses will influence dramatically on
the design of devices such as boilers, steam turbines, and jet
engines. The first step in calculating the thermal stresses is to
determine the temperature distribution within the body.

FGMs are primarily used in situations where large tem-
perature gradients are encountered. Also, FG plates are used
in many applications (such as mechanical, electrical, and
magnetic), where an amount of heat may be generated into
the FG plate whenever other forms of energy (electrical,
magnetic, etc.) are converted into thermal energy.Within our
analysis, constant temperatures are imposed at the ceramic
and metal surfaces, but a scalar temperature field is assumed
to vary continuously along the 𝑧 coordinate, such that

𝜕𝑇/𝜕𝑥 = 𝜕𝑇/𝜕𝑦 = 0. Furthermore, a stress free reference
temperature 𝑇

0
= 0 is considered. The one-dimensional

differential equation governing the steady state heat conduc-
tion in a FGM with heat source strength, by assuming a FG
plate (ceramic/metal) with a continuous material properties
distribution along its thickness, can be written as [17]

𝜕

𝜕𝑧

(𝑘 (𝑧)

𝜕𝑇

𝜕𝑧

) + ̇𝑞 = 0, (13)

where 𝑘(𝑧) is the thermal conductivity through the plate
thickness, 𝑇(𝑧) is the temperature distribution through the
plate thickness, and ̇𝑞 is the strength of a heat source inside
the body (rate of heat generated per unit volume).

The temperature distribution along the thickness can be
obtained by solving the one-dimensional steady state heat
transfer equation with the presence of a heat source (13),
subject to the following boundary conditions:

𝑇 = 𝑇
𝑈

at 𝑧 = −

ℎ

2

, 𝑇 = 𝑇
𝐿

at 𝑧 =

ℎ

2

, (14)

by performing integration

𝑘 (𝑧)

𝑑𝑇

𝑑𝑧

+ ̇𝑞𝑧 = 𝐶
1

(15)

by rearranging (15) and considering neutral plane position
integration

∫

𝑇𝑈

𝑇(𝑧)

𝑑𝑇 = ∫

ℎ/2

𝑧

𝐶
1
− ̇𝑞 (𝑧 + ℎ

0
)

𝑘 (𝑧)

𝑑𝑧 (16)

after solving integral

𝑇
𝑈

− 𝑇 (𝑧) = 𝐶
1
∫

ℎ/2

𝑧

𝑑𝑧

𝑘 (𝑧)

− ∫

ℎ/2

𝑧

̇𝑞 (𝑧 + ℎ
0
)

𝑑𝑧

𝑘 (𝑧)

. (17)

By imposing one of the previous boundary conditions, the
constant in (15) may be evaluated as follows:

𝐶
1
=

𝑇
𝑈

− 𝑇
𝐿

∫

ℎ/2

−ℎ/2
(𝑑𝑧/𝑘 (𝑧))

+

̇𝑞 ∫

ℎ/2

−ℎ/2
(𝑧 + ℎ

0
) (𝑑𝑧/𝑘 (𝑧))

∫

ℎ/2

−ℎ/2
(𝑑𝑧/𝑘 (𝑧))

.

(18)

So, in (17), the temperature distribution through the plate
thickness, for a steady state FG plate with heat source of
strength ̇𝑞, for any distribution of 𝑘(𝑧) is given by

𝑇 (𝑧) = 𝑇
𝑈

− 𝐶
1
∫

ℎ/2

𝑧

𝑑𝜉

𝑘 (𝜉)

+ ∫

ℎ/2

𝑧

̇𝑞𝑧

𝑑𝜉

𝑘 (𝜉)

+ ℎ
0

̇𝑞 ∫

ℎ/2

𝑧

𝑑𝜉

𝑘 (𝜉)

.

(19)

If the plate is in a steady state without any heat sources,
(13) reduces to the one-dimensional steady state heat transfer
equation [18]

𝜕

𝜕𝑧

(𝛾 (𝑧)

𝜕𝑇

𝜕𝑧

) = 0. (20)



Mathematical Problems in Engineering 5

So, the temperature distribution through the plate thickness
for any distribution of 𝑘(𝑧), where in our upcoming thermal
analyses a power law distribution (the linear rule ofmixtures)
of thermal conductivity 𝑘(𝑧) is assumed, can be written as

𝑇 (𝑧) = 𝑇
𝑈

−

𝑇
𝑈

− 𝑇
𝐿

∫

ℎ/2

−ℎ/2
(𝑑𝑧/𝑘 (𝑧))

∫

ℎ/2

𝑧

𝑑𝜉

𝑘 (𝜉)

, (21)

where

𝑘 (𝑧) = 𝑘
𝑈

+ (𝑘
𝐿
− 𝑘
𝑈
) (

𝑧 + (ℎ/2)

ℎ

)

𝑛

, (22)

where 𝑘
𝑈
and 𝑘

𝐿
are the thermal conductivity of the upper

and lower surfaces of the FG plate, respectively [19]. The
grading material parameter 𝑛 can be any nonnegative real
number. In the case of a thermally homogenous plate; that is,
when 𝑘 does not depend on 𝑧, the temperature distribution
is linear through the thickness. Excursions from the linear
distribution are obtained by changing the grading parameter
𝑛.

It is convenient here to mention that, in general, there are
many approaches for homogenization of FGMs. The choice
of the approach should be based on the gradient of gradation
relative to the size of a typical representative volume element.
One of such approaches is the approximation approach. The
linear rule of mixtures and the modified rule of mixtures by
Tamura are convenientmethods for estimating the equivalent
material properties of the FGMs based on the approximation
approach. Previous studies predicted that the linear rule of
mixtures cannot reflect the detailed constituent geometry
and the microstructure and provides a highly questionable
accuracy compared to the modified rule of mixtures. On the
other hand, themodified rule ofmixtures byTamura provides
a convenient accuracy for a wide range of volume fractions
and loading conditions. But, the modified rule of mixtures
is restricted to the Young’s modulus, so any appropriate
averagingmethodmust be used to estimate the other thermo-
mechanical properties. Usually the linear rule of mixtures is
being conventionally employed [20].

2.3. Position of Neutral Surface. For the analyses of the
flexural behavior of a functionally graded plate, subjected
only to transversal applied load, we have to determine the
location of the neutral plane before solving the equilibrium
equation of the plate. Clearly, due to the varying of Young’s
modulus of the FG plate through the thickness, the neutral
plane is no longer located at the midplane but shifted from it.
To determine the position of the neutral plane, we construct
a new coordinate system such that the new 𝑥-axis is placed
at the neutral axis, which will be determined in the following
(see Figure 1). Then we have [16]

𝑥 = 𝑥
1
, 𝑧 = 𝑧

1
− ℎ
0
, (23)

where ℎ
0
is the distance of the neutral plane from the

midplane of the plate.

In this case, similar to the usual treatment in the FSDT,
the axial force for an infinitely wide FG plate subjected to
transverse mechanical load is given by

𝑁
𝑥𝑥

= 𝐵
11
𝜑
𝑥,𝑥

. (24)

By putting the axial force equal to zero to determine the
position of the neutral surface, where the position of the
neutral plane can be determined by choosing ℎ

0
, such that

the axial force at the cross-section vanishes

𝐵
11

= ∫

(ℎ/2)+ℎ0

−(ℎ/2)+ℎ0

𝑧
1
𝐸 (𝑧
1
)

1 − 𝜐
2

𝑑𝑧
1
= 0. (25)

By changing the interval of integral we have

∫

ℎ/2

−ℎ/2

(𝑧 + ℎ
0
) 𝐸 (𝑧)

1 − 𝜐
2

𝑑𝑧 = 0. (26)

Then, assuming 𝜐 is constant across the thickness

(∫

ℎ/2

−ℎ/2

𝑧𝐸 (𝑧) 𝑑𝑧) + (ℎ
0
∫

ℎ/2

−ℎ/2

𝐸 (𝑧) 𝑑𝑧) = 0. (27)

The position of neutral plane for FG plates can be determined
from

ℎ
0
= −(

∫

ℎ/2

−ℎ/2
𝑧𝐸 (𝑧) 𝑑𝑧

∫

ℎ/2

−ℎ/2
𝐸 (𝑧) 𝑑𝑧

) . (28)

Equation (28) provides an applicable way to manage and
control the position of neutral plane for FG plates. For design
considerations, sometimes we have to adapt the neutral plane
position with the required design constraints. Changing the
grading continuous function of the FG plate controls the
position of the neutral plane.

3. The Finite Element Model

The displacements and normal rotations at any point into a
finite element 𝑒 may be expressed, in terms of the 𝑛 nodes of
the element, as follow

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑢
0
(𝑥, 𝑦)

V
0
(𝑥, 𝑦)

𝜔
0
(𝑥, 𝑦)

0
𝑥
(𝑥, 𝑦)

0
𝑦
(𝑥, 𝑦)

}
}
}
}
}
}
}

}
}
}
}
}
}
}

}

=

𝑛

∑

𝑖=1

[

[

[

[

[

[

𝜓
𝑒

𝑖
0 0 0 0

0 𝜓
𝑒

𝑖
0 0 0

0 0 𝜓
𝑒

𝑖
0 0

0 0 0 𝜓
𝑒

𝑖
0

0 0 0 0 𝜓
𝑒

𝑖

]

]

]

]

]

]

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑢
𝑗

V
𝑗

𝜔
𝑗

𝑆
1

𝑗

𝑆
2

𝑗

}
}
}
}
}
}
}

}
}
}
}
}
}
}

}

, (29)

where𝜓𝑒
𝑖
is the Lagrange interpolation function at node 𝑖.The

Lagrange interpolation functions for nine-node rectangular
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element (see Figure 2) are given by in terms of the natural
coordinates [15]

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

𝜓
1

𝜓
2

𝜓
3

𝜓
4

𝜓
5

𝜓
6

𝜓
7

𝜓
8

𝜓
9

}
}
}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}
}
}

}

=

1

4

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

(1 − 𝜉) (1 − 𝜂) (−𝜉 − 𝜂 − 1) + (1 − 𝜉
2
) (1 − 𝜂

2
)

(1 + 𝜉) (1 − 𝜂) (𝜉 − 𝜂 − 1) + (1 − 𝜉
2
) (1 − 𝜂

2
)

(1 + 𝜉) (1 + 𝜂) (𝜉 + 𝜂 − 1) + (1 − 𝜉
2
) (1 − 𝜂

2
)

(1 − 𝜉) (1 + 𝜂) (−𝜉 + 𝜂 − 1) + (1 − 𝜉
2
) (1 − 𝜂

2
)

2 (1 − 𝜉
2
) (1 − 𝜂) − (1 − 𝜉

2
) (1 − 𝜂

2
)

2 (1 + 𝜉) (1 − 𝜂
2
) − (1 − 𝜉

2
) (1 − 𝜂

2
)

2 (1 − 𝜉
2
) (1 + 𝜂) − (1 − 𝜉

2
) (1 − 𝜂

2
)

2 (1 − 𝜉) (1 − 𝜂
2
) − (1 − 𝜉

2
) (1 − 𝜂

2
)

4 (1 − 𝜉
2
) (1 − 𝜂

2
)

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

(30)
The nodal bending strain can be written as follows:

{𝑒
0

𝑏
} =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝑢
0,𝑥

(𝑥, 𝑦)

V
0,𝑦

(𝑥, 𝑦)

𝑢
0,𝑦

(𝑥, 𝑦) + V
0,𝑥

(𝑥, 𝑦)

0
𝑥,𝑥

(𝑥, 𝑦)

0
𝑦,𝑦

(𝑥, 𝑦)

0
𝑥,𝑦

(𝑥, 𝑦) + 0
𝑦,𝑥

(𝑥, 𝑦)

}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}

}

=

9

∑

𝑗=1

[

[

[

[

[

[

[

[

[

𝜓
𝑒

𝑗,𝑥
0 0 0 0

0 𝜓
𝑒

𝑗,𝑦
0 0 0

𝜓
𝑒

𝑗,𝑦
𝜓
𝑒

𝑗,𝑥
0 0 0

0 0 0 𝜓
𝑒

𝑗,𝑥
0

0 0 0 0 𝜓
𝑒

𝑗,𝑦

0 0 0 𝜓
𝑒

𝑗,𝑦
𝜓
𝑒

𝑗,𝑥

]

]

]

]

]

]

]

]

]

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑢
𝑗

V
𝑗

𝜔
𝑗

𝑆
1

𝑗

𝑆
2

𝑗

}
}
}
}
}
}

}
}
}
}
}
}

}

or {𝑒
0

𝑏
} =

𝑛=9

∑

𝑗=1

[𝐵
𝑏𝑗
] {𝑢
0

𝑗
} ,

(31)

{𝑒
0

𝑠
} = {

𝜔
0,𝑥

(𝑥, 𝑦) + 0
𝑥
(𝑥, 𝑦)

𝜔
0,𝑦

(𝑥, 𝑦) + 0
𝑦
(𝑥, 𝑦)

}

=

9

∑

𝑗=1

[

0 0 𝜓
𝑒

𝑗,𝑥
𝜓
𝑒

𝑗
0

0 0 𝜓
𝑒

𝑗,𝑦
0 𝜓
𝑒

𝑗

]

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑢
𝑗

V
𝑗

𝜔
𝑗

𝑆
1

𝑗

𝑆
2

𝑗

}
}
}
}
}
}

}
}
}
}
}
}

}

or {𝑒
0

𝑠
} =

𝑛=9

∑

𝑗=1

[𝐵
𝑠𝑗
] {𝑢
0

𝑗
} ,

(32)

1 2

34

5

6

7

8 9

𝜂

𝜉

Lagrange biquadratic
element

at each node
𝑢0, �0, 𝑤0, 0𝑥, 0𝑦

Figure 2: Nine-node quadratic Lagrange rectangular element.

where [𝐵
𝑏𝑗
] is the curvature-displacement matrix, [𝐵

𝑠𝑗
] is

the shear strain-displacement matrix, and {𝑢
0

𝑗
} = {𝑢

𝑗
V
𝑗
𝜔
𝑗

𝑆
1

𝑗
𝑆
2

𝑗
}

𝑇 are the nodal degrees of freedom.
So, the total potential energy can be obtained, and (6) can

be written as follow:

Π = (0.5 ∫

𝐴

{𝑢
0
}

𝑇

[𝐵
𝑏
]
𝑇
[𝐷𝐸
𝑏
] [𝐵
𝑏
] {𝑢
0
} 𝑑𝐴

−∫

𝐴

{𝑢
0
}

𝑇

[𝐵
𝑏
]
𝑇
{𝐷𝑇
𝑏
} 𝑑𝐴)

+ (0.5 ∫

𝐴

{𝑢
0
}

𝑇

[𝐵
𝑠
]
𝑇
[𝐷𝐸
𝑠
] [𝐵
𝑠
] {𝑢
0
} 𝑑𝐴

−∫

𝐴

{𝑢
0
}

𝑇

[𝐵
𝑠
]
𝑇
{𝐷𝑇
𝑠
} 𝑑𝐴) − ∑{𝑢

𝑜
}
𝑇
{𝑝} .

(33)

The minimum potential energy principle states that

𝛿Π = (∫

𝐴

[𝐵
𝑏
]
𝑇
[𝐷𝐸
𝑏
] [𝐵
𝑏
] 𝑑𝐴) {𝑢

0
}

+ (∫

𝐴

[𝐵
𝑠
]
𝑇
[𝐷𝐸
𝑠
] [𝐵
𝑠
] 𝑑𝐴) {𝑢

0
}

− ∫

𝐴

{𝐷𝑇
𝑏
} 𝑑𝐴 − ∫

𝐴

{𝐷𝑇
𝑠
} 𝑑𝐴

−

𝑛

∑

𝑖=1

[𝜓
𝑒

𝑖
]
𝑇
{𝑝} = 0.

(34)

In another form

[[𝐾
𝑏
] + [𝐾

𝑠
]] {𝑢
0
} = {𝐹

𝑇
} + {𝑃} , (35)
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where [𝐾
𝑏
], [𝐾
𝑠
] are the element bending and shear stiffness

matrices, respectively, defined as

[𝐾
𝑏
] = ∫

𝐴

[𝐵
𝑏
]
𝑇
[𝐷𝐸
𝑏
] [𝐵
𝑏
] 𝑑𝐴,

[𝐾
𝑠
] = ∫

𝐴

[𝐵
𝑠
]
𝑇
[𝐷𝐸
𝑠
] [𝐵
𝑠
] 𝑑𝐴

(36)

and {𝐹
𝑇
}, {𝑃} are the element thermal and mechanical load

vectors, respectively, defined as

{𝑃} = ∫

𝐴

[𝜓
𝑒

𝑖
]
𝑇
{𝑝} 𝑑𝐴,

{𝐹
𝑇𝑏

} = ∫

𝐴

[𝐵
𝑏
]
𝑇
{𝐷𝑇
𝑏
} 𝑑𝐴,

{𝐹
𝑇𝑠
} = ∫

𝐴

[𝐵
𝑠
]
𝑇
{𝐷𝑇
𝑠
} 𝑑𝐴.

(37)

So by substitution of (31) and (32), into (4) and (5) the
bending and shear strain vectors can be obtained.The normal
stress components can be determined as follow:

{

{

{

𝜎
𝑥𝑥

𝜎
𝑦𝑦

𝜎
𝑥𝑦

}

}

}

=
[

[

𝑄
11

(𝑧) 𝑄
12

(𝑧) 0

𝑄
12

(𝑧) 𝑄
22

(𝑧) 0

0 0 𝑄
66

(𝑧)

]

]

×

{

{

{

{

{

{

𝑒
𝑥𝑥

𝑒
𝑦𝑦

𝛾
𝑥𝑦

}

}

}

−

{

{

{

𝛼 (𝑧) 𝛿𝑇 (𝑧)

𝛼 (𝑧) 𝛿𝑇 (𝑧)

0

}

}

}

}

}

}

or {𝜎
𝑏
} = [𝐷

𝑏
] {𝜀
𝑏
} ,

(38)

and the shear stress components are

{

𝜎
𝑦𝑧

𝜎
𝑥𝑧

} = [

𝑄
44

(𝑧) 0

0 𝑄
55

(𝑧)

] {{

𝛾
𝑦𝑧

𝛾
𝑥𝑧

} − {

0

0
}}

or {𝜎
𝑠
} = [𝐷

𝑠
] {𝜀
𝑠
} .

(39)

4. Numerical Result

In this section we present several numerical simulations in
order to assess the behavior of functionally graded plates
subjected to thermo-mechanical loads. A simple supported
plate is considered for the investigation.The plate is made up
of a ceramic material at the top and a metallic at the bottom.
The simple power lawwith different values of 𝑛 = 0 : 2 is used
for the through-the-thickness variation.Theplate is subjected
to mechanical loadings in addition to a temperature gradient
through its thickness.

4.1. A Functionally Graded Plate Subjected to a Steady State
Thermomechanical Load. The analysis of FG plates is per-
formed for a combination of materials of type ceramic-
metal. The lower plate surface is assumed to be aluminum,
while the top surface is assumed to be zirconia. Material
properties parameter 𝑛 = [0, 2] is considered. Physical
material properties are given in Table 1. An all edges simply

Table 1: Material properties.

Property Aluminum Zirconia
Young’s modulus 𝐸

𝐿
= 70Gpa 𝐸

𝑈
= 151 Gpa

Poisson’s ratio ]
𝐿
= 0.3 ]

𝑈
= 0.3

Thermal conductivity 𝑘
𝐿
= 204W/mK 𝑘

𝑈
= 2.09W/mK

Thermal expansion 𝛼
𝐿
= 23 × 10

−6
/C 𝛼

𝑈
= 10 × 10

−6
/C

Zirconia (300∘C)

𝑥

𝑧

𝑦

Al (20∘C)
𝑎 𝑏

ℎ

Uniformly
distributed (𝑝)

Figure 3: A simply supported FG plate subjected to a uniformly
distributed mechanical load and thermal loading.
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Figure 4: Temperature distribution through the FG plate thickness
for various values of grading parameter 𝑛 (without heat source).

supported square plate, of side 𝑎 = 0.2m and thickness ℎ =

0.01m, is taken for study.Theplate is subjected to a uniformly
distributed mechanical transverse load on the top surface, in
addition to a temperature gradient along the thickness, where
the temperature of the ceramic rich top surface is 300

∘C and
the temperature of the metal rich bottom surface is 20∘C (see
Figure 3).

To investigate the thermo-mechanical behavior of the
plate, the temperature distribution through the FG plate
thickness should be firstly determined. Figure 4 shows the
steady state temperature distribution given by (21), for the
aforementioned FG plate. The results are highly consistent
with that given at [18]. It is obviously noticed that the
resulted temperature distributionwithin FG plates of ceramic
and metallic constituents is usually smaller than those of
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Figure 5: Nondimensional center deflection of P-FGM plate versus nondimensional load intensity (mechanical load): (a) neglecting neutral
plane position, (b) considering neutral plane position.

homogeneous plates, either purely ceramic or purely metallic
plates. The material parameter 𝑛 has dominant effect on the
thermal behavior of the FG plates, where the temperature
distribution depends basically on the equivalent thermal
conductivity of the constituents and the temperatures of both
the upper and lower surfaces.

To investigate the elastostatic behavior of FG plates,
with aluminum and zirconia material constituents, several
numerical simulations are performed, for different values
of the grading parameter 𝑛. The following nondimensional
parameters have beenmanipulated throughout the numerical
simulations:

central deflection 𝜔 = 𝜔/ℎ;
nondimensional load intensity 𝑃 = 𝑎

4
𝑝/𝐸
𝐿
ℎ
4;

thickness ℎ = ℎ/𝑎,

where 𝑝 denotes the intensity of the applied mechanical load
and 𝐸

𝐿
is the Young’s modulus of the aluminum bottom face.

Figure 5, shows the nondimensional central deflection of
a uniform temperature FG plate, subjected to a mechanical
load and free of any thermal excitation. From Figure 5, it
can be noticed that the central deflection of the FG plate
(of the previous example) decreases noticeably by raising the
value of the material index (𝑛), because of the increasing of
the material rigidity. The rigidity of the material increases by
increasing the volume fraction of ceramic, as a consequence
of raising the value of (𝑛). Table 2 shows the numerical results
of a set of numerical simulations with different values of
(𝑛). The table shows a difference in central deflection while
considering and neglecting neutral plane position. The plate

provides a higher central deflectionwhen considering neutral
plane position rather than the midplane of the plate. The
results of Figure 5(a) are consistent with those presented in
[18].

Figure 6 shows the central deflection 𝜔 = 𝜔/ℎ due to a
sequence of mechanical loads for different values of 𝑛. The
nondimensional load 𝑃 takes values in the interval [0, 12]. In
addition to the uniformly distributed mechanical transverse
load on the top surface, the plate is subjected to a thermal
field where the ceramic rich top surface is held at 300∘C and
the metal rich bottom surface is held at 20∘C (see Figure 1).
One may see that all the plates with intermediate material
properties experience intermediate values of deflection. This
was expected since themetallic plate is the onewith the lowest
stiffness and the ceramic plate is the one with the highest
stiffness. Also, the figure shows that the contribution of the
thermal load is higher than that of themechanical load, which
reduces with increasing of the mechanical load intensity.
Table 3 shows the numerical results of the simulations. The
results of Figure 6(a) are in excellent agreement with those
presented in [18, 21].

The variation of the axial stress 𝜎
𝑥𝑥

at the center of the FG
plate and along the thickness direction, for different values
of the material parameter 𝑛, is shown in Figure 7. The stress
of power law FGM (P-FGM) plate can be represented as
a cubic function of 𝑧 for material parameter 𝑛 = 2. The
maximum tensile stress along the thickness of the FG plate
is located at the bottom edge (𝑧 = ℎ/2) and increases as the
ratio 𝐸

𝑈
/𝐸
𝐿
increases. However, the maximum compressive

stress is occurred at the top surface (𝑧 = −ℎ/2) and is
high for small 𝐸

𝑈
/𝐸
𝐿
. For the ratio 𝐸

𝑈
/𝐸
𝐿

= 1 in which
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Table 2: Nondimensional deflection of midpoint versus nondimensional load intensity (𝑃).

Nondimensional central deflection (𝜔)
𝑃 Metal 𝑛 = 0.5 𝑛 = 1 𝑛 = 2 Ceramic

Midplane Neutral plane Midplane Neutral plane Midplane Neutral plane
1 0.0452 0.0317 0.0328 0.0287 0.03 0.0267 0.0277 0.021
2 0.0905 (0.089)∗ 0.0633 (0.061) 0.0656 0.0573 (0.056) 0.06 0.0534 (0.052) 0.0554 0.042 (0.0413)
3 0.1357 0.095 0.0985 0.086 0.09 0.0801 0.0831 0.0629
4 0.181 (0.1804) 0.1266 (0.124) 0.1313 0.1146 (0.113) 0.119 0.1067 (0.103) 0.1108 0.0839 (0.083)
5 0.2262 0.1583 0.1641 0.1433 0.149 0.1334 0.1385 0.1049
6 0.2714 (0.269) 0.1899 (0.185) 0.1969 0.172 (0.1695) 0.179 0.1601 (0.154) 0.1662 0.1258 (0.126)
7 0.3167 0.2216 0.2298 0.2006 0.209 0.1868 0.1939 0.1468
8 0.3619 (0.361) 0.2532 (0.248) 0.2626 0.2293 (0.228) 0.239 0.2135 (0.208) 0.2216 0.1678 (0.166)
9 0.4072 0.2849 0.2954 0.2579 0.269 0.2402 0.2493 0.1888
10 0.4524 (0.452) 0.3166 (0.308) 0.3282 0.2866 (0.285) 0.299 0.2669 (0.261) 0.277 0.2097 (0.206)
11 0.4979 0.3482 0.361 0.3153 0.329 0.2935 0.3047 0.2307
12 0.5428 (0.54) 0.3799 (0.365) 0.3939 0.3439 (0.343) 0.359 0.3202 (0.313) 0.3324 0.2517 (0.252)
∗The consistent results of Croce and Venini [18].

2 4 6 8 10 12

0

0.05

0.1

0.15

0.2

0.25

Nondimensional load intensity

−0.25

−0.2

−0.15

−0.1

−0.05

Ceramic
𝑛 = 2

𝑛 = 1

Metal

𝑤
/ℎ

)
N

on
di

m
en

sio
na

l c
en

tr
al

 d
efl

ec
tio

n 
(

(a)

0

0.05

0.1

0.15

0.2

0.25

−0.25

−0.2

−0.15

−0.1

−0.05

2 4 6 8 10 12
Nondimensional load intensity

Ceramic
𝑛 = 2

𝑛 = 1

Metal

𝑤
/ℎ

)
N

on
di

m
en

sio
na

l c
en

tr
al

 d
efl

ec
tio

n 
(

(b)

Figure 6: Nondimensional center deflection of P-FGM in steady state without heat source present versus nondimensional load intensity (𝑃)
(thermo-mechanical load): (a) neglecting neutral plane position, (b) considering neutral plane position.

the FGM plate becomes a homogenous isotropic plate, the
stress distribution is a linear function of 𝑧, and the maximum
stress value is occurred at the top and bottom surfaces of the
plate. The neutral plane—where zero axial stress is located—
is shifted from the midplane to the top surface, (Figure 7(b)),
by variation of grading parameter 𝑛, while for isotropic
homogenous plate, the zero stress is located at the midplane.
The results of Figure 7(a) are consistent with those presented
by Croce and Venini [18], where they assumed that neutral
plane coincides with the midplane.

Figure 8 illustrates the through-the-thickness maximum
axial stress along the center line of the plate on the centroidal

axis (midplane). We observe in Figure 8 that the stresses are
compressive both at the top and at the bottom surfaces. The
profiles of the compressive stress for the graded plates are
close to each other, and their magnitude is less than the one
of the homogeneous plates. All the results of Figure 8(a) are
in agreement with those presented in [18, 21].

4.2. A Functionally Graded Plate Subjected to a Steady State
Thermomechanical Load and Including a Heat Source. The
plate considered at the previous section is used to simulate
a FG plate in a steady state with heat source strength (rate
of heat generated per unit volume) ̇𝑞 = 100 × 10

6 watt/m3.
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Table 3: Nondimensional deflection of midpoint versus nondimensional load intensity (𝑃) (thermo-mechanical load without heat source).

(𝜔) Nondimensional central deflection for
𝑃 Metal 𝑛 = 1 𝑛 = 2 Ceramic

Midplane Neutral plane Midplane Neutral plane
1 −0.205 (−0.2)∗ −0.0665 (−0.0654) −0.0338 −0.0547 (−0.0595) −0.0338 −0.0879 (−0.083)
2 −0.1598 (−0.1547) −0.0379 (−0.0345) −0.0038 −0.028 (−0.0298) −0.0061 −0.0669 (−0.0654)
3 −0.1146 (−0.1083) −0.0092 (−0.0095) 0.0262 −0.0013 (−0.0015) 0.0216 −0.0459 (−0.0452)
4 −0.069 (−0.0654) 0.0195 (0.0189) 0.0562 0.0254 (0.0226) 0.0493 −0.025 (−0.0238)
5 −0.024 (−0.0214) 0.0481 (0.0476) 0.0862 0.0521 (0.0571) 0.077 −0.004 (−0.0038)
6 0.021 0.0768 0.1161 0.0788 0.1047 0.017
7 0.066 0.1054 0.1461 0.1054 0.1324 0.038
8 0.1115 0.1341 0.1761 0.1321 0.1601 0.0589
9 0.1568 0.1628 0.2061 0.1588 0.1878 0.0799
10 0.202 0.1914 0.2361 0.1855 0.2155 0.1009
11 0.2473 0.2201 0.2661 0.2122 0.2432 0.1219
12 0.2925 0.2487 0.296 0.2389 0.2709 0.1428
∗The consistent results of Croce and Venini [18].
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Figure 7: Nondimensional axial stress distribution through the thickness of FG plate subjected to mechanical loads: (a) neglecting neutral
plane position, (b) considering neutral plane position (∗nondimensional axial stress 𝜎

𝑥𝑥
= 𝜎
𝑥𝑥

(ℎ
2
/𝑎
2
𝑝), ∗nondimensional coordinate across

the thickness ℎ = 𝑧/ℎ).

In addition to a uniformly distributed mechanical transverse
load on the top surface, the plate subjected to a thermal field
where the ceramic rich top surface is held at 300∘C and the
metal rich bottom surface is held at 20∘C.

Figure 9 shows the temperature distribution for the con-
sidered FG plate. It is observed that temperature within the
FGM plates of ceramic and metallic constituents is always
smaller than that corresponding to a purely ceramic or
metallic plate. Figure 4 shows the temperature distribution
for a steady state behavior of the FG plate, without heat

source, where the temperature distribution for the isotropic
material is a linear function of the plate thickness coordinate.
However, in Figure 9, the temperature distribution for metal
through the plate thickness is nearly a linear function,
although it is exactly not a linear function. The reason for
the extreme difference of the temperature distributions for
isotropic materials (zirconia and aluminum) is due to the
extreme difference in the thermal conductivity for the two
materials, where the temperature distribution depends on
the thermal conductivity of the material. While increasing
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Figure 8: Nondimensional axial stress distribution, through the plate thickness, for steady state thermo-mechanical loads: (a) neglecting
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Figure 9: Temperature distributions through the plate thickness for
various values of grading parameter 𝑛 (with heat source present).

the value of material parameter 𝑛, the FG plate becomes
more sensitive for the amount of heat delivered from the heat
source.

Figure 10 and Table 4 show the central deflection𝜔 = 𝜔/ℎ

due to a sequence of mechanical loads for different values of
𝑛.

Figure 11, shows the maximum axial stress 𝜎
𝑥𝑥

distri-
bution through the plate thickness for different material
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Figure 10:Nondimensional center deflection of P-FGplate in steady
state with heat source present versus nondimensional load intensity
(𝑃) (thermo-mechanical load).

parameter 𝑛. The plate is expected to be a steady state heat
conductive plate subjected to an amount of generated heat of
strength ( ̇𝑞 = 100×10

6W/m3) and thermo-mechanical loads.
Figure 12 shows the axial stress distribution through the plate
thickness for a steady state plate in which an amount of heat
is generated from heat source ( ̇𝑞 = 100×10

6W/m3) and only
thermal load. Figure 13 shows the nondimensional deflection
of the FG steady state plate versus the heat source strength.
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Table 4: Nondimensional deflection of midpoint versus nondimen-
sional load intensity (𝑃) (thermo-mechanical load with heat source
present).

𝑃

(𝜔) Non dimensional central deflection for
Metal 𝑛 = 1 𝑛 = 2 Ceramic

1 −0.2051 −0.0387 −0.0471 −0.0879
2 −0.1599 −0.0087 −0.0194 −0.0669
3 −0.1146 0.0213 0.0083 −0.0459
4 −0.0694 0.0513 0.036 −0.025
5 −0.0241 0.0813 0.0637 −0.004
6 0.0211 0.1112 0.0914 0.017
7 0.0663 0.1412 0.1192 0.038
8 0.1116 0.1712 0.1469 0.0589
9 0.1568 0.2012 0.1746 0.0799
10 0.2021 0.2312 0.2023 0.1009
11 0.2473 0.2612 0.2300 0.1219
12 0.2925 0.2911 0.2577 0.1428
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Figure 11: Nondimensional axial stress distributions through the
thickness of a steady state plate, with heat source present, for
thermo-mechanical loads.

Figures 6 and 10 show that the isotropic homogenous
materials experience nearly the same deflection, independent
on the amount of strength of the heat source. However, for
FGMs, it is observed that they are more sensitive for the heat
strength change. Also, Figure 13 proves that isotropicmaterial
provides a very lack sense for heat strength change. But FGMs
provide a changeable deflection by changing the amount of
heat source strength.

Figures 11 and 12 show that the stress distribution through
the plate thickness depends mainly on the material prop-
erties more than any other parameter. The reason for the
extreme difference of the stress profiles for isotropicmaterials
(zirconia and aluminum) is due to the extreme difference
in the thermal conductivity for the two materials, where
the temperature distribution and consequently the thermal
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Figure 12: Nondimensional axial stress distributions through the
thickness of a steady state plate, with heat source present, for thermal
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Figure 13: Non dimensional deflection of the central point of a
steady state plate versus the heat source strength (𝑃 = 2).

strains depend on the thermal conductivity of the material.
Figures 11 and 12 show that the ceramic material is subjected
to the highest thermal stresses because of its low thermal
conductivity. Metal material is subjected to thermal stresses
that are less than the ceramic material due to its high ther-
mal conductivity, while the FGMs are subjected to thermal
stresses that are less than the isotropic materials due to their
moderate thermal conductivity. Also, Figures 11 and 12 show
the high ability of FGMs to withstand thermal stresses, which
reflects its ability to operate at elevated temperatures.

5. Conclusions

In this study, a finite element model based on the first-
order shear deformation plate (FSDT) theory is developed for
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the investigation of thermo-mechanical behavior of func-
tionally graded plates. Different numerical simulations have
been developed to investigate the thermoelastic behavior
of a simply supported FG plate, with different material
distributions along the thickness. The numerical results lead
to the following conclusions:

(1) there is a difference in plate deflection while consid-
ering the effect of shifting the neutral plane position;

(2) the neutral plane of the FG plate is shifted towards
the surface with the higher young’s modulus. Also,
the position of the neutral plane depends mainly on
the ratio of the young’s modulus of the two plate
constituents;

(3) FG plates provide a high ability to withstand thermal
stresses, which reflects its ability to operate at elevated
temperatures;

(4) the FGMs are more sensitive to the variation of the
intensity of the heat flow, in or out of the structure,
than that may be happened in the case of the isotropic
material structures.The FGMs provide a highly stable
response for the thermal loading comparing to that of
the isotropic materials;

(5) due to the continuity of the material properties
distribution along the thickness of the plates, the
strains and stresses are varied smoothly without any
sort of singularities and on contrary to what may be
happened in the conventional laminated plates.
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