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This study focuses on obtaining a new class of closed-form shock wave solution also known as soliton solution for a nonlinear
partial differential equation which governs the unsteady magnetohydrodynamics (MHD) flow of an incompressible fourth grade
fluid model. The travelling wave symmetry formulation of the model leads to a shock wave solution of the problem.The restriction
on the physical parameters of the flow problem also falls out naturally in the course of derivation of the solution.

1. Introduction

A shock wave (also called shock front or simply “shock”)
is a type of propagating disturbance through a media. It
actually expresses a sharp discontinuity of the parameters that
delineate themedia.Unlike solitons, the energy is a conserved
quantity and thus remains constant during its propagation.
Shock wave dissipates energy relatively quickly with distance.
One source of a shock wave is when the supersonic jets
fly at a speed that is greater than the speed of sound. This
results in the drag force on aircraft with shocks. These waves
also appear in various interesting phenomena in real-life
situations. For example, solitons appear in the propagation
of pulses through optical fibers. Another example is where
cnoidal waves appear in shallow water waves although an
extremely scarce phenomena.

The dynamics and mechanics of non-Newtonain fluid
flow problems have been an important area of interest in
the recent few years.The flow phenomena of non-Newtonian
fluids occur in a variety of industrial and technological
applications. Because of the diverse physical structure and
behavior of non-Newtonian fluids, there is no single mathe-
matical expression which describes all the characteristics of
non-Newtonian fluids. Due to this fact, several models of
non-Newtonian fluids have been proposed. Apart from this

fact, the model equations of the problem dealing with the
flow of non-Newtonian fluids are higher-order nonlinear and
complex in nature. Several methods have been developed in
the recent years to obtain the solutions of these sort of flow
problems. Some of these techniques are variational iteration
method, the Adomian decomposition method, homotopy
perturbation method, homotopy analysis method, and semi-
inverse variational method. But all these techniques fail
to develop the exact (closed-form) solutions of the non-
Newtonian fluid flow problems.

One of the simplest classes of non-Newtonian fluid mod-
els is the second grade fluid [1]. Although the second grade
model is found to predict the normal stress differences, it does
not take into account the shear thinning and shear thickening
phenomena due to its constant apparent shear viscosity. For
this reason, some experimentsmay bewell described through
fluids of grade three or four. Very little attention has been
given to date to the flows of fourth grade fluid [2]. This
model is known as the most generalized model amongst the
differential-type non-Newtonian fluidmodels [3].The fourth
grade fluid model describes most of the non-Newtonian
flow properties at one time. This model is known to cap-
ture the interesting non-Newtonian flow properties such as
shear thinning and shear thickening that many other non-
Newtonianmodels do not show.This model is also capable of
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predicting the normal stress effects that lead to phenomena
like “die-swell” and “rod-climbing” [4]. With these facts in
mind, we have considered a fourth grade fluid model in
this study. In general, the model equations of the problem
dealing with the flow of fourth grade fluids are higher-
order nonlinear equations. The literature survey witnesses
that very limited studies are reported in the literature, up to
now, dealing with the flow problems of fourth grade fluid
and these investigations that further narrow are down when
we discussed the closed-form solutions of these problems.
However, some useful and interesting communications in
this direction are made in the studies [5–11].

In this study, we have used an interesting method to
construct the solution of nonlinear problem arising in the
study of non-Newtonian fluid. We have explored the shock
wave behavior of the problem which deals with the unsteady
flowof fourth grade fluid.We have also taken into account the
magnetohydrodynamic nature of the fluid by applying uni-
formmagnetic field as an external body force.This concept is
introduced so that our solution can be easily reduced to the
problem that deals with the effects of body forces.

2. Mathematical Structure of the Model

The unsteady MHD flow of an incompressible fluid is
governed by law of conservation of mass and momentum;
namely,

divV = 0, (1)

𝜌

𝑑V
𝑑𝑡

= divT − 𝜎𝐵2
0
V. (2)

In the above equations, V is the velocity vector, 𝜌 the density
of the fluid, 𝑑/𝑑𝑡 the total time derivative, and T the Cauchy
stress tensor. We have considered a uniformmagnetic field of
strength𝐵

0
, which is applied in the transverse direction of the

flow as an external body force by assuming that the induced
magnetic field and the external field are negligible.

For fourth grade fluid model, the Cauchy stress tensor
satisfies the constitutive equations [3]:
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(4)

Here, 𝜇 is the dynamic viscosity; 𝛼
𝑖
(𝑖 = 1, 2), 𝛽

𝑖
(𝑖 = 1, 2, 3),

and 𝛾
𝑖
(𝑖 = 1, 2, ..., 8) are material constants. The Rivlin-

Ericksen tensors A
1
to A
4
are defined by

A
1
= (gradV) + (gradV)𝑇, (5)

A
𝑛
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𝑑A
𝑛−1

𝑑𝑡

+ A
𝑛−1

(gradV) + (gradV)𝑇A
𝑛−1

(𝑛 > 1) ,

(6)

in which grad is the gradient operator.
Consider the unsteady MHD flow of an incompressible

fourth grade fluid which occupies the half-space 𝑦 > 0 over
an infinite rigid plate which lies in the 𝑥𝑧-plane. The 𝑥-axis
and 𝑦-axis are chosen parallel and perpendicular to the plate.
By taking the velocity field (𝑢(𝑦, 𝑡), 0, 0), the conservation of
mass equation is identically satisfied. To obtain the governing
PDE in 𝑢, substituting (3)–(6) into (2) and rearranging, we
obtain the following model equation in the absence of the
modified pressure gradient:
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(7)

3. Reduction of the Model Equation

We know that from the principal of the Lie symmetry meth-
ods that if a differential equation is explicitly independent of
any dependent or independent variable, then this particular
differential equation remains invariant under the translation
symmetry corresponding to that particular variable. We
noticed that (7) admits the Lie point symmetry generators,
𝜕/𝜕𝑡 (time-translation) and 𝜕/𝜕𝑦 (space-translation in𝑦). For
a detailed analysis, the readers are referred to [12, 13].

Let 𝑋
1
and 𝑋

2
be time-translation and space-translation

symmetry generators, respectively. Then, the solution corre-
sponding to the generator
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1
+ 𝑚𝑋

2
=
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+ 𝑚

𝜕

𝜕𝑦

(𝑚 > 0) (8)

would represent the travelling wave solution with constant
wave speed𝑚. The Langrangian system corresponding to (8)
is

𝑑𝑦

𝑚

=

𝑑𝑡

1

=

𝑑𝑢

0

. (9)

Solving (9), invariant solutions are given by

𝑢 (𝑦, 𝑡) = 𝑓 (𝜂) with 𝜂 = 𝑦 − 𝑚𝑡, (10)
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where 𝑓(𝜂) is an arbitrary function of the characteristic
variable 𝜂 = 𝑦 − 𝑚𝑡. Making use of (10) into (7) results in
a fifth-order ordinary differential for 𝑓(𝜂)
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(11)

Thus, the original fifth-order nonlinear PDE (7) reduced
to a fifth-order ODE (11) along certain curves in the 𝑦-𝑡
plane. These curves are called characteristic curves or just the
characteristic.

4. Shock Wave Solution

Now, we obtain shock wave solution of the reduced equation
(11). The starting hypothesis for shock wave solution is given
by [14–17]

𝑓 (𝜂) = 𝐴 exp (𝐵𝜂) , (12)

where 𝐴 and 𝐵 are the free parameters to be determined.
Inserting (12) in (11), we obtain
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Separating (13) in the powers of 𝑒0 and 𝑒
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Thus, the solution for 𝑓(𝜂) (provided the condition (17)
holds) can be written as
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So, the solution 𝑢(𝑦, 𝑡) which satisfies the condition (17) is
written as
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We observe that the solution (19) does satisfy the physically
relevant boundary and initial conditions
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Figure 1: Shock wave behaviour of solution (19), where 𝛽
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The functions 𝐸(𝑡), 𝐹(𝑦), 𝐺(𝑦), and 𝐻(𝑦) depend on the
physical parameters of the flow model. The boundary condi-
tion (20a) is the no-slip condition at𝑦 = 0.The initial velocity
𝐸(0) of the rigid plate can be prescribed, but its velocity for
𝑡 > 0,𝐸(𝑡), cannot be arbitrary and is given by (21a). Similarly,
the initial velocity profile 𝑢(𝑦, 0) cannot be arbitrary and is
given by (21b).

Note that the solution (19) is the soliton solution or
the shock wave solution to the governing PDE (7). The
above solution is valid under the particular condition on the
physical parameters of the flow model given in (17). This
solution does show the hidden shock wave behavior of the
flow problem with slope of the velocity field or the velocity
gradient approaches to infinity such that
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thus, the imposing condition (17) can be written as
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We observe that the condition (25) gives the speed 𝑚 of the
travelling shockwave.The range of the values of 𝜖 for which𝑚
is real depends not only on the zeros of the cubic polynomial
in 𝜖 on the numerator of (25) but also on the sign of the
denominator. The shock wave behavior of solution (19) is
observed from Figure 1.

5. Concluding Remarks

In this study, we have obtained the mathematical structure
of the closed-form shock wave solution of higher-order

nonlinear PDE arising in the study of a fourth grade non-
Newtonian fluid model. Translational symmetry generators
in variables 𝑡 and 𝑦 have been utilized to perform reduction
of governing nonlinear partial differential equation into
ordinary differential equation, and, thereafter, the closed-
form shock wave solution has been constructed. We have
considered a prototype model of the flow problem, but
the solution is going to be very helpful in carrying out
further analysis of the shock wave behavior associated with
the non-Newtonian fluid flow models. The method that we
have adopted is also prosperous for tackling wide range of
nonlinear problems in non-Newtonian fluid mechanics.
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