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Longitude-dependent terms of the geopotential cause nonnegligible short-period effects in orbit propagation of artificial satellites.
Hence, accurate analytical and semianalytical theories must cope with tesseral harmonics. Modern algorithms for dealing
analytically with them allow for closed form relegation. Nevertheless, current procedures for the relegation of tesseral effects from
subsynchronous orbits are unavoidably related to orbit eccentricity, a key fact that is not enough emphasized and constrains
application of this technique to small and moderate eccentricities. Comparisons with averaging procedures based on classical

expansions of elliptic motion are carried out, and the pros and cons of each approach are discussed.

1. Introduction

Soon after Brouwer’s dream of a closed form solution to the
artificial satellite theory (AST) to higher orders was achieved
for the main problem of AST [1-3], the progress in mathemat-
ical methods made the closed form solution also possible for
the general case of a tesseral potential. This notable success
was feasible thanks to the invention of two algorithms, which
are specifically suited for canonical simplifications of Hamil-
tonian problems, namely, the elimination of the parallax [4]
and the relegation algorithm [5]. The former operates the
tesseral averaging in closed form for low Earth orbits (LEO)
[6-8] while the latter does the same in all other cases [9, 10].
However, many aerospace engineering applications of Earth
artificial satellites are related to subsynchronous orbits, a case
in which both algorithms limit their practical application to
orbits with small or moderate eccentricities. Indeed, high-
eccentricity orbits lead to impact with the surface of the
Earth in the case of LEO, on the one hand, while the number
of iterations required by the relegation algorithm makes it
impracticable for high-eccentricity orbits, on the other [9].
As reported in the literature, the relegation of tesseral
effects from subsynchronous orbits is based on multiplica-
tions at each iteration by the ratio of the Earth’s rotation

rate to the mean motion of the orbit and hence converges
very slowly, except for low-altitude orbits. Another drawback
of the standard algorithm, is that it assumes nonresonance
conditions and finds a gradual deterioration in the solution
when approaching synchronous condition [9]. On the con-
trary, usual series expansions of elliptic motion (see, [11-14],
e.g.) allow for the effective isolation and handling of tesseral
resonances [15-19].

Both approaches, tesseral relegation and series expan-
sions, have been implemented in analytical and semianalyti-
cal theories used in renowned laboratories. Thus, relegation is
reported to be implemented in the Analytic orbit propagator
program (AOPP) of the Naval Research Laboratory [20],
whereas the Draper Semianalytical Satellite Theory (DSST)
[21], these days maintained at MIT Lincoln Laboratory, or the
numeric-analytical theory THEONA developed at Keldysh
Institute of Applied Mathematics [22], makes recourse to
series expansions, which are computed by means of efficient
recurrences of different special functions (see [23], e.g.).
However, to our knowledge, the literature lacks comparisons
in the relative efficiency of these two radically different
approaches when applied to the tesseral geopotential.

Therefore, the question emerges whether averaging tech-
niques based on expansions of elliptic motion are competitive



or not, with algorithms devised for dealing in closed form
with short-period effects, due to longitude-dependent terms
of the geopotential. In the case of LEO, the advantage
clearly favors the closed form solution, whose, based on
the different perturbation orders of the Keplerian and the
Coriolis term, tesseral effects can be averaged in closed form
[24, 25]. Furthermore, in this particular case, the elimination
of the parallax works wonders succeeding in the closed-form
elimination of all tesseral terms, except for those related to m-
dailies [6, 26]. This is a typical case in which the complexity
of relegation makes it less efficient than normalization [5]
or canonical simplification in the present context [27]. On
the other hand, Keplerian and Coriolis terms can no longer
be assumed to be of different orders when approaching
resonance conditions, which is the common case of orbits in
the medium Earth orbits (MEOs) region and above.

Trying to give an answer to this question in the case of
MEO, we carry out several comparisons in which we restrict
the test model to a 2 x 2 truncation of the geopotential.
Waiting for more effective implementations of the relegation
algorithm, which makes it useful also for the canonical
simplification of tesseral resonance problems, we limit our
comparisons to the case of nonresonant motion. In particular,
we explore the performances of our algorithm in a set of
selected cases borrowed from [9]. However, we also consider
sample orbits with the same semimajor axis as Galileo orbits
and different eccentricities, a case that better supports our
claim that the new formulation of the tesseral relegation
algorithm is valid for orbits with any semimajor axis. Besides,
because both approaches, series expansion and tesseral rel-
egation, after averaging may well end up being Brouwer’s
long-term Hamiltonian (see [11, page 569]), the comparison
criteria will be based on the size of the transformation
equations from mean to osculating elements required by
the different theories for obtaining analogous precision in
the results, together with the relative time spent in their
evaluation.

The paper is organized as follows. For completeness, in
Section 2 we recall the basics of the relegation algorithm for
the particular case of the geopotential, to which we contribute
a slightly different, but definitely enlightening point of view,
which justifies the application of the relegation technique
to low-eccentricity orbits independently of the ratio of the
orbital period to the Earth’s rotation period [28]. In this sec-
tion, a brief mention to the standard procedure for averaging
longitude-dependent terms when using classical expansion
of the elliptic motion is also included. Next, in Section 3
we briefly describe the whole procedure of computing the
long-term Hamiltonian and the transformations equations
from mean to osculating elements, which we implement
for the simplest case of a second-order truncation of the
geopotential. While application of the tesseral relegation to
higher degree and order truncations does not involve any
modifications to the basic algorithm, it produces a notable
increase in the size of the series used—as is also the case when
using the expansions of elliptic motion approach. Finally,
comparisons between both procedures, relegation and series
expansions, are presented in Section 4 for a variety of test
cases, and the pros and cons of each method are discussed.
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2. Averaging the Geopotential

The motion of artificial satellites close to the Earth departs
slightly from Keplerian motion because of the noncentralities
of the geopotential. This disturbing potential is written in the
usual form

V= gz<g>] []jpj,o (sing)

"=

B ZJ: (Cj,k coskA + Sj,k sin k/\) (1)
k=1

X Pj (sing) ] ,

where y is the Earth’s gravitational parameter, « is the
Earth’s equatorial radius, P; are Legendre polynomials, J; =
—Cj0,Cjk> and S; are harmonic coefficients, and (¢, A, 1)
are spherical coordinates—latitude, longitude, and distance,
respectively—in an Earth-centered, Earth-fixed (ECEF) sys-
tem of coordinates.

Satellite motion under the influence of the disturbing
potential in (1) is generally nonintegrable, even in the sim-
plest case of the ], problem [29, 30], with the remarkable
exception of the equatorial case [31]. However, analytical or
semianalytical integration of perturbed Keplerian motion is
customarily approached by perturbation methods. Namely,
short-period effects are analytically averaged to formulate the
problem in mean elements; next, either the mean elements
equations are numerically integrated with very long stepsizes,
or a new averaging of long-period effects provides the secular
evolution of the problem.

2.1. Lie Transforms: Deprits Triangle. In particular, the Lie
transforms technique [32] allows for automatic computation
of the perturbation theory by machine to higher orders,
and these days is taken as a standard procedure. Briefly,
in a Hamiltonian framework, the initial Hamiltonian in
osculating variables is cast in the form

em
F = Z %Hm,o, @)

m>0 """

where the small parameter €, which establishes the order of
each perturbation term, may be either physical or formal.
The averaged Hamiltonian, in mean elements,

! e
x = Z %Ho,m (3)

m>0 """

is to be constructed by the perturbation method. The new
Hamiltonian terms H ,,, are one of the sides of “Deprit’s trian-
gle”: a triangular array of terms derived from the recurrence

Hn,q = Hn+1,q—1 + Z

0<m<n

<:’l> {Hn—m,q—l;WmH} 4 (4)
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where {—; -} notes the Poisson bracket operator and terms
W,,,.1 define the generating function

€m
v = z %Wm-ﬁ—l (5)

m>0 """

of the transformation from mean to osculating elements.
The transformed Hamiltonian (3) is stepwise constructed
by solving at each step the homological equation

%,(W,,) = H, - Hy,» (6)

where terms H,, are known from previous evaluations of
Deprit’s triangle, terms H,,,, are chosen at our convenience,
and terms W,, must be solved from a partial differential
equation. The operator £;(-) = {—; Hj,} is known as the
Lie derivative generated by the Keplerian flow H, .

Finally, the transformation from mean to osculating
elements is in turn computed from Deprit’s triangle, by the
simple expedient of replacing terms H; ; in (4) by &; ;, where
&o,0 = & notes any of the osculating elements and ,, , = 0 for
m > 0.

2.2. Removing Tesseral Effects from the Geopotential. Usual
relations between spherical coordinates and orbital elements
[12] permit to express the Hamiltonian of the geopotential
in terms of orbital elements. Thus, the zeroth order of (2)
corresponds to the Kepler problem in the ECEF frame

Hy, = —% — np~\/par cos i, (7)

where (a,e,i,w,Q, M) are usual Keplerian elements, 1 =
V1 - e? is commonly known as the eccentricity function, and
ng notes the Earth’s rotation rate, which is assumed to be
constant. The first order term is

2
H, = —2%(:—2]2 1- gsinzi + ;sinzicos (2f +2g9)|, ®)
where f is the true anomaly.

The term H, = 2(V — H,), with V given in (1), carries
effects of the second order of J,, which are contributed by
other zonal and tesseral harmonics. Namely, it takes the form
of a trigonometric series whose coeflicients are functions of
e and 7, and whose arguments are combinations of the type
jf + kv + mw, with j, k, and m integers, where v = Q - 9
is the longitude of the ascending node in the rotating frame
and 9 is Greenwich Sidereal Time. These series are particular

instances of multivariate Fourier series of the form

vz o
z pl p2 m
Jisjasejm20
ki,kys.. k kyskysdy .
X Z ( 2l + S0P sin )
Q]l’]Z""Jm cos ﬁ SJI’JZ""]m § ﬁ >
kysky,... k=0

)

where B = k5, + k3, + --+ + k8, p are polynomial
variables with integer coefficients and Q and S are coeflicients.
Expressions of the form of (9) are commonly known as
Poisson series of the type (m, [) [33].

The Hamiltonian (2) must be formulated in canonical
variables, whereas Keplerian elements are not canonical. The
natural alternative is using Delaunay variables, the canonical
counterpart of Keplerian elements, although other sets of
canonical variables as nonsingular Poincaré elements are
customarily used [20] (for a survey on orbital elements
sets, see [34]). In what follows, it may be convenient using
the orbital elements notation because of the natural insight
that it provides to orbital motion problems. When this
happens, orbital elements must be understood as functions
of canonical variables instead of variables by themselves.

Using Delaunay-type canonical variables

£=M,
L = ia,

where G is the modulus of the angular momentum vector and
H its projection on the Earth’s rotation axis, the zeroth-order
Hamiltonian is written

g=w, h =,

G=1L1y,

(10)
H = Gcosi,

S T (1)

Therefore, the Lie derivative is

0 0
Ly =n— —Ng—, 12
®Toe Fohn 12
where n = y*/L’ is the orbital mean motion. At each step
m of the perturbation algorithms we use (12) to compute the
generating function term W, from (6).

2.2.1. Series Expansion. In spite of the simplicity of (12), the
fact that the dependence of the geopotential on the mean
anomaly does not happen explicitly but through the true
anomaly, which is an implicit function £ = £(f,e) of the
mean anomaly involving the solution of Kepler equation,
complicates finding a closed form solution to the homological
equation. Hence, expansions of the elliptic motion are cus-
tomarily used to make explicit the dependence of the tesseral
Hamiltonian on the mean anomaly (see, [11-14, 35], e.g.).
Once the mean anomaly shows explicitly in the geopotential,
the solution of the homological equation for the Lie derivative
(12) is straightforward, not only allowing for the elimination
of short-period terms related to tesseral harmonics in the case
of nonresonant motion [36] but also for resonance problems
[19].

2.2.2. Relegation. Alternatively, one may realize that, except
for synchronous orbits, either § = n/ny < 1oré = ng/n < 1.
Then, at each step m of the perturbation algorithm, one can
feel satisfied with finding an approximate solution

- J
w,, = Z W, ; 13)
j=0
which is computed as follows. We describe the subsyn-
chronous orbits case § = ng/n < 1, but the same philosophy
can be applied to the supersynchronous case.



Replacing (13) into the homological equation, (6), we get

Z nd’

=0

<awm, ;oW

- J ) =

with F = H,, - H, ,,, which we reorganize as

> 81 W =Y &'F, (15)
j=0 j=0
where
1 aWMJ 1 .
Fo=-F  F=—0 (j>0). (16)

Then, (15) is solved iteratively by equating equal powers of
0. At each iteration the corresponding differential equation
is solved by quadrature. The corresponding solution may
be reached in closed form with the help of the differential
relation

a’*nde = v df, 17)

which is derived from the preservation of the angular
momentum of Keplerian motion.

A rule for ceasing iterations may be choosing j such
that 8/*' = O(e), which would imply neglecting from
the generating function terms of higher order than the
corresponding one of the perturbation theory. Thus, for
example, in the usual case € = O(J,) = 6(107%), for an orbit
with a = 10500 km, we get § = 1/8, and hence j = 2.

Typically, terms W, ; grow in size with each iteration j
making the relegation process unpractical for a relative low
number of iterations [9]. This fact limits the practical applica-
tion of the relegation algorithm to orbits relatively close to the
Earth’s surface, where nonimpact orbits must have small or
moderate eccentricities. However, it has been recently shown
that a slight modification of the relegation algorithm allows
to extend its application to orbits with any semimajor axis,
but constrained to the case of low-eccentricities [28]. For
completeness, we summarize the procedure in what follows.
Furthermore, we state the algorithm directly in Delaunay
variables instead of the polar-nodal variables used in the
original approach, thus relieving the relegation algorithm
from the intricacies related to the specific algebra of the
parallactic functions.

Indeed, using (17), the Lie derivative is written as

a amn o 0
30 = 2 af nE%, (18)
which is rewritten as
n(o 0
30:11_(@_ 38ﬁ+&%+ec§’> (19)
where
R = 2cosf = Cos f (20)

of’
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Therefore, the homological equation, (6), may be written

as
ow,, 368Wm
of 1% on
(1)
P
= —F 2e cosf cos f

f f

showing that, independently of the value of the ratio §
(or, equivalently, for orbits with any semimajor axis), an
analogous approach to the classical relegation algorithm can
be taken also in the case of orbits with small eccentricities.
Now, the integration of the homological equation is carried
out in the true anomaly instead of the mean one, so there is
no problem in solving the main part of the partial differential
equation (21):

%_ 35%~’7_3
of oh n

which is taken as the first step in the relegation iterations.
Equation (13) is now written as

-\
W, = Ze W, - (23)
j=0

F(f,g.hL,G,H) (22)

Correspondingly, the analog of the homological equation (15)
is

aW
el ( 3 ) e]F (24)
j;, o oh JZO
where
n W0
F="TF F=-2 25
0=, cos f f (25)
and, for j > 1,
F; = -2cos f Wi —cosf Wonj- (26)
- af of =

Note that this new formulation of the relegation algo-
rithm shows explicitly that the effectiveness of the tesseral
relegation is constrained to the case of low-eccentricity
orbits. The limitation of the tesseral relegation to the case
of small or moderate eccentricities seems to be an intrinsic
limitation of the tesseral relegation for subsynchronous orbits
and, although not enough emphasized, appears also in the
classical formulation of the tesseral relegation because of the
occurrence of Hamiltonian “type (A)” terms, in which the
argument of the latitude appears explicitly [9]. An additional
advantage of the present formulation of the tesseral relegation
is that it does not need any special treatment of Hamiltonian
terms related to m-dailies, namely, those terms of the Poisson
series that only depend on the longitude of the ascending
node in the rotating frame h.
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3. Semianalytical Theory for
a 2 x 2 Geopotential

We illustrate the relegation procedure and investigate its

performances by constructing a semianalytical theory for a

truncation of the geopotential to degree and order 2. We

limit to the second-order terms of the perturbation theory,

including the transformation equations up to the second

order of the small parameter €, which is taken of the same

order as the second zonal harmonic J,. Then, from (1), the

term H,, = 2(V - H,) in the initial Hamiltonian (2) is

simply
pol 2
H,, = —27’—3 (CycoskA + S, sinkA) Py (sing),

k=1

(27)

where spherical coordinates are assumed to be expressed as
functions of Delaunay variables.

The construction of the theory consists of three different
steps. First, tesseral effects are averaged using the relega-
tion algorithm described above. This averaging reduces the
Hamiltonian of the geopotential to the zonal part, which,
because of the 2 x 2 truncation, is just the main problem,
which only considers the disturbing effect of the J, harmonic.
Next, short-period effects are partially removed via the elim-
ination of the parallax [4]. Finally, remaining short periodics
are averaged via a trivial Delaunay normalization [37]. It
deserves to mention that, in view of we limit the perturbation
theory to the second order of J,, the elimination of the
parallax is not required for the closed form normalization
[38], and, therefore, the parallax elimination and Delaunay
transformation may be reduced to a single transformation.
However, carrying out the elimination of the parallax still
results convenient because the important reduction in the
number of terms in the total transformation equations,
compare [2].

3.1. Tesseral Relegation. Because the perturbation theory is
limited to the second-order, there is no coupling between J,
and the second order tesseral harmonics C, ;, S, ;, C, ,, and
S, ,. Therefore, Hy, is chosen the same as H, ;, which makes
W, = 0 at the first order of Deprit’s triangle (4).

Next, we use the Keplerian relation r = arlz /(1 +ecos f),
to express H,, as a Poisson series in f, g, and h, which
is made of 84 trigonometric terms. Since the solution of
each iteration of the homological equation (24) amounts to
changing sines by cosines and vice versa, and dividing for
adequate linear combinations of n and ny, the first term
of the generating function W, is also made of 84 terms.
Computing F, in (25) for the first iteration of the relegation
involves multiplication of the whole series W, ;/0f by cos f,
an operation that enlarges the resulting Poisson series by 16
new trigonometric terms, while the first approximation of the
generating function W, = ¥, o, W, ; is made of a total of 108
trigonometric terms. Similarly, the computation of F, from
(26) involves multiplication of Poisson series by cos f and
cos” f, which again enlarges the size of the Poisson series,

leading to a new approximation W, = ) =02 W,,j consisting
of 132 trigonometric terms.

Further iterations of the relegation are found to increase
the generating function by the same amount, namely, by 24
new trigonometric terms at each new step. Thus, the fifth
iteration of the relegation results in a total generating function
W, =) j=0,5 Wa,j> that is, a Poisson series made of 84+5x24 =
204 trigonometric terms. We stop iterations at this order.

It deserves mentioning that, in addition to the linear
growing of the length of the Poisson series, the complexity of
the coefficient of each trigonometric term notably increases
with iterations of the relegation, as a result of the combination
of the different series resulting from the procedure. Thus, if we
take as a rough “complexity indicator” the size of the text file
required for storing each generating function, we find out that
the complexity of each new approximation to the generating
function almost doubles with each iteration. Specifically, we
obtain files of 6.8, 13.9, 27.2, 48.1, 83.2, and 135.6 kB, for
the 0,..., 5 iteration, respectively (throughout this paper, we
refer to binary prefixes, that is 1kB = 2'° bytes). Note that
these sizes are the result of a standard simplification with a
general purpose algebra system, without further investigating
the structure of the series.

3.2. Elimination of the Parallax. After tesseral relegation, we
get the well-known Hamiltonian of the main problem

2
[
:—————2]2

3.2, 3. 5.
1— —sin"i+ —sin“icos(2f + 2 .
2a 2rr 2 ('f g)

2
(28)

Note that since longitude-dependent terms were removed,
the problem is now formulated in inertial space.

The standard parallax elimination [4] transforms (28), up
to the second order of J,, into

b h [5 - 2—lsinzi+ gsin4i
4 8 16

(3 2. 15 . 4,) 2
+( =cos"i— —sin’i | e
8 64
<21 . 2. 45 4,> 2 ]
=\ —sin"i — —sin’i Je" cos2g| .
16 32
(29)

Note that after carrying out the relegation transformation

(¢,9,h,L,G,H) N (€',g',h',L',G',H'), the variables in
which we express (28) are no longer osculating elements, and
hence we should have used the prime notation. Analogously,
the elimination of the parallax performs a new transforma-
tion from “prime” elements to “double prime” elements, in
which should be expressed (29). In both cases, we relieved
(28) and (29) from the prime notation because there is no risk
of confusion. Recall also that the elimination of the parallax
is carried out in polar-nodal variables (r, 8, v, R, ®, N) instead



of Delaunay variables, where R is radial velocity, ® = G,
N=H=0cosi,y=h,and0 = f + g.

3.3. Long-Term Hamiltonian. A new transformation from
double-prime to triple-prime variables normalizes (29) by
removing the remaining short-period terms related to the
radius. Then, disregarding the prime notation, we get the
long-term Hamiltonian in mean (triple-prime) elements

o= _ﬁ_ﬁ“_21_2<1_§52>
2a 2aa*np 2

472
15 15 105

Ha [ Do 1054
4 2 32

3 212 (3 3, 154)2
+2(2-38) - (222 -2
8( <) a1 Tt )
<212
(Ao
3

which is easily verified to agree with Brouwer’s original long-
term Hamiltonian, compare [11, page 569].

§54> e* cos 2 ]
16 g
(30)

3.4. Semianalytical Integration. The evolution equations are
the Hamilton equations of the long-term Hamiltonian in (30),
namely,

d(¢ g,h) oK

dt  9(L,G H) dt

d(L,GH) X

"ot g.h)
(31

Since ¢ and h have been removed by the perturbation theory,
both L and H are integrals of the mean elements system
defined by (30).

Then, the semianalytical integration of the 2x2 truncation
of the geopotential performs the following steps:

(1) choose osculating elements;

(2) compute prime elements related to relegation;

(3) compute second-prime elements related to the elimi-
nation of the parallax;

(4) compute mean elements related to normalization;

(5) numerically integrate (31), which allows for very long
stepsizes.

At each step of the numerical integration, osculating
elements are computed from mean ones by recovering short-
period effects. This requires undoing sequentially the trans-
formations from triple to double primes, from double-primes
to primes, and from primes to osculating.

4. Numerical Experiments

4.1. Preliminary Tests. In order to check the efficiency of our
new variant of the relegation algorithm, we apply it to test
some of the representative cases provided in [9]. In particular,
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TaBLE 1: Initial osculating elements of selected test cases from [9].

Orbit a (km) e i (deg) Q w (deg) M
1 12159.596 0.01 5 0 270 0
2 13375.556 0.10 5 0 270 0
3 18520.000 0.35 5 0 270 0
4 18520.000 0.35 100 0 270 0

in view of the center and bottom plots of Figure 2 of [9] deal
with the case of low-altitude orbits, which are amenable to a
more advantageous treatment of tesseral effects by using the
standard parallax elimination [6, 8], we focus on the examples
related to the top plot of Figure 2 of [9], namely, a set of orbits
in the MEO region whose initial conditions are detailed in
Table 1.

Orbit1 of Table 1is the orbit with the smallest eccentricity,
and hence the better convergence of the relegation algorithm
is expected. Indeed, while the propagation of the mean
elements alone results in rough errors of about 200 meter for
the semimajor axis, ©(10~*) for the eccentricity, just a few arc
seconds (as) for the inclination, tens of as for the Right Ascen-
sion of the ascending node (RAAN), and of just a few deg
for both the argument of the perigee and the mean anomaly,
Figure 1 shows that these errors are greatly improved when
short-period zonal and tesseral effects are recovered, even
without need of iterating the relegation algorithm. Thus,
errors fall down to just one meter for the semi-major axis,
to 6(107°) for the eccentricity, to one milliarcsecond (mas)
in the case of inclination, below one as for the RAAN, and to
tenths of deg both for the argument of the perigee and mean
anomaly. The latter are shown to combine to just a few mas
when using the nonsingular element F = w + M, the mean
distance to the node (not presented in Figure 1). Both the
errors in F and Q disclose a secular trend, which is of about
0.9 mas times orbital period for Q (center plot of Figure 1),
part of which should be attributed to the truncation of the
perturbation theory to the second order. In the case of the
mean distance to the node, the secular trend is of about 13
mas times orbital period, roughly indicating an along-track
error of about 76 cm times orbital period.

Figure 2 shows that a single iteration of (24) clearly
improves the errors in semimajor axis, eccentricity, and
inclination, as well as the errors in the argument of the perigee
and mean anomaly, which generally enhance by one order
of magnitude. On the contrary, improvements in the short-
period terms are outweighed by the dominant secular trend
in the case of ), as displayed in the fourth row of Figure 2.
Now, the secular trend of the errors in the mean distance to
the node reduces to ~2.7 mas/cycle, roughly proportional to
an along-track error of ~16 cm times orbital period.

Improvements in the propagation of orbit 1 obtained with
further iterations of the relegation algorithm are very small,
except for the eccentricity, whose errors reach 0(107%) with a
second iteration of the relegation. New iterations of (24) show
no improvement for this example, in full agreement with the
scaling by the eccentricity in (23). Indeed, performing a single
iteration means neglecting terms factored by the square of the
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FIGURE 1: Errors in the orbital elements of orbit 1 of Table 1 when tesseral short-period effects are recovered without iterations. Abscissas are

orbital periods, corresponding to one month propagation.
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FIGURE 2: Errors in the orbital elements of orbit 1 of Table 1 when tesseral short-period effects are recovered with a single iteration of (24).
Abscissas are orbital periods, corresponding to one month propagation.

eccentricity, which is e? = 0.0001 < J, for orbit 1. Therefore,
a second iteration of the relegation would introduce third-
order effects, which are not considered in the perturbation
theory.

Other orbits in Table 1 have a notably larger eccentricity
than orbit 1, a fact that makes more iterations of the relegation
algorithm necessary. Thus, in view of orbit 2 has an eccen-
tricity e = 0.1, third order of J, effects will appear only at
the third iteration of (24), where * = ( J,). This resulted
exactly to be the case where one month propagation of orbit 2
with the semianalytical theory produced errors of about 3 cm
in the semi-major axis, of 6(107%) for the eccentricity, below
the mas for the inclination, and below the as for both the
argument of the perigee and the mean anomaly. The secular
trend in Q) is now of half mas per orbit and about 2 mas per
orbit in the case of the mean distance to the node, roughly
equivalent to an along track error of ~14 cm per orbit.

The moderate eccentricity of orbits 3 and 4 makes neces-
sary the fifth iteration of the procedure, which takes account
of terms of the order of &> = 0.005. Results for one month
propagation of orbit 4 with the semianalytical theory are
presented in Figure 3, for the first iteration of the algorithm,
and in Figure 4, for the fifth. Note the secular growing of
the errors in the mean anomaly (bottom plot of Figure 4),
roughly amounting to an along-track error of two meters per
orbit. The rate of convergence of the relegation is poor for
orbits 3 and 4 of Table 1, in agreement with the similar rate
of reduction of successive powers of the eccentricity for the
moderate value of e in this example.

4.2. Comparisons with Expansions of Elliptic Motion. Once
the performances of the new relegation algorithm have been
checked, it rests to test its relative efficiency when compared
with the usual approach based on expansions of elliptic
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FIGURE 4: Errors in the orbital elements of orbit 4 of Table 1 after five iterations of the relegation algorithm. Abscissas are orbital periods,

corresponding to one month propagation.

motion. Having in mind that comparisons must limit to
the case of small or moderate eccentricities, we decided to
limit the expansion of the true anomaly as a function of
the mean anomaly to the order of e'2. Hence, expansions of
both the tesseral Hamiltonian and the generating function
of the tesseral averaging are also limited to O(e'?), but
the transformation equations for € and g, as well as the
nonsingular element F = £ + g, are downgraded to the order
of e', compare [39]. With these limits for expansions in the
eccentricity, we find out that the transformation equations
of the tesseral averaging take up to 286 kB when stored in a
text file. This size places the transformation equations of the
expansions of the elliptic motion approach between those of
the first (204 kB) and the second iteration of the relegation
algorithm (434 kB). Note that zonal terms are subsequently
averaged in closed form in both approaches, and hence the

efficiency of each approach is just related to the way in which
the tesseral averaging has been carried out.

Thus, in view of the respective sizes of the files containing
the transformation equations, we consider the tesseral aver-
aging based on expansions of the elliptic motion to be more
efficient than the tesseral relegation, in those cases in which
it produces errors that are, at least, comparable to those of a
second iteration of the relegation. On the contrary, in those
cases in which the errors produced by the expansions of the
elliptic motion approach are comparable or worse than those
obtained with a single iteration of the relegation, we say that
the tesseral relegation is more efficient than the expansions in
the eccentricity procedure.

It is not a surprise to check that tesseral averaging based
on expansions of the elliptic motion is superior for orbits
of moderate eccentricity. Thus, when applied to orbit 4 of
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Table1 (e = 0.35), the eccentricity expansions approach  of the small ratio ng/n = 7/12 that must be used as

reaches errors comparable to but slightly better than those of
Figure 4, where the five iterations of the relegation used in
the construction of Figure 4 require 2135kB of text storage,
7.5 times bigger than the eccentricity expansions file. Thus, in
this case, we say that the relegation efficiency is about seven
and a half times lesser than the efficiency of the eccentricity
expansion approach. On the contrary, when applied to orbit
1 of Table 1 (e = 0.01), the eccentricity expansions approach
gets the same errors as those obtained with two iterations of
the relegation, which are very similar to those of Figure 2.
Therefore, we say in this case that the eccentricity expansion
approach is of comparable efficiency to the relegation, with
relative sizes of text storage 434 kB/286 kB =~ 1.5.

Finally, we provide a comparison for a Galileo-type orbit,
with a 29600 km, e 0.001, and i 56 deg. Note
that the efficiency of the classical relegation approach of [9]
will be very poor for orbits of these characteristics because

the relegation coefficient. Besides, Galileo orbits have the
smallest eccentricity of all the cases tested. Results for this last
comparison are presented in Figure 5, for a single iteration
of the relegation approach, and Figure 6, for the eccentricity
expansions case. We note that the errors are of a similar
magnitude in both cases, with better results for the mean
distance to the node when using relegation and better results
for the eccentricity when using eccentricity expansions.

If we take a second iteration of the relegation, then
errors in the eccentricity of both cases match, and in view of
the respective magnitudes of the errors in F, the advantage
goes clearly to the side of the relegation. Since errors in
F are always better when using relegation, we say that
the relegation is more efficient than the expansions in the
eccentricity approach for Galileo orbits. Besides, in order
to provide an efliciency estimator analogous to the previous
cases, we checked that a “mixed relegation”—which includes
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the transformation equations of a single iteration for ¢, g, h,
and H and the transformation equations after two iterations
for L and G, making a text file of 260 kB—provides the same
errors as the eccentricity expansions approach, maintaining
the clear advantage for F. Therefore, we might say that for
Galileo orbits, the efficiency is at least 1.1 times better than
the eccentricity expansions for all the elements, except for F,
for which the efficiency of the relegation is at least 1.4 times
better than the eccentricity expansions.

However, in view of tesseral relegation for subsyn-
chronous orbits seems to be useful only in the case of the
lower eccentricity orbits, we further investigate this case.
Thus, it is important to note that, because the term 1 /r3
in (27), the initial iteration in the solution of (24) gives
a term W,, that involves eccentricity polynomials (not
expansions) of degree 3. Since each iteration of the relegation
involves multiplication by the eccentricity, we simplify the
computation of the generating function by neglecting those
powers of e that are higher than 3 in successive iterations
of the procedure. Proceeding in this way, the transformation
equations of the tesseral relegation can be shortened to
accommodate in a file of 143.7 kB for a single iteration of the
procedure and only 185.7 kB for two iterations. Therefore, we
conclude that, for the tesseral model investigated, relegation
may double the efficiency of tesseral averaging for the lower
eccentricity orbits.

5. Conclusions

The relegation algorithm has been suitably formulated in
Delaunay variables, contrary to the standard approach in
polar-nodal variables. The use of Delaunay variables relieves
the relegation algorithm from unnecessary subtleties related
to the particular algebra of the parallactic functions and
discloses the fundamental differences between the cases
of super- and subsynchronous orbit relegation. Specifically,
while the relegation factor for super-synchronous orbits is
the ratio of one day to the satellite’s orbital period, in
the subsynchronous case the relegation factor unavoidably
depends on the eccentricity, a fact that limits application
of the subsynchronous relegation to orbits with small and
moderate eccentricities. Besides, it deserves mentioning that
the present formulation of the tesseral relegation does not
need any special treatment of the m-daily terms, albeit, of
course, allowing for separate treatment if preferred.

Computations in this paper show that the tesseral relega-
tion algorithm for subsynchronous orbits may be competitive
with classical expansions of elliptic motion, but only for orbits
with small eccentricities, a case in which relegation doubles
the efliciency of the series expansions approach. This fact
constrains the practical application of the relegation but in
no way invalidates it, because low-eccentricity orbits are used
in a variety of aerospace engineering applications.
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