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This paper presents a design method of the optimal proportional-integral-derivative (PID) controller with 𝜀-Routh stability for
different processes through Lyapunov approach. The optimal PID controller could be acquired by minimizing an augmented
integral squared error (AISE) performance index which contains control error and at least first-order error derivative, or even may
contain nth-order error derivative. The optimal control problem could be transformed into a nonlinear constraint optimization
(NLCO) problem via Lyapunov theorems.Therefore, optimal PID controller could be obtained by solving NLCO problem through
interior method or other optimization methods. The proposed method can be applied for different processes, and optimal PID
controllers under various control weight matrices and 𝜀-Routh stability are presented for different processes. Control weight matrix
and 𝜀-Routh stability’s effects on system performances are studied, and different tuning methods’ system performances are also
discussed. 𝜀-Routh stability’s effects on disturbance rejection ability are investigated, and different tuning methods’ disturbances
rejection ability is studied. To further illustrate the proposed method, experimental results of coupled water tank system (CWTS)
under different set points are presented. Both simulation results and experiment results show the effectiveness and usefulness of
the proposed method.

1. Introduction

PID controllers have been widely used in various industrial
processes due to simple structure, few parameters, and easy
implementation. In [1–43], many tuning methods such as
empirical methods, robust methods, frequency methods,
numerical methods, and intelligent methods had been pre-
sented to design PID controllers. In [3, 4], Ziegler-Nichols (Z-
N) methods include continuous cycling (C-C) method and
process reaction curve (PRC) method, and they can be called
as first Z-N method and second Z-N method, respectively.
The PRC method is especialy proposed for processes with
time delay. In [5], the Cohen-Coon method is presented for
first-order plus time delay (FOPTD) processes. In [6], the
integral absolute error (IAE) performance index is used to
design the optimal PID controller for FOPTD and second-
order plus time delay (SOPTD) plants. In [7–13], the immune
algorithm, modified genetic algorithm, modified ant colony

algorithm, particle swarm algorithm (PSA), and modified
PSA are used to design optimal PID controller for different
systems. In [14], multiple tabu search algorithm (MTSA) is
applied to design the optimal fuzzy-logic PID controller for
load frequency control system. In [15], some formulas are
developed to directly compute the optimal PID controller
for certain processes. In [16], zero-pole assignment method
is directly applied to compute optimal PID controller for
continuous-time processes. In [17], direct search algorithm
is used to design the optimal PID controller. In [18], the
optimal PID controller is presented for FOPTD plants via
dimensional analysis andnumerical optimization techniques.
In [19], a design method is presented to design the optimal
PID controller via minimizing load disturbances and solving
a constrained optimization problem in frequency domain.
In [20, 21], design methods are proposed to develop optimal
PI/PID controller via solving a nonconvex optimization prob-
lem in frequency domain. In [22], hybrid Taguchi genetic
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algorithm (HTGA) is used to design optimal PID con-
troller for pulse width modulation (PWM) feedback systems
through solving a constrained optimization problem. In [23–
25], linear quadratic regulator (LQR) method is proposed to
design the optimal PID controller for different systems and
processes. In [26], the loop transfer recovery technique is
applied to devise multivariable robust optimal PID controller
for a nonminimum phase boiler system. In [27], optimal
PID controller with 𝐻

2
/𝐻
∞

norm constraint is presented
for the superheated steam temperature system via PSA. In
[28], a parameter space approach is proposed to design the
minimum variance PID controller for linear time-invariant
(LTI) plants. In [29], a design method is proposed to design
PID controller by considering a transient performance item.
In [30], a designmethod of multivariable fixed-structure PID
controller is proposed for multivariable plants by solving an
optimization problem with linear matrix inequality (LMI)
constraint. In [31], iterative feedback tuning (IFT) method is
used to design the optimal PID controller for achieving fast
response to set point variations. In [32], a two-layer online
autotuning algorithm is presented to design the optimal PID
controller via general predictive control method. In [33],
the LQR method is presented to design the optimal PID
controller for robot arms. In [39], a design method of PID
controller is proposed for SOPTD processes via internal
model control (IMC) framework. In [40], analytic rules of
the PID controller are presented for FOPTD and SOPTD
processes via the IMCmethod andmodel reduction method.
In [41], a performance assessmentmethod of PID controller is
proposed for integral processes via focusing on step responses
of the set point change and load disturbance. In [42], a design
method of the PID controller with feedforward compensator
is proposed for the FOPTD process. In [43], a design method
of the multiloop PI/PID controller is presented for square
multiple-input and multiple-output (MIMO) process which
is decomposed into a series of equivalent effective open-
loop process (EOP) with reasonable gain margins and phase
margins. In [44], an on-line relay feedback approach is used
to identify, assess, and tune the PID controller. In [45], the
pole placement method is used to design the PID controller.
In [46], the multiobjective genetic algorithm is presented to
design the optimal fractional-order PID controller. In [47], a
design method is presented for optimal PID controller with
dynamic performance constrained.

Design methods of the PID controller in [1–43] can be
roughly divided into the following cases: the empirical meth-
ods, intelligent algorithm methods, numerical parametric
methods, classic LQR/LQGmethods, robust designmethods,
IMC methods, and pole placement methods. Many design
methods of the PID controller are proposed for first-order
and second-order processes. In this paper, a novel systematic
design method is presented to design optimal PID controller
with 𝜀-Routh stability for different processes. The optimal
PID controllerwith 𝜀-Routh stability is proposed byminimiz-
ing augmented integral squared error (AISE) performance
index.The proposed method is unlike classic optimal control
design methods which need to solve the Riccati equation
(RE). The proposed optimal control problem is equivalently
transformed into theNLCOproblem via Lyapunov theorems.

Therefore, optimal controller parameters can be obtained by
solving a NLCO problem. The proposed method is used to
design optimal PID controller for a third-order, SOPTD, and
FOPTDprocesses, respectively.The proposedmethod is used
to control the liquid level of the CWTS under different set
points. The simulation results and experiment results show
effectiveness and usefulness of the proposed method. The
proposed method is convenient to design the optimal PID
controller which can provide high performance for control
system.

This paper is arranged as follows: in Section 2, prelimi-
nary and optimal control problem statements are described.
In Section 3, CWTS model is established, and systematic
design procedures of the optimal PID controller are presented
in detail. Characteristics and robustness of 𝜀-Routh stability
are analyzed, and the interior method is recommended to
solve the NLCO problem of the proposed optimal PID
controller. In Section 4, optimal PID controllers and sim-
ulation results are presented for different processes. The
controlweightmatrix and 𝜀-Routh stability’s effects on system
performances are studied. The system performances and
disturbance rejection ability of different tuning methods
are investigated. 𝜀-Routh stability’s effects on disturbance
rejection ability are discussed as well. To further validate the
proposed method, the proposed method is used to control
the liquid level of the CWTS under different set points. In
Section 5, study contents are reviewed, and some conclusions
are made.

2. Preliminary and Optimal Control
Problem Statements

Preliminary. Based on Lyapunov theorems, a systematic tun-
ing method is proposed to design the optimal PID controller
with 𝜀-Routh stability. The following theorems and 𝜀-Routh
stability definition are utilized to design the optimal PID
controller.

Theorem 1 (see [1, 2]). Sufficient and necessary conditions for
linear time-invariant system 𝑥̇ = 𝐴𝑥 asymptotically stable in a
large scope are that: for any given matrix 𝑄 = 𝑄

𝑇
> 0, there

is a matrix 𝑃 = 𝑃
𝑇

> 0 that satisfies the Lyapunov algebraic
equation (LAE): 𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄.

Theorem 2 (see [1, 2]). The linear time-invariant (LTI) system
𝑥̇ = 𝐴𝑥, and 𝑥(0) = 𝑥

0
is asymptotically stable, for any given

matrix 𝑄 = 𝑄
𝑇

> 0, then the performance index J will have
equivalent relationships:

𝐽 = ∫

∞

0

𝑥
𝑇
𝑄𝑥𝑑𝑡 = 𝑥

𝑇
(0) 𝑃𝑥 (0) , 𝐴

𝑇
𝑃 + 𝑃𝐴 = −𝑄.

(1)

Definition of 𝜀-Routh stability. 𝐷(𝑠) is characteristic poly-
nomial of the linear time-invariant control system. For any
nonnegative real 𝜀, if all elements of the Routh array’s
first column of characteristic polynomial 𝐷(𝑠) = 𝑎

0
𝑠
𝑛
+

𝑎
1
𝑠
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑎
𝑛−1

𝑠 + 𝑎
𝑛
can satisfy the following inequality
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relationships, then the linear time-invariant control system is
considered to possess the 𝜀-Routh stability:

𝑅
1,1

(𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
) > 𝜀, 𝑅

2,1
(𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
) > 𝜀, . . . ,

𝑅
𝑛,1

(𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
) > 𝜀, 𝑅

𝑛+1,1
(𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
) > 𝜀

(𝜀 ≥ 0) ,

(2)

where 𝑅
1,1

, 𝑅
2,1

, 𝑅
3,1

, . . . 𝑅
𝑛
, 1, and 𝑅

𝑛+1,1
are the elements of

the Routh array’s first column. It calls Routh array’s first
column as the Routh column, and the general computation
formulas of the Routh column can be founded in [48, 49].
It could be known that the 𝜀-Routh stability degenerates
into the Routh-Hurwitz stable when the 𝜀 is zero (𝜀 =

0). The motivation for the definition of 𝜀-Routh stability
comes from stability analysis of linear systems. As known,
if any one element in Routh column of polynomial 𝐷(𝑠) is
zero or negative real, then linear control systems may bring
oscillation behaviors or unstable behaviors. Each element in
the Routh column of the polynomial 𝐷(𝑠) is much closer to
the zero 0

+, at least it is more possible to bring oscillation
behaviors. Consequently, the definition of 𝜀-Routh stability is
motivated to describe how far away each Routh column from
the zero 0

+. It can be known that 𝜀-Routh stability will imply
system robustness in some degree.
Optimal Control Problem Statements. We assume that the
processes can be described by general transfer function𝐺

𝑝
(𝑠):

𝐺
𝑝
(𝑠) =

𝑏
1
𝑠
𝑤
+ 𝑏
2
𝑠
𝑤−1

+ ⋅ ⋅ ⋅ + 𝑏
𝑤
𝑠 + 𝑏
𝑤+1

𝑠
𝑛
+ 𝑎
1
𝑠
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑎
𝑛−1

𝑠 + 𝑎
𝑛

=

∑
𝑤+1

𝑗=1
𝑏
𝑗
𝑠
𝑤+1−𝑗

𝑠
𝑛
+ ∑
𝑛

𝑖=1
𝑎
𝑖
𝑠
𝑛−𝑖

=

𝑁 (𝑠)

𝑀 (𝑠)

,

(3)

where 𝑏
1
, . . . , 𝑏

𝑤+1
, 𝑎
1
, . . ., and 𝑎

𝑛
are system parameters, and

𝑀(𝑠) and 𝑁(𝑠) are the denominator and numerator, respec-
tively. The denominator and numerator’s orders are the
deg{𝑀(𝑠)} = 𝑛 and deg{𝑁(𝑠)} = 𝑤, respectively. For most
practical processes, the number of poles 𝑛 is greater than
the number of zeros 𝑤 (𝑛 > 𝑤), and 𝑛 and 𝑤 are the
positive integers. It could be known that for the all-pole plants
𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑤
= 0, additional for the type I plants 𝑎

𝑛
= 0, and

for the type II plants 𝑎
𝑛−1

= 𝑎
𝑛
= 0, and so on. The diagram

of the control system is shown in Figure 1, and the control
system can be described by the following equation:

𝑢 (𝑠) = 𝐺
𝑐
(𝑠) 𝑒 (𝑠) , 𝐺

𝑐
(𝑠) =

(𝑘
𝑝
𝑠 + 𝑘
𝑖
+ 𝑘
𝑑
𝑠
2
)

𝑠

,

𝑟 (𝑠) − 𝑦 (𝑠) ≜ 𝑒 (𝑠) , 𝑦 (𝑠) = 𝐺
𝑝
(𝑠) 𝑢 (𝑠) ,

(4)

where 𝑒(𝑡) is control error, 𝑟(𝑡) and 𝑦(𝑡) are reference com-
mand and system output, respectively,𝐺

𝑐
(𝑠) is PID controller,

and 𝑘
𝑝
, 𝑘
𝑖
, and 𝑘

𝑑
are controller parameters. Equation (4) can

be equally expressed as

𝑟 (𝑠) = 𝑦 (𝑠) + 𝑒 (𝑠) , 𝑦 (𝑠) =

𝑁 (𝑠) 𝑢 (𝑠)

𝑀 (𝑠)

,

𝑢 (𝑠) =

(𝑘
𝑝
𝑠 + 𝑘
𝑖
+ 𝑘
𝑑
𝑠
2
) 𝑒 (𝑠)

𝑠

.

(5)

Therefore, error transfer function can be obtained as
𝑒 (𝑠)

𝑟 (𝑠)

=

1

(1 + 𝐺
𝑝
(𝑠) 𝐺
𝑐
(𝑠))

⇐⇒ 𝐷(𝑠) 𝑒 (𝑠)

= 𝑠𝑀 (𝑠) 𝑟 (𝑠) ,

𝐷 (𝑠) = 𝑠𝑀 (𝑠) + 𝑁 (𝑠) (𝑘
𝑝
𝑠 + 𝑘
𝑖
+ 𝑘
𝑑
𝑠
2
) ,

deg {𝐷 (𝑠)} = 𝑛 + 1,

(6)

where 𝐷(𝑠) is the control system’s characteristic polynomial.
The error differential equation can be obtained by inversing
Laplace transform of (6):

(𝛿𝑀 (𝛿) + 𝑁 (𝛿) (𝑘
𝑝
𝛿 + 𝑘
𝑖
+ 𝑘
𝑑
𝛿
2
)) 𝑒 (𝑡) = 𝛿𝑀 (𝛿) 𝑟 (𝑡) ,

(7)

where 𝛿 is the differential operator. When reference com-
mand 𝑟(𝑡) is constant signal or zero signal (𝑟(𝑡) = 0), or even
the piecewise constant signal, the error differential equation
will yield

{

{

{

(𝛿
𝑛+1

+

𝑛

∑

𝑖=1

𝑎
𝑖
𝛿
𝑛+1−𝑖

)

+ (𝑘
𝑝
𝛿 + 𝑘
𝑖
+ 𝑘
𝑑
𝛿
2
)

𝑤+1

∑

𝑗=1

𝑏
𝑗
𝛿
𝑤+1−𝑗

}

}

}

𝑒 (𝑡) = 0.

(8)

Considering the polynomial differential operator 𝑀(𝛿) and
𝑁(𝛿), error differential equation (8) could be expressed as

{

{

{

𝛿
𝑛+1

+

𝑛

∑

𝑖=1

𝑎
𝑖
𝛿
𝑛+1−𝑖

+

𝑤+1

∑

𝑗=1

𝑏
𝑗
𝑘
𝑝
𝛿
𝑤+2−𝑗

+

𝑤+1

∑

𝑗=1

𝑏
𝑗
𝑘
𝑖
𝛿
𝑤+1−𝑗

+

𝑤+1

∑

𝑗=1

𝑏
𝑗
𝑘
𝑑
𝛿
𝑤+3−𝑗

}

}

}

𝑒 (𝑡) = 0.

(9)

Therefore, (9) can be equally expressed as

𝑒(𝑡)
(𝑛+1)

+ 𝑎
1
𝑒(𝑡)
(𝑛)

+ 𝑎
2
𝑒(𝑡)
(𝑛−1)

+ ⋅ ⋅ ⋅ + 𝑎
𝑛−𝑤−2

𝑒(𝑡)
(𝑤+3)

+ (𝑎
𝑛−𝑤−1

+ 𝑏
1
𝑘
𝑑
) 𝑒(𝑡)
(𝑤+2)

+ (𝑎
𝑛−𝑤

+ 𝑏
1
𝑘
𝑝
+ 𝑏
2
𝑘
𝑑
) 𝑒(𝑡)
(𝑤+1)

+

𝑤−1

∑

𝑗=1

(𝑎
𝑛−𝑤+𝑗

+ 𝑏
𝑗+1

𝑘
𝑝
+ 𝑏
𝑗
𝑘
𝑖
+ 𝑏
𝑗+2

𝑘
𝑑
) 𝑒(𝑡)
(𝑤+1−𝑗)

+ (𝑎
𝑛
+ 𝑏
𝑤+1

𝑘
𝑝
+ 𝑏
𝑤
𝑘
𝑖
) ̇𝑒 (𝑡) + 𝑏

𝑤+1
𝑘
𝑖
𝑒 (𝑡) = 0.

(10)
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For the symbol simplicity, the error differential equation (10)
is equally expressed as

𝑒(𝑡)
(𝑛+1)

+ 𝑎
1
𝑒(𝑡)
(𝑛)

+ 𝑎
2
𝑒(𝑡)
(𝑛−1)

+ ⋅ ⋅ ⋅ + 𝑎
𝑛−𝑤−2

𝑒(𝑡)
(𝑤+3)

+ 𝑚
1
𝑒(𝑡)
(𝑤+2)

+ 𝑚
2
𝑒(𝑡)
(𝑤+1)

+

𝑤−1

∑

𝑗=1

𝑚
𝑗+2

𝑒(𝑡)
(𝑤+1−𝑗)

+ 𝑚
𝑤+2

̇𝑒 (𝑡) + 𝑚
𝑤+3

𝑒 (𝑡) = 0,

(11)

where 𝑚
𝑖
(𝑖 = 1, 2, . . . , 𝑤 + 3) is the decision parameter.

Parameter𝑚
𝑖
(𝑖 = 1, 2, . . . , 𝑤 + 3) is obtained as

𝑚
1
= (𝑎
𝑛−𝑤−1

+ 𝑘
𝑑
𝑏
1
) , 𝑚

2
= (𝑎
𝑛−𝑤

+ 𝑏
1
𝑘
𝑝
+ 𝑏
2
𝑘
𝑑
)

𝑚
𝑗+2

= (𝑎
𝑛−𝑤+𝑗

+ 𝑏
𝑗+1

𝑘
𝑝
+ 𝑏
𝑗
𝑘
𝑖
+ 𝑏
𝑗+2

𝑘
𝑑
)

(𝑗 = 1, 2, . . . , 𝑤 − 1)

𝑚
𝑤+2

= (𝑎
𝑛
+ 𝑏
𝑤+1

𝑘
𝑝
+ 𝑏
𝑤
𝑘
𝑖
) , 𝑚

𝑤+3
= 𝑏
𝑤+1

𝑘
𝑖
.

(12)

Thus, the corresponding state-space model of the differential
equation (11) can be obtained:

𝑥̇ = 𝐴𝑥, (13)

where 𝑥 is a state vector, 𝐴 is a state matrix, 𝐶
1×𝑛

is a
parameter vector, 𝑂

𝑛×1
is a zero vector, and 𝐼

𝑛×𝑛
is an unit

matrix. They are obtained as

𝐴 = (

𝑂
𝑛×1

𝐼
𝑛×𝑛

−𝑚
𝑤+3

𝐶
1×𝑛

) , 𝑥 = (𝑒 (𝑡) ̇𝑒 (𝑡) ̈𝑒 (𝑡) ⋅ ⋅ ⋅ 𝑒(𝑡)
(𝑛)

)

𝑇

,

𝐶
1×𝑛

= (−𝑚
𝑤+2

⋅ ⋅ ⋅ − 𝑚
1
− 𝑎
𝑛−𝑤−2

⋅ ⋅ ⋅ − 𝑎
2
− 𝑎
1
) .

(14)

To obtain the optimal PID controller, it needs to select
suitable optimized performance indices. The performance
indices such as the integral squared error (ISE), integral
absolute error (IAE), integral time absolute error (ITAE), and
integral time squared error (ITSE) are often used for criteria
when designing optimal PID controller. The precision and
steady-state property of control system are directly reflected
by control error. In this paper, augmented integral squared
error (AISE) in [34, 36] is used to design an optimal PID
controller. Hence, optimal PID controller not only stabilizes
the control system with 𝜀-Routh stability, but also minimizes
the performance index.Therefore, the proposed optimal con-
trol problem can be stated as (i) the optimal PID controller
stabilizes the control system with 𝜀-Routh stability; (ii) the
optimal PID controller minimizes the given performance

index. Eventually, the proposed optimal control problem can
be depicted by the following equation:

𝐽
∗
(𝑘
∗

𝑝
, 𝑘
∗

𝑖
, 𝑘
∗

𝑑
) = min
𝐺
∗

𝑐
(𝑠)

𝐽 (𝑚
1
, . . . , 𝑚

𝑤+3
)

= min∫

∞

0

𝑥
𝑇
(𝑡) 𝑄𝑥 (𝑡) 𝑑𝑡

= min{

𝑛

∑

𝑖=0

∫

∞

0

𝑞
𝑖+1,𝑖+1

(𝑒(𝑡)
(𝑖)
)

2

𝑑𝑡}

subject to (s.t) :

(1) 𝑥̇ = 𝐴𝑥;

(2)Re (eig (𝐴)) < 0, Re {𝑠 | det (𝑠𝐼 − 𝐴) = 0} < 0

(3) 𝜀 ≥ 0, 𝑅
1,1

(𝑚
1
, . . . , 𝑚

𝑤+3
) > 𝜀,

𝑅
2,1

(𝑚
1
, . . . , 𝑚

𝑤+3
) > 𝜀, . . . ,

𝑅
𝑛+1,1

(𝑚
1
, . . . , 𝑚

𝑤+3
) > 𝜀, 𝑅

𝑛+2,1
(𝑚
1
, . . . , 𝑚

𝑤+3
) > 𝜀;

(4)𝑚
4
= 𝑓
1
(𝑚
1
, 𝑚
2
, 𝑚
3
) , . . . , 𝑚

𝑤+3
= 𝑓
𝑤
(𝑚
1
, 𝑚
2
, 𝑚
3
) ;

(5) 0 < 𝑘
𝑝
≤ 𝜏
0

𝑝
, 0 < 𝑘

𝑖
≤ 𝜏
0

𝑖
, 0 < 𝑘

𝑑
≤ 𝜏
0

𝑑
,

(15)

where 𝑄 is a control weight matrix, and at least a positive
semidefinite real symmetric matrix, and 𝑓

1
, . . . , 𝑓

𝑤
is the

linear function of the controller parameters 𝑘
𝑝
, 𝑘
𝑖
, and 𝑘

𝑑
, and

𝑘
∗

𝑝
, 𝑘∗
𝑖
, and 𝑘

∗

𝑑
are optimal controller parameters. Constraint

(1) is the control system’s state constraint, constraint (2)

guarantees the control system stable in a large scope, and
constraint (3) guarantees the control systemwith the 𝜀-Routh
stability. However, there are three independent decision
variables among decision variables𝑚

𝑖
(𝑖 = 1, 2, . . . , 𝑤+3); the

rest decision variables are interrelated variables. Constraint
(4) reflects decision variables’ inner relationships. Constraint
(5) can assure the existence of feasible solutions and can
reduce the searching space. Constraint (5) can also assure PID
controller to be physically achieved. In some actual control
system, PID controller parameters are limited in certain
range. Thus, the controller parameters cannot be too large.
The parameters 𝜏

0

𝑝
, 𝜏0
𝑖
, and 𝜏

0

𝑑
are the scope of controller

parameters.

3. CWTS Model and Proposed
Design Procedures

The proposed design method is used to design optimal PID
controller which is employed to control the liquid level of
the CWTS. The experiment setup is shown in Figure 2. It
can use the experimental setup to construct different physical
processes which are shown in Figure 3.

The physical process in Figure 3 contains the interacting
behavior because the liquid level ℎ

2
of tank-2 depends on the

liquid level ℎ
1
of tank-1. In this paper, it does not consider

nonlinearities of the coupled water tank system. Thus, the
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Command

𝑟(𝑡) +

+

−
−

𝑒(𝑡) Controlled
plant 𝐺𝑝(𝑠)

Optimal tuning
mechanism

𝑦(𝑡)

Output𝐷𝑢(𝑡)

𝐺
∗
𝑐 (𝑠) = 𝑘

∗
𝑝 +

𝑘
∗
𝑖
𝑠
+ 𝑘
∗
𝑑
𝑠

Optimal PID
controller

Figure 1: Feedback control system with optimal PID controller.

Control valve

ValveWater tank

 Tank-1

Tank-2

Figure 2: Experimental setup of CWTS.

water tank system is considered as the linear process. Based
on the volume balance principle, the liquid level equation of
tank-1 can be obtained:

𝑄
𝑖𝑐
− 𝑄
1𝑐

− 𝑄
12

= 𝐶
1

𝑑ℎ
1

𝑑𝑡

, (16)

where𝑄
𝑖𝑐
is the flow of control valve,𝑄

1𝑐
is the flow of valve-

1, 𝑄
12

is the flow of valve-3, 𝐶
1
is the hydraulic capacity of

tank-1, and ℎ
1
is the liquid level of tank-1. Likewise, the liquid

level equation of tank-2 can be obtained:

𝑄
12

− 𝑄
2𝑐

= 𝐶
2

𝑑ℎ
2

𝑑𝑡

, (17)

where 𝑄
2𝑐
is the flow of valve-2, 𝐶

2
is the hydraulic capacity

of tank-2, and ℎ
2
is the liquid level of tank-2. The water flows

equation of valve-1, valve-2, and valve-3 can be obtained:

𝑄
1𝑐

=

ℎ
1

𝑅
1

, 𝑄
2𝑐

=

ℎ
2

𝑅
2

, 𝑄
12

=

ℎ
1
− ℎ
2

𝑅
12

, (18)

where𝑅
1
and𝑅

2
are the liquid resistance of valve-1 and valve-

2, respectively, and 𝑅
12

is the liquid resistance of valve-3.
Thus, the liquid level model of water tank-1 is acquired:

𝐺
ℎ
(𝑠) =

𝐻
1
(𝑠)

𝑄
𝑖𝑐
(𝑠)

=

𝑏
1
𝑠 + 𝑏
2

𝑎
0
𝑠
2
+ 𝑎
1
𝑠 + 𝑎
2

=

𝑏
1
𝑠/𝑎
0
+ 𝑏
2
/𝑎
0

𝑠
2
+ 𝑎
1
𝑠/𝑎
0
+ 𝑎
2
/𝑎
0

=

𝑁
1
(𝑠)

𝑀
1
(𝑠)

,

(19)

where 𝐺
ℎ
(𝑠) is the liquid level transfer function of tank-1.

The transfer function𝐺
ℎ
(𝑠) shows that physical process is the

Tank-1 Tank-2

Control valve

𝑅1

𝑄12
𝐻1 + ℎ1

𝐶2𝐶1

𝑅2

𝑄2𝑐𝑄1𝑐

𝑄0 + 𝑄𝑖𝑐

𝑅12

𝐻2 + ℎ2
Valve-3

Va
lv

e-
2

Va
lv

e-
1

Figure 3: The liquid level process of the CWTS.

second-order processwith a negative zero. Systemparameters
are obtained as

𝑏
1
= 𝑅
1
𝑅
12
𝑅
2
𝐶
2
, 𝑏

2
= 𝑅
1
(𝑅
12

+ 𝑅
2
) ,

𝑎
0
= 𝑅
1
𝐶
1
𝑅
12
𝑅
2
𝐶
2
,

𝑎
1
= 𝑅
1
𝐶
1
𝑅
2
+ 𝑅
1
𝐶
1
𝑅
12

+ 𝑅
1
𝑅
2
𝐶
2
+ 𝑅
12
𝑅
2
𝐶
2
,

(20)

𝑎
2
= 𝑅
1
+ 𝑅
12

+ 𝑅
2
. (21)

3.1. Proposed Design Procedures. Without losing generalities,
a third-order controlled process is considered in the unity
feedback system. The process (𝑛 = 3, 𝑤 = 2) and PID
controller have forms, respectively,

𝐺
𝑝
(𝑠) =

𝑏
1
𝑠
2
+ 𝑏
2
𝑠 + 𝑏
3

𝑎
0
𝑠
3
+ 𝑎
1
𝑠
2
+ 𝑎
2
𝑠 + 𝑎
3

=

𝑁 (𝑠)

𝑀 (𝑠)

,

𝐺
𝑐
(𝑠) = 𝑘

𝑝
+

𝑘
𝑖

𝑠

+ 𝑘
𝑑
𝑠.

(22)

Thus, open-looped transfer function of control system yields

𝐺 (𝑠) = 𝐺
𝑐
(𝑠) 𝐺
𝑝
(𝑠) =

(𝑘
𝑝
𝑠 + 𝑘
𝑖
+ 𝑘
𝑑
𝑠
2
)𝑁 (𝑠)

𝑠𝑀 (𝑠)

. (23)

Then, the error equation and of the control system are
obtained:

𝑒 (𝑠)

𝑟 (𝑠)

=

1

(1 + 𝐺
𝑝
(𝑠) 𝐺
𝑐
(𝑠))

⇐⇒ 𝐷(𝑠) 𝑒 (𝑠) = 𝑠𝑀 (𝑠) 𝑟 (𝑠) ,

𝐷 (𝑠) = (𝑠𝑀 (𝑠) + 𝑁 (𝑠) (𝑘
𝑝
𝑠 + 𝑘
𝑖
+ 𝑘
𝑑
𝑠
2
)) ,

deg {𝐷 (𝑠)} = 4,

(24)

where 𝐷(𝑠) is the control system’s characteristic polynomial.
The error differential equation can be obtained by inversing
Laplace transform of the error equation:

(𝛿𝑀 (𝛿) + 𝑁 (𝛿) (𝑘
𝑝
𝛿 + 𝑘
𝑖
+ 𝑘
𝑑
𝛿
2
)) 𝑒 (𝑡) = 𝛿𝑀 (𝛿) 𝑟 (𝑡) ,

(25)

where 𝛿 is a differential operator. When reference command
𝑟(𝑡) is the constant signal, or zero signal (𝑟(𝑡) = 0), or even
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piecewise constant signal, then the error differential equation
will yield

(𝑎
0
+ 𝑘
𝑑
𝑏
1
) 𝑒(𝑡)
(4)

+ (𝑎
1
+ 𝑘
𝑝
𝑏
1
+ 𝑘
𝑑
𝑏
2
)
...
𝑒 (𝑡)

+ (𝑎
2
+ 𝑘
𝑖
𝑏
1
+ 𝑘
𝑝
𝑏
2
+ 𝑘
𝑑
𝑏
3
) ̈𝑒 (𝑡)

+ (𝑎
3
+ 𝑘
𝑖
𝑏
2
+ 𝑘
𝑝
𝑏
3
) ̇𝑒 (𝑡) + 𝑘

𝑖
𝑏
3
𝑒 (𝑡) = 0.

(26)

For symbol simplicity, error differential equation is equally
expressed as

𝑚
1
𝑒(𝑡)
(4)

+ 𝑚
2

...
𝑒 (𝑡) + 𝑚

3
̈𝑒 (𝑡) + 𝑚

4
̇𝑒 (𝑡) + 𝑚

5
𝑒 (𝑡) = 0, (27)

where 𝑚
𝑖
(𝑖 = 1, . . . , 5) is the decision parameter. The

decision parameter yields

𝑚
1
= 𝑎
0
+ 𝑘
𝑑
𝑏
1
, 𝑚

2
= 𝑎
1
+ 𝑘
𝑝
𝑏
1
+ 𝑘
𝑑
𝑏
2
, 𝑚

5
= 𝑘
𝑖
𝑏
3
,

𝑚
3
= 𝑎
2
+ 𝑘
𝑖
𝑏
1
+ 𝑘
𝑝
𝑏
2
+ 𝑘
𝑑
𝑏
3
, 𝑚

4
= 𝑎
3
+ 𝑘
𝑖
𝑏
2
+ 𝑘
𝑝
𝑏
3
.

(28)

Thus, the corresponding state-space model of error differen-
tial equation (27) can be obtained:

𝑥̇ = 𝐴𝑥

𝑥 = (𝑒 (𝑡) ̇𝑒 (𝑡) ̈𝑒 (𝑡)

...
𝑒 (𝑡))
𝑇
, 𝐴 = (

𝑂
3×1

𝐼
3×3

−𝑚
1

4
𝐶
1×3

) ,

𝐶
1×3

= (−𝑚
1

3
− 𝑚
1

2
− 𝑚
1

1
) ,

(29)

where 𝑥 is state vector, 𝐴 is state matrix, 𝑚1
𝑖
is the middle

decision variables, and the 𝑚
1

𝑖
= 𝑚
𝑖+1

/𝑚
1
(𝑖 = 1, 2, 3, 4).

Therefore, the optimal control problem is formulated as

𝐽
∗
(𝑘
∗

𝑝
, 𝑘
∗

𝑖
, 𝑘
∗

𝑑
) = min
𝐺
∗

𝑐

𝐽 (𝑚
1
, . . . , 𝑚

5
)

= min∫

∞

0

𝑥
𝑇
(𝑡) 𝑄𝑥 (𝑡) 𝑑𝑡

= min{

3

∑

𝑖=0

∫

∞

0

𝑞
𝑖+1,𝑖+1

(𝑒(𝑡)
(𝑖)
)

2

𝑑𝑡}

s.t :

(1) 𝑥̇ = 𝐴𝑥;

(2)Re (eig (𝐴)) < 0, or Re {𝑠 | det (𝑠𝐼 − 𝐴) = 0} < 0;

(3) 𝜀 ≥ 0, 𝑅
1,1

(𝑚
1
, . . . , 𝑚

𝑤+3
) > 𝜀,

𝑅
2,1

(𝑚
1
, . . . , 𝑚

𝑤+3
) > 𝜀,

𝑅
3,1

(𝑚
1
, . . . , 𝑚

𝑤+3
) > 𝜀, 𝑅

4,1
(𝑚
1
, . . . , 𝑚

𝑤+3
) > 𝜀,

𝑅
3,1

(𝑚
1
, . . . , 𝑚

𝑤+3
) > 𝜀, 𝑅

4,1
(𝑚
1
, . . . , 𝑚

𝑤+3
) > 𝜀,

𝑅
5,1

(𝑚
1
, . . . , 𝑚

𝑤+3
) > 𝜀;

(4)𝑚
4
= 𝑓
1
(𝑚
1
, 𝑚
2
, 𝑚
3
) , 𝑚
5
= 𝑓
2
(𝑚
1
, 𝑚
2
, 𝑚
3
) ;

(5) 0 < 𝑘
𝑝
≤ 𝜏
0

𝑝
, 0 < 𝑘

𝑖
≤ 𝜏
0

𝑖
, 0 < 𝑘

𝑑
≤ 𝜏
0

𝑑
.

(30)

If optimal control problem (30) is solved, then the proposed
optimal PID controller could be obtained. The constraint
(2) assures that the control systems asymptotically stable
in a large scope. The determinant is det(𝑠𝐼 − 𝐴) = 𝑠

4
+

𝑚
1

1
𝑠
3
+ 𝑚
1

2
𝑠
2
+ 𝑚
1

3
𝑠 + 𝑚

1

4
. Based on LTI stablility theory,

constraint (2) is equivalently transformed into the following
inequality:

Re (eig (𝐴)) < 0, or Re {𝑠 | det (𝑠𝐼 − 𝐴) = 0} < 0

⇐⇒ 𝑚
1

1
> 0, 𝑚

1

1
𝑚
1

2
− 𝑚
1

3
> 0,

𝑚
1

1
𝑚
1

2
𝑚
1

3
− (𝑚
1

3
)

2

− 𝑚
1

4
(𝑚
1

1
)

2

> 0, 𝑚
1

4
> 0.

(31)

The constraint (3) assures that the control system possesses
the 𝜀-Routh stability. The characteristic polynomial is𝐷(𝑠) =

𝑚
1
𝑠
4
+𝑚
2
𝑠
3
+𝑚
3
𝑠
2
+𝑚
4
𝑠+𝑚
5
. According to 𝜀-Routh stability

definition, the constraint (3) is formulated by the following
inequalities:

𝜀 ≥ 0, 𝑅
1,1

(𝑚
1
, . . . , 𝑚

5
) > 𝜀, 𝑅

2,1
(𝑚
1
, . . . , 𝑚

5
) > 𝜀,

𝑅
3,1

(𝑚
1
, . . . , 𝑚

5
) > 𝜀,

𝑅
4,1

(𝑚
1
, . . . , 𝑚

5
) > 𝜀, 𝑅

5,1
(𝑚
1
, . . . , 𝑚

5
) > 𝜀

⇐⇒ 𝑚
1
> 𝜀, 𝑚

2
> 𝜀, 𝑚

5
> 𝜀,

𝑚
1
𝑚
4
− 𝑚
2
𝑚
3
> 𝜀𝑚
2
,

(𝑚
2
)
2

𝑚
5
− 𝑚
1
(𝑚
4
)
2

− 𝑚
2
𝑚
3
𝑚
4
> 𝜀 (𝑚

1
𝑚
4
− 𝑚
2
𝑚
3
) .

(32)

The inequalities (31) and (32) assure control system asymp-
totic stability and 𝜀-Routh stability, respectively. Therefore,
the control system is asymptotically stable in a large scope;
based on the LyapunovTheorems 1 and 2, performance index
𝐽 is equivalently transformed into the performance index

𝐽
∗
= min∫

∞

0

𝑥
𝑇
𝑄𝑥𝑑𝑡 = min𝑥

𝑇
(0) 𝑃𝑥 (0) ,

𝐴
𝑇
𝑃 + 𝑃𝐴 = −𝑄,

(33)

where 𝑃 is a positive definite real symmetric matrix, and
matrix 𝑃 meets the LAE: 𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄. The performance
index 𝐽 is determined by the matrix 𝑃 and initial state.
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Therefore, the proposed optimal control problem (30) can be
equivalently transformed into the following NLCO problem:

𝐽
∗
(𝑘
∗

𝑝
, 𝑘
∗

𝑖
, 𝑘
∗

𝑑
) = min
𝐺
∗

𝑐
(𝑠)

𝐽 (𝑚
1
, . . . , 𝑚

5
)

= min𝑥(0)
𝑇
𝑃𝑥 (0)

s.t :

(1) 𝐴
𝑇
𝑃 + 𝑃𝐴 = −𝑄;

(2)𝑚
1

1
> 0, 𝑚

1

4
> 0, 𝑚

1

1
𝑚
1

2
− 𝑚
1

3
> 0,

𝑚
1

1
𝑚
1

2
𝑚
1

3
− (𝑚
1

3
)

2

− 𝑚
1

4
(𝑚
1

1
)

2

> 0;

(3)𝑚
1
> 𝜀, 𝑚

2
> 𝜀, 𝑚

5
> 𝜀, 𝑚

1
𝑚
4
− 𝑚
2
𝑚
3
> 𝜀𝑚
2
,

(𝑚
2
)
2

𝑚
5
− 𝑚
1
(𝑚
4
)
2

− 𝑚
2
𝑚
3
𝑚
4
> 𝜀 (𝑚

1
𝑚
4
− 𝑚
2
𝑚
3
) ;

(4)𝑚
4
= 𝑓
1
(𝑚
1
, 𝑚
2
, 𝑚
3
) , 𝑚
5
= 𝑓
2
(𝑚
1
, 𝑚
2
, 𝑚
3
) ;

(5) 0 < 𝑘
𝑝
≤ 𝜏
0

𝑝
, 0 < 𝑘

𝑖
≤ 𝜏
0

𝑖
, 0 < 𝑘

𝑑
≤ 𝜏
0

𝑑
.

(34)

The proposed optimal control problem (30) is equivalently
transformed into aNLCOproblemvia applying the Lyapunov
theorems. The optimal PID controller with 𝜀-Routh stability
can be obtained by solving NLCO problem (34). The design
problem of optimal PID controller with 𝜀-Routh stability
is deduced into the issue that: for the given control weight
matrix and initial states, we pursue a suitable matrix 𝑃 to
minimize performance index J. We assume that the control
system is static at the beginning, then a unit step command
𝑟(𝑡) = 1(𝑡) is inputted into the system, and the initial states
can be obtained: 𝑥

1
(0) = 1, 𝑥

2
(0) = 0, 𝑥

3
(0) = 0, and

𝑥
4
(0) = 0. The control weight matrix 𝑄 is a diagonal matrix

with 𝑄 = diag(𝑞
1
𝑞
2
𝑞
3
𝑞
4
). Apparently, NLCO problem (34)

has five middle decision variables. In fact, it only has three
independent variables. Different optimization methods such
as the Newton method, quasi-Newton method, Lagrange
method, conjugate gradient method, interior point method,
linear programming method, particle swarm algorithm,
genetic algorithm, evolution algorithm, and other intelligent
algorithms in [50–63] have been well established to solve
the NLCO problem. Therefore, optimal parameters 𝑚∗

𝑖
and

proposed PID controller are gotten:

𝐺
∗

𝑐
(𝑠) = 𝑘

∗

𝑝
+

𝑘
∗

𝑖

𝑠

+ 𝑘
∗

𝑑
𝑠, 𝑘

∗

𝑝
=

𝑚
∗

4
− 𝑎
3
− 𝑏
2
𝑘
∗

𝑖

𝑏
3

,

𝑘
∗

𝑖
=

𝑚
∗

5

𝑏
3

, 𝑘
∗

𝑑
=

𝑚
∗

1
− 𝑎
0

𝑏
1

.

(35)

It is noted that (i) the proposed method is also suitable
for first-order, second-order, and high-order processes; (ii)
the proposed method is also suitable for nonunit feedback
system. The non-unit feedback system can be transformed
into unit feedback system through transfer function equiva-
lent principle; (iii) the proposed method is also suitable for
processes with time delay which can be approximated by
transfer function; (iv) the proposed method can be used for
different processes.

3.2. Characteristic Analysis of 𝜀-Routh Stability. The 𝜀-Routh
stability constraint will imply control system robustness in
some degree. The 𝜀-Routh stability constraint could avoid
too conservative system performances and may help to
improve the robustness of control systems. The closed-loop
characteristic polynomial𝐷(𝑠) is 𝑠𝑛+1+𝑎

1
𝑠
𝑛
+⋅ ⋅ ⋅+𝑎

𝑛−𝑤−2
𝑠
𝑤+3

+

𝑚
1
𝑠
𝑤+2

+ 𝑚
2
𝑠
𝑤+1

+ ⋅ ⋅ ⋅ + 𝑚
𝑤+2

𝑠 + 𝑚
𝑤+3

. The polynomial
coefficient 𝑚

𝑘
(𝑘 = 1, 2, . . . , 𝑤 + 3) is a linear mapping

function of the PID controller parameters 𝑘
𝑝
, 𝑘
𝑖
, and 𝑘

𝑑
. The

parameters 𝑘
𝑝
, 𝑘
𝑖
, and 𝑘

𝑑
are constrained in intervals (0, 𝜏0

𝑝
],

(0, 𝜏
0

𝑖
], and (0, 𝜏

0

𝑑
] respectively. Therefore, the PID controller

parameters can be seen as the uncertain bounded parameters
in some degree. In this sense, polynomial𝐷(𝑠) can be seen as
interval polynomial with three uncertain parameters 𝑘

𝑝
, 𝑘
𝑖
,

and 𝑘
𝑑
. To analyze the robustness of 𝜀-Routh stability, without

losing generality, interval polynomial 𝐹(𝑠) has the general
form:

𝐹 (𝑠) = 𝑠
𝑛
+ 𝑝
1
𝑠
𝑛−1

+ 𝑝
2
𝑠
𝑛−2

+ ⋅ ⋅ ⋅ + 𝑝
𝑛−1

𝑠 + 𝑝
𝑛
, (36)

where 𝑝
1
, 𝑝
2
, . . . , and 𝑝

𝑛
are the uncertain coefficients of

the interval polynomial 𝐹(𝑠). The uncertain coefficients
𝑝
1
, 𝑝
2
, . . ., and 𝑝

𝑛
are continuous mapping functions of

uncertain bounded parameters 𝑞
1
, 𝑞
2
, . . ., and 𝑞

𝑚
:

𝑝
1
= 𝑓
1
(𝑞
1
, . . . , 𝑞

𝑚
) , . . . , 𝑝

𝑛
= 𝑓
𝑛
(𝑞
1
, . . . , 𝑞

𝑚
)

Ω
𝑞
= {(𝑞
1
, . . . , 𝑞

𝑚
)
󵄨
󵄨
󵄨
󵄨
[𝑞
−

1
, 𝑞
+

1
] × ⋅ ⋅ ⋅ × [𝑞

−

𝑚
, 𝑞
+

𝑚
]}

𝑞
1
∈ [𝑞
−

1
, 𝑞
+

1
] , . . . , 𝑞

𝑚
∈ [𝑞
−

𝑚
, 𝑞
+

𝑚
] ,

(37)

whereΩ
𝑞
is the uncertain parameter space, 𝑞−

𝑖
and 𝑞
+

𝑖
are the

lower bound and upper bound of uncertain parameter 𝑞
𝑖
, and

𝑓
𝑖
(⋅) is continuous mapping function of polynomial 𝐹(𝑠) for

uncertain parameters. Based on 𝜀-Routh stability definition
for interval polynomial 𝐹(𝑠), the following inequalities can
be obtained:

𝑅
1,1

(𝑞
1
, . . . , 𝑞

𝑚
) = 𝑓
𝑟,1

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀, . . . ,

𝑅
𝑛+1,1

(𝑞
1
, . . . , 𝑞

𝑚
) = 𝑓
𝑟,𝑛+1

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀

Ω
𝑟,𝜀

= {(𝑞
1
, . . . , 𝑞

𝑚
) | 𝑓
𝑟,1

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀, . . . ,

𝑓
𝑟,𝑛+1

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀} , (𝜀 ≥ 0) ,

(38)

where 𝑓
𝑟,𝑖
(⋅) is the element of first column of Routh array.

According to the interval polynomial stable criterion in [36,
64], if the disjoint set Ω

𝑓
of feasible set Ω

𝑟,𝜀
and uncertain

parameters space Ω
𝑞
is not a empty set, then the interval

polynomial 𝐹(𝑠) will satisfy the interval polynomial stable
criterion:

min
(𝑞1 ,...,𝑞𝑚)∈Ω𝑓

{𝑓
𝑟,1

(𝑝
1
, . . . , 𝑝

𝑛
) , . . . , 𝑓

𝑟,𝑛+1
(𝑝
1
, . . . , 𝑝

𝑛
)} > 0,

(Ω
𝑓
= (Ω
𝑟,𝜀

⋂Ω
𝑞
) ̸= 0) .

(39)

Therefore, the interval polynomial 𝐹(𝑠) is Routh-Hurwitz
stable in the feasible set Ω

𝑓
, and the 𝜀-Routh stability could
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guarantee the robustness of linear systems in a certain degree.
For any positive real 𝜀

2
> 𝜀
1
> 0, two inequalities for 𝜀-Routh

stability are obtained:

I : Ω
1
= {(𝑞

1
, . . . , 𝑞

𝑚
) | 𝑓
𝑟,1

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀
1
, . . . ,

𝑓
𝑟,𝑛+1

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀
1
} ,

II : Ω
2
= {(𝑞

1
, . . . , 𝑞

𝑚
) | 𝑓
𝑟,1

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀
2
, . . . ,

𝑓
𝑟,𝑛+1

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀
2
} .

(40)

The inequality (I) and inequality (II) have the feasible spaces
Ω
1
andΩ

2
, and the first inequality of inequalities (I) and (II)

has the feasible set

Ω
1

1
= {(𝑞
1
, . . . , 𝑞

𝑚
) | 𝑓
𝑟,1

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀
1
} ,

Ω
1

2
= {(𝑞
1
, . . . , 𝑞

𝑚
) | 𝑓
𝑟,1

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀
2
} .

(41)

Then, any point 𝑀
∗

1
in the feasible set Ω

1

2
will have the

relationship

∃𝑀
∗

1
= (𝑞
∗

11
, 𝑞
∗

21
, . . . , 𝑞

∗

𝑚,1
) , 𝑓

𝑟,1
(𝑀
∗

1
) = 𝜀
∗

2
> 𝜀
2
. (42)

Likewise, any point 𝑀∗
2
in the feasible set Ω1

1
will have the

relationship

∃𝑀
∗

2
= (𝑞
∗

12
, 𝑞
∗

22
, . . . , 𝑞

∗

𝑚,2
) , 𝑓

𝑟,1
(𝑀
∗

2
) = 𝜀
∗

1
> 𝜀
1
. (43)

For the feasible set Ω1
1
, there at least a point 𝑁∗

1
which will

satisfy the relationship

Case 1 : ∃𝑁
∗

1
= (𝑞
∗

11
, 𝑞
∗

21
, . . . , 𝑞

∗

𝑚,1
) , 𝜀
1
< 𝑓
𝑟,1

(𝑁
∗

1
) < 𝜀
2

⇐⇒ 𝑓
𝑟,1

(𝑁
∗

1
) ∈ (𝜀
1
, 𝜀
2
)

󳨐⇒ 𝑁
∗

1
∈ Ω
1

1
, 𝑁
∗

1
∉ Ω
1

2
󳨐⇒ Ω

1

1
⊃ Ω
1

2
.

Case 2 : 𝑓
𝑟,1

(𝑁
∗

1
) ∉ (𝜀
1
, 𝜀
2
) 󳨐⇒ Ω

1

1
= Ω
1

2
.

(44)

Therefore, the feasible setsΩ𝑘
1
andΩ

𝑘

2
will have the following

relationship:

Case 1 : Ω
𝑘

1
⊃ Ω
𝑘

2
, (∀𝑘 = 1, 2, . . . , 𝑛, 𝑛 + 1)

Case 2 : Ω
𝑘

1
= Ω
𝑘

2
, (∀𝑘 = 1, 2, . . . , 𝑛, 𝑛 + 1)

Ω
𝑘

1
= {(𝑞
1
, . . . , 𝑞

𝑚
) | 𝑓
𝑟,𝑘

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀
1
}

Ω
𝑘

2
= {(𝑞
1
, . . . , 𝑞

𝑚
) | 𝑓
𝑟,𝑘

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀
2
} .

(45)

Then, the overall feasible spaces Ω
1
and Ω

2
will have follow-

ing relationships:

Ω
1
⊇ Ω
2
⇐⇒ (Ω

1
⊃ Ω
2
) ∪ (Ω

1
= Ω
2
)

Ω
1
=

𝑛+1

⋂

𝑗=1

Ω
𝑗

1
, Ω

2
=

𝑛+1

⋂

𝑗=1

Ω
𝑗

2
.

(46)

The overall feasible set will be gradually condensed with the
𝜀 increasing. With 𝑎 real 𝜀 sequence 𝜀

𝑡+1
> 𝜀
𝑡
> 𝜀
𝑡−1

> ⋅ ⋅ ⋅ >

𝜀
2
> 𝜀
1
, one will get following relationships:

Ω
𝑡
= {(𝑞
1
, . . . , 𝑞

𝑚
) | 𝑓
𝑟,1

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀
𝑡
, . . . ,

𝑓
𝑟,𝑛+1

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀
𝑡
}

⇐⇒ Ω
𝑡
= (Ω
1

𝑡
∩ ⋅ ⋅ ⋅ ∩ Ω

𝑛+1

𝑡
) = (

𝑛+1

⋂

𝑗=1

Ω
𝑗

𝑡
) ,

(𝑡 = 1, 2, 3, ..., 𝑡 ∈ Z+)

Ω
𝑘

𝑡
= {(𝑞
1
, . . . , 𝑞

𝑚
) | 𝑓
𝑟,𝑘

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀
𝑡
} ,

(𝑘 = 1, 2, . . . , 𝑛, 𝑛 + 1) .

(47)

Therefore, the feasible set Ω
𝑡
will has the following relation-

ship:

Ω
𝑡+1

⊆ Ω
𝑡
⊆ ⋅ ⋅ ⋅ ⊆ Ω

2
⊆ Ω
1

⇐⇒ (Ω
𝑡+1

Δ
𝑡
Ω
𝑡
⊂ ⋅ ⋅ ⋅ Δ

2
Ω
2
Δ
1
Ω
1
) .

⋃ (Ω
𝑡+1

= Ω
𝑡
= ⋅ ⋅ ⋅ = Ω

2
= Ω
1
) ,

∃𝑘, Δ
𝑘
= “ ⊂󸀠󸀠, 𝑘 ∈ {1, 2, . . . , 𝑡} .

(48)

When the feasible setΩ
𝑡
is strictly condensedwith 𝜀

𝑡
, then the

limit of feasible space will yield the following relationships:

Case 1 : lim
𝜀
𝑡
→+∞

{(𝑞
1
, . . . , 𝑞

𝑚
) | 𝑓
𝑟,1

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀
𝑡
, . . . ,

𝑓
𝑟,𝑛+1

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀
𝑡
}

= lim
𝜀
𝑡
→+∞

Ω
𝑡
= lim
𝜀
𝑡
→+∞

(Ω
1

𝑡
∩ Ω
2

𝑡
∩ ⋅ ⋅ ⋅ ∩ Ω

𝑛+1

𝑡
)

= lim
𝜀
𝑡
→+∞

(

𝑛+1

⋂

𝑗=1

Ω
𝑗

𝑡
) = Ω

∗

= (𝑞
∗

1,0
𝑞
∗

2,0
, . . . , 𝑞

∗

𝑚,0
) .
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Case 2 : lim
𝜀
𝑡
→+∞

{(𝑞
1
, . . . , 𝑞

𝑚
) | 𝑓
𝑟,1

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀
𝑡
, . . . ,

𝑓
𝑟,𝑛+1

(𝑝
1
, . . . , 𝑝

𝑛
) > 𝜀
𝑡
}

= lim
𝜀
𝑡
→+∞

Ω
𝑡
= lim
𝜀
𝑡
→+∞

(Ω
1

𝑡
∩ Ω
2

𝑡
∩ ⋅ ⋅ ⋅ ∩ Ω

𝑛+1

𝑡
)

= lim
𝜀
𝑡
→+∞

(

𝑛+1

⋂

𝑗=1

Ω
𝑗

𝑡
) = 0.

(49)

If the 𝜀
𝑡
tends to infinity, then the limit of the feasible set

will be condensed into a point Ω∗ or an empty set 0. If the
feasible set is condensed into a point Ω∗, then the interval
polynomial degenerates into a usual polynomial. It reflects
that the point Ω

∗ is a fixed point in the stable region of
linear control systems. If the feasible set tends to empty set 0,
therefore it has a real 𝜀∗

𝑡
to satisfy the following relationships:

𝜀
𝑡
󳨀→ +∞, lim

𝜀
𝑡
→+∞

Ω
𝑡
= 0 ⇐⇒ ∃𝜀

∗

𝑡
, 𝜀
𝑡
> 𝜀
∗

𝑡
, Ω
𝑡
= 0,

0 < 𝜀
𝑡
≤ 𝜀
∗

𝑡
, Ω
𝑡

̸= 0,

𝜀
∗

𝑡
> 𝜀
𝑡
> 𝜀
𝑡−1

> ⋅ ⋅ ⋅ > 𝜀
2
> 𝜀
1
≥ 0,

Ω
∗

𝑡
⊂ Ω
𝑡
⊂ Ω
𝑡−1

⊂ ⋅ ⋅ ⋅ ⊂ Ω
2
⊂ Ω
1

(50)

when the feasible set has the relationshipΩ
𝑡+1

= Ω
𝑡
= Ω
𝑡−1

=

⋅ ⋅ ⋅ = Ω
2
= Ω
1
. However, this is a special event which can be

depicted by the probability event

𝑃 {Ω
𝑡+1

= Ω
𝑡
= Ω
𝑡−1

= ⋅ ⋅ ⋅ = Ω
2
= Ω
1
}

⇐⇒ 𝑃 {Ω
𝑡+1

= Ω
𝑡
, Ω
𝑡
= Ω
𝑡−1

, . . . , Ω
2
= Ω
1
} .

(51)

It assumes that all the probability events are independent and
identically distributed. Hence, the probability can be written
as

𝑃 {Ω
𝑡+1

= Ω
𝑡
, Ω
𝑡
= Ω
𝑡−1

, . . . , Ω
2
= Ω
1
}

= 𝑃 {Ω
𝑡+1

= Ω
𝑡
} × 𝑃 {Ω

𝑡
= Ω
𝑡−1

} × ⋅ ⋅ ⋅ × 𝑃 {Ω
2
= Ω
1
}

=

𝑡+1

∏

𝑗=2

𝑃 {Ω
𝑗
= Ω
𝑗−1

} = (𝑃 {Ω
2
= Ω
1
})
𝑡

,

(𝑡 = 1, 2, . . . , 𝑡 ∈ Z
+
) .

(52)

Considering probability event {Ω
2
= Ω
1
} first, the probability

will have
𝑃 {Ω
1
= Ω
2
}

= 𝑃 {(Ω
1

1
∩ ⋅ ⋅ ⋅ ∩ Ω

𝑛+1

1
) = (Ω

1

2
∩ ⋅ ⋅ ⋅ ∩ Ω

𝑛+1

2
)}

= 𝑃

{

{

{

(

𝑛+1

⋂

𝑗=1

Ω
𝑗

1
) = (

𝑛+1

⋂

𝑗=1

Ω
𝑗

2
)

}

}

}

⇐⇒ 𝑃{(Ω
1

2
∩ ⋅ ⋅ ⋅ ∩ Ω

𝑛+1

2
) ⊂ Ω

𝑘

1
,

(Ω
1

1
∩ ⋅ ⋅ ⋅ ∩ Ω

𝑛+1

1
) ⊂ Ω

𝑘

2
,

(∀𝑘 = 1, 2, . . . , 𝑛, 𝑛 + 1)} .

(53)

The probability 𝑃{Ω
2
= Ω
1
} for the probability event {Ω

2
=

Ω
1
} will yield

𝑃 {(Ω
1

2
∩ Ω
2

2
∩ ⋅ ⋅ ⋅ ∩ Ω

𝑛

2
) ⊂ Ω

1

1
} = 𝜆
1
, . . . ,

𝑃 {(Ω
1

2
∩ Ω
2

2
∩ ⋅ ⋅ ⋅ ∩ Ω

𝑛

2
) ⊂ Ω

𝑛+1

1
} = 𝜆
1
,

𝑃 {(Ω
1

1
∩ Ω
2

1
∩ ⋅ ⋅ ⋅ ∩ Ω

𝑛

1
) ⊂ Ω

1

2
} = 𝜆
2
, . . . ,

𝑃 {(Ω
1

1
∩ Ω
2

1
∩ ⋅ ⋅ ⋅ ∩ Ω

𝑛

1
) ⊂ Ω

𝑛+1

2
} = 𝜆
2
,

𝑃 {Ω
1
= Ω
2
}

= 𝑃

{

{

{

(

𝑛+1

⋂

𝑗=1

Ω
𝑗

2
) ⊂ Ω

𝑘

1
, (∀𝑘 = 1, 2, . . . , 𝑛, 𝑛 + 1)

}

}

}

× 𝑃

{

{

{

(

𝑛+1

⋂

𝑗=1

Ω
𝑗

1
) ⊂ Ω

𝑘

2
, (∀𝑘 = 1, 2, . . . , 𝑛, 𝑛 + 1)

}

}

}

=

𝑛+1

∏

𝑘=1

𝑃

{

{

{

(

𝑛+1

⋂

𝑗=1

Ω
𝑗

2
) ⊂ Ω

𝑘

1

}

}

}

×

𝑛+1

∏

𝑘=1

𝑃

{

{

{

(

𝑛+1

⋂

𝑗=1

Ω
𝑗

1
) ⊂ Ω

𝑘

2

}

}

}

= 𝜆
𝑛+1

1
𝜆
𝑛+1

2
, (0 < 𝜆

1
< 1, 0 < 𝜆

2
< 1) .

(54)

Therefore, the probability of the probability event yields

𝑃 {Ω
𝑡+1

= Ω
𝑡
, Ω
𝑡
= Ω
𝑡−1

, . . . , Ω
2
= Ω
1
} = 𝜆
(𝑛+1)𝑡

1
𝜆
(𝑛+1)𝑡

2

𝑃 {Ω
𝑡+1

Δ
𝑡
Ω
𝑡
Δ
𝑡−1

Ω
𝑡−1

⋅ ⋅ ⋅ Δ
2
Ω
2
Δ
1
Ω
1
} = 1 − 𝜆

(𝑛+1)𝑡

1
𝜆
(𝑛+1)𝑡

2
.

(55)

3.3. Interior Method for NLCO Problem. Without losing
generality, NLCO problem (34) of the optimal PID controller
can be written in the following general forms:

min 𝑓 (𝑥)

s.t : ℎ (𝑥) = 0, 𝑔 (𝑥) ≤ 0,

(56)
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where 𝑓(𝑥) : 𝑅
𝑛

→ 𝑅, ℎ(𝑥) : 𝑅
𝑛

→ 𝑅
𝑚, and 𝑔(𝑥) :

𝑅
𝑛

→ 𝑅
𝑞 are the smooth and differentiable functions, 𝑥 is

the decision variable, and 𝑛, 𝑚, and 𝑞 denote the number
of the decision variable, equality constraint, and inequality
constraint, respectively. The various optimization methods
in [50–63] are developed to solve optimization problems.
The optimization methods such as the Newton methods,
conjugate gradient methods, steepest descent methods, inte-
rior point methods, genetic algorithms, and particle swarm
algorithms in [50–63], are well established to solve constraint
optimization problems. Based on interior point methods in
[56–61], the interior method is recommended to solve the
NLCO problem. Then, the NLCO problem (56) could be
transformed into the following form:

min 𝑓 (𝑥) − 𝜐

𝑞

∑

𝑖=1

ln 𝛿
𝑖

s.t : ℎ (𝑥) = 0, 𝑔 (𝑥) + 𝛿 = 0,

(57)

where 𝜐 > 0 is the barrier parameter, the slack vector 𝛿 =

(𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑞
)
𝑇

> 0 is set to be positive, and 𝑔(𝑥) is an
expanded constraint inequality. It introduces the Lagrange
multipliers 𝑦 and 𝑧 for the barrier problem (57):

𝐿 (𝑥, 𝑦, 𝑧, 𝛿) = 𝑓 (𝑥) − 𝜐

𝑞

∑

𝑖=1

ln 𝛿
𝑖
+ 𝑦
𝑇
(𝑔 (𝑥) + 𝛿) + 𝑧

𝑇
ℎ (𝑥) ,

(58)

where 𝐿(𝑥, 𝑦, 𝑧, 𝛿) is Lagrange function, y = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑞
)
𝑇

and z = (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑚
)
𝑇 are Lagrange multipliers for

constraints 𝑔(𝑥) + 𝛿 and ℎ(𝑥), respectively. Based on the
Karush-Kuhn-Tucker (KKT) optimality conditions [57–59],
the optimality conditions for NLCO problem (56) can be
expressed as

∇
𝑥
𝐿 (𝑥, 𝑦, 𝑧, 𝛿) = ∇𝑓 (𝑥) + (∇𝑔 (𝑥))

𝑇

𝑦 + (∇ℎ (𝑥))
𝑇
𝑧 = 0

∇
𝛿
𝐿 (𝑥, 𝑦, 𝑧, 𝛿) = −𝜐𝑆

−1

𝛿
𝑒 + 𝑦 = 0 ⇐⇒ −𝜐𝑒 + 𝑆

𝛿
𝑌𝑒 = 0

∇
𝑦
𝐿 (𝑥, 𝑦, 𝑧, 𝛿) = 𝑔 (𝑥) + 𝛿 = 0

∇
𝑧
𝐿 (𝑥, 𝑦, 𝑧, 𝛿) = ℎ (𝑥) = 0,

(59)

where 𝑆
𝛿

= diag(𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑞
) is the diagonal matrix and

its elements are the components of the vector 𝛿, and e is a
vector of all ones, ∇ℎ(𝑥) and ∇𝑔(𝑥) are the Jacobian matrices
of the vectors ℎ(𝑥) and 𝑔(𝑥), respectively, ∇𝑓(𝑥) is the grand
of function 𝑓(𝑥), and 𝑌 = diag(𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑞
) is a diagonal

matrix and its elements are the components of vector y. The
system (59) is the KKT condition of the NLCO problem (56).
When in the search approach, it should remain 𝛿, 𝑦 > 0.
To obtain the iteration direction, it can make the point (𝑥 +

Δ
𝑥
, 𝛿+Δ𝛿, 𝑧+Δ

𝑧
, 𝑦+Δ𝑦) satisfying the KKT conditions(59);

then the following system will be obtained:

(∇
2
𝑓 (𝑥) + ∇

2
𝑔(𝑥)
𝑇
𝑦 + ∇

2
ℎ(𝑥)
𝑇
𝑧) Δ𝑥 + ∇𝑔(𝑥)

𝑇
Δ𝑦

+ ∇ℎ(𝑥)
𝑇
Δ𝑧 + (∇𝑓 (𝑥) + ∇𝑔(𝑥)

𝑇
𝑦 + ∇ℎ(𝑥)

𝑇
𝑧) = 0

−𝜐𝑒 + 𝑆
𝛿
𝑌𝑒 + 𝑆

𝛿
Δ𝑦 + 𝑌Δ𝛿 = 0

𝑔 (𝑥) + ∇𝑔 (𝑥) Δ𝑥 + 𝛿 + Δ𝛿 = 0,

∇ℎ (𝑥) Δ𝑥 + ℎ (𝑥) = 0.

(60)

System (60) is obtained by ignoring higher-order incremental
and replaces the nonlinear terms with linear approximation
in system (59). The system (60) is written in the matrix form:

(

𝐻(𝑥, 𝑦, 𝑧) 0 ∇ℎ(𝑥)
𝑇

∇𝑔(𝑥)
𝑇

0 𝑆
−1

𝛿
𝑌 0 𝐼

∇ℎ (𝑥) 0 0 0

∇𝑔 (𝑥) 𝐼 0 0

)(

Δ𝑥

Δ𝛿

Δ𝑦

Δ𝑧

)

= (

−∇𝑓 (𝑥) − ∇𝑔(𝑥)
𝑇
𝑦 − ∇ℎ(𝑥)

𝑇
𝑧

𝜐𝑆
−1

𝛿
𝑒 − 𝑦

−ℎ (𝑥)

−𝑔 (𝑥) − 𝛿

)

(61)

𝐻(𝑥, 𝑦, 𝑧) = ∇
2
𝑓 (𝑥) + ∇

2
𝑔(𝑥)
𝑇
𝑦 + ∇

2
ℎ(𝑥)
𝑇
𝑧, (62)

where𝐻(𝑥, 𝑦, 𝑧) is the Hessian matrix in system. Finally, the
new iterate direction is obtained via solving the system (61),
which is the essential process in the interior point method.
Thus, the new iteration point can be gotten in the next
iteration:

(𝑥, 𝛿, 𝑧, 𝑦) ←󳨀 (𝑥, 𝛿, 𝑧, 𝑦) + 𝜁
1
(Δ𝑥, Δ𝛿, Δ𝑧, Δ𝑦) , (63)

where 𝜁
1
is the step size. Choosing the step size 𝜁

1
holds the

𝛿, 𝑦 > 0 in search process. In this paper, the interior point
method is recommended to solve the NLCO problem. The
interior algorithm framework is depicted as follows.

Interior Algorithm Framework for NLCOProblem. One has the
following.

Step 1. Choose an initial iteration point (𝑥(0,), 𝛿(0), 𝑧(0), 𝑦(0))
in the feasible region set = {𝑥 | ℎ(𝑥) = 0, 𝑔(𝑥) ≤ 0}, and
the 𝛿(0) > 0, 𝑦

(0)
> 0, 𝑘 = 0.

Step 2. Construct current iterate; we have the current iterate
values 𝑥(𝑘), 𝛿(𝑘), 𝑧(𝑘), and 𝑦

(𝑘) of the primal variable 𝑥, the of
the slack variable 𝛿, the multipliers 𝑦 and 𝑧, respectively.

Step 3. Calculate the Hessian matrix 𝐻(𝑥, 𝑦, 𝑧) of the
Lagrange system 𝐿(𝑥, 𝑦, 𝑧, 𝛿), and the Jacobian matrices
∇ℎ(𝑥) and ∇𝑔(𝑥) are of the vectors ℎ(𝑥) and 𝑔(𝑥) in the
current iterate (𝑥(𝑘), 𝛿(𝑘), 𝑧(𝑘), 𝑦(𝑘)).

Step 4. Solve the linear system (61) and construct the iterate
direction (Δ𝑥, Δ𝛿, Δ𝑧, Δ𝑦). Solving the linearmatrix equation
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(61), we obtain the primal solution Δ𝑥, multipliers solution
Δ𝑧, Δ𝑦, and also the slack variable solution Δ𝛿.

Step 5. Choosing the step size 𝜁
1
holds the 𝛿, 𝑦 > 0

in search process, 𝜁
1

∈ [0, 1]. Update the iterate val-
ues: (𝑥

(𝑘+1)
, 𝛿
(𝑘+1)

, 𝑧
(𝑘+1)

, 𝑦
(𝑘+1)

) ← (𝑥
(𝑘)

, 𝛿
(𝑘)

, 𝑧
(𝑘)

, 𝑦
(𝑘)

) +

𝜁
1
(Δ𝑥, Δ𝛿, Δ𝑧, Δ𝑦), 𝑘 ← 𝑘 + 1.

Step 6. Check the ending conditions in regionΩ. If it does not
satisfied, go to Step 3, else minimum 𝑓min of NLCO problem
is obtained in feasible regionΩ.

Step 7. End.

4. Simulation and Experiment Results

The proposed method is used to design the optimal PID
controller with 𝜀-Routh stability for processes 𝐺

𝑝1
(𝑠) [7],

𝐺
𝑝2
(𝑠) [15], and 𝐺

𝑝3
(𝑠) [6], respectively. 𝐺

𝑝1
(𝑠) is a third-

order all-pole process, and 𝐺
𝑝2
(𝑠) and 𝐺

𝑝3
(𝑠) are the SOPTD

and FOPTD processes, respectively,

𝐺
𝑝1

(𝑠) =

15

(𝑠
2
+ 0.9𝑠 + 5) (𝑠 + 3)

,

𝐺
𝑝2

(𝑠) =

𝑒
−0.5𝑠

(𝑠 + 1)
2
, 𝐺

𝑝3
(𝑠) =

4𝑒
−10𝑠

10𝑠 + 1

.

(64)

In order to use the proposedmethod, time delay of plant.2
and plant.3 is approximated as 𝑒−0.5𝑠 ≈ (1 − 0.25𝑠)/(1 + 0.25𝑠)

and 𝑒
−10𝑠

≈ (𝑠
2
− 0.6𝑠 + 0.12)/(𝑠

2
+ 0.6𝑠 + 0.12), respectively.

Thus, transfer functions of 𝐺
𝑝2
(𝑠) and 𝐺

𝑝3
(𝑠) are the (−𝑠 +

4)/(𝑠
3
+ 6𝑠
2
+ 9𝑠 + 4) and (0.4𝑠

2
− 0.24𝑠 + 0.048)/(𝑠

3
+ 0.7𝑠

2
+

0.18𝑠 + 0.012), respectively. The proposed method is used
to design the optimal PID controller with 𝜀-Routh stability
for different processes, and optimal PID controllers under
different control weight matrices and 𝜀-Routh stability are
shown in Table 1.

For the proposed method, the plant.1’s step response and
system performances under various control weight matrices
are shown in Figure 4 and Table 2, respectively. The control
weight matrix has effects on system performances. Figure 4
and Table 2 obviously show that system performances are
affected by control weight factors 𝑞

1
, 𝑞
2
, 𝑞
3
, and 𝑞

4
. The

results show that the response velocity will be heightened by
increasing weight factor 𝑞

1
or reducing weight factors 𝑞

2
, 𝑞
3
,

and 𝑞
4
. When control weight factor 𝑞

1
(with 𝑞

2
, 𝑞
3
, and 𝑞

4

fixed) is increased, the overshoot is increased, and the rise
time, delay time, peak time, and setting time are reduced.
Likewise, the overshoot will be increased, and the rise time,
delay time, and peak time will be reduced by reducing weight
factors 𝑞

2
, 𝑞
3
, and 𝑞

4
(with 𝑞

1
fixed). Response results show

that system performances are affected by control weight
matrix.

For 𝑛th-order processes, it can be inferred that overshoot
will be heightened, and the rise time, delay time, and peak
time will be reduced by increasing control weight factor 𝑞

1

(with other factors fixed) or reducing other weight factors
(with 𝑞

1
fixed). On the contrary, the overshoot will be

reduced, and the rise time, delay time, and peak time will
be increased by reducing weight factor 𝑞

1
(with other factors

fixed) or increasing other factors (with 𝑞
1
fixed). Therefore,

system performances are affected by control weight factors
𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛+1
. In all, control weight matrix has effects on

system performances.
For plant.2, step response results and system perfor-

mances under different 𝜀-Routh stability are shown in
Figure 5 and Table 3, respectively. The response results show
that system performances are affected by 𝜀-Routh stability
(with control weight matrix fixed). The results show that
response velocity will be heightened by increasing 𝜀. When
the 𝜀 (with control weight matrix fixed) is increased, the
overshoot is increased, and the rise time, delay time, and
peak time are reduced. However, setting time is gradually
increased and then is decreased by increasing 𝜀. Therefore,
the rise time, delay time, and peak time will be increased, and
the overshootswill be reduced by reducing the 𝜀. In all, system
performances are affected by the 𝜀-Routh stability too.

4.1. System Performances of Different Tuning Methods. The
step response and system performances of different tuning
methods for plant.1, plant.2, and plant.3 are shown in Figures
6, 7, and 8 and Table 4, respectively. For plant.1, the results
obviously show that the Z-N method, IA-ISE method [7],
and IA-ITSE method [7] show oscillatory behaviors, but
the proposed method shows smoothly response without any
oscillation. The Z-N method has small rise time, delay time,
and peak time compared with the proposed method, IA-ISE
method, and IA-ITSEmethod. However, the Z-Nmethod has
the largest overshoot and setting time among these tuning
methods. The overshoot and setting time of the Z-N method
is about 11.08% and 6.41 sec, and the overshoot and setting
time of the proposed method, IA-ISE method, and IA-ITSE
method are about 4.08% and 3.54 sec, 4.24% and 3.13 sec, and
5.27% and 4.88 sec, respectively. Thus, these tuning methods
own advantages for plant.1.

The plant.2 is a SOPTD plant with dead time ratio 𝜏/𝑇 =

0.5. The results in Figure 7 show that dynamic performances
of the Z-Nmethod, A-Hmethod [19], gain and phasemethod
[15], and proposed method have different features. The Z-
N method, A-H method [19], gain and phase method [15],
and the proposed method have small rise time, delay time
and peak time, setting time, and overshoot, respectively. The
proposed method has the largest rise time, delay time, and
peak time, and the A-H method and Z-N method have the
largest setting time and overshoot, respectively. The longest
rise time, delay time, peak time, and setting time are about
4.778 sec, 1.841 sec, 6.622 sec, and 4.43 sec, respectively, and
the largest overshoot is about 43.09%. The gap between the
largest and the smallest items of the rise time, delay time,
peak time, and setting time is small, but only the gap between
the largest and the smallest overshoot is about 13 times of the
smallest ones.Thus, the comprehensive performances of Z-N
method are poorer than rest methods.
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Table 1: Proposed optimal PID controllers of plants.1–3 under various control weight matrices.

Plants Control weight matrix Q = diag (𝑞
1
𝑞
2
𝑞
3
𝑞
4
) Optimal PID controller

𝜀-Routh stability
𝑘
∗

𝑝
𝑘
∗

𝑖
𝑘
∗

𝑑

Plant.1

diag (5 5 1 1) 0.13121 0.58138 0.58655

𝜀 = 0

diag (5 2 1 1) 0.01633 0.58138 0.51933
diag (10 2 1 1) 0.23263 0.82219 0.64449
diag (10 10 1 1) 0.47606 0.82219 0.77901
diag (10 10 4 2) 0.15570 0.58138 0.64101

Plant.2

diag (0.2 1 1 1) 1.15698 0.52966 0.86781

𝜀 = 0.5

diag (0.2 1 1 0.2) 2.16962 0.84500 1.82140
diag (0.2 2 2 0.5) 1.78668 0.58700 1.59290

diag (0.1 0.8 0.8 0.2) 1.85901 0.64942 1.62251
diag (0.4 0.5 5 1) 1.22806 0.62168 1.42095

Plant.3

diag (0.04 27 158 175) 0.32447 0.01537 1.45256

𝜀 = 0

diag (0.04 28 120 80) 0.33078 0.01543 1.48167
diag (0.02 25 150 175) 0.30719 0.01193 1.39141
diag (0.05 27 120 100) 0.33727 0.01693 1.50359
diag (0.06 30 158 175) 0.33603 0.01737 1.49509

Table 2: Plant.1’s system performances of proposed method under various control weight matrices.

Control weight matrix Plant.1 Rise time Delay time Peak time Setting time Peak overshoot
Q = diag (𝑞

1
𝑞
2
𝑞
3
𝑞
4
) 𝑘

∗

𝑝
𝑘
∗

𝑖
𝑘
∗

𝑑
𝑡
𝑟
(sec) 𝑡

𝑑
(sec) 𝑡

𝑝
(sec) 𝑡

𝑠
(sec) 𝑀

𝑝
(%)

diag (5 5 1 1) 0.13121 0.58138 0.58655 4.060 1.685 5.31 3.54 4.08
diag (5 2 1 1) 0.01633 0.58138 0.51933 3.681 1.801 5.00 6.07 6.69
diag (10 2 1 1) 0.23263 0.82219 0.64449 2.850 1.318 4.02 5.35 8.47
diag (10 10 1 1) 0.47606 0.82219 0.77901 3.161 1.140 4.38 2.756 4.58
diag (10 10 4 2) 0.15570 0.58138 0.64101 4.120 1.691 5.37 3.60 4.23

0 2 4 6 8 10 12 14

0

0.2

0.4

0.6

0.8

1

1.2

Sy
ste

m
 re

sp
on

se

−0.2

Time (s)

𝑄 = diag (5 5 1 1)
𝑄 = diag (5 2 1 1)
𝑄 = diag (10 2 1 1)

𝑄 = diag (10 10 1 1)
𝑄 = diag (5 5 2 1) ∗ 2

(a)

0 2 4 6 8 10 12 14

0

0.2

0.4

0.6

0.8

1

1.2

C
on

tro
l e

rr
or

−0.2

Time (s)

𝑄 = diag (5 5 1 1)
𝑄 = diag (5 2 1 1)
𝑄 = diag (10 2 1 1)

𝑄 = diag (10 10 1 1)
𝑄 = diag (5 5 2 1) ∗ 2

(b)

Figure 4: Step response of the proposed method under various control weight matrices (for plant.1).
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Figure 5: Step response of the proposed method under various 𝜀-stability (for plant.2).
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Figure 6: Step response of plant.1 under different tuning methods.

Table 3: System performances of proposed method under different 𝜀 values (for plant.2).

Control matrix Q and 𝜀 value 𝑘
𝑝

𝑘
𝑖

𝑘
𝑑

Rise
time

𝑡
𝑟
(sec)

Delay
time

𝑡
𝑑
(sec)

Peak
time

𝑡
𝑝
(sec)

Setting
time

𝑡
𝑠
(sec)

Peak
overshoot
𝑀
𝑝
(%)

Plants

Q = diag (0.2 1 1 1) and 𝜀 = 0.5 1.15698 0.52966 0.86781 4.778 1.841 6.622 4.00 3.29 Plant.2
Q = diag (0.2 1 1 1) and 𝜀 = 2.5 1.45019 0.62500 1.30523 4.201 1.655 6.451 7.20 5.41 Plant.2
Q = diag (0.2 1 1 1) and 𝜀 = 3.0 1.79987 0.75000 1.78883 3.727 1.488 5.961 8.08 7.61 Plant.2
Q = diag (0.2 1 1 1) and 𝜀 = 4.0 2.31710 1.00000 2.00000 3.151 1.316 4.201 7.35 11.00 Plant.2
Q = diag (0.2 1 1 1) and 𝜀 = 5.0 2.46310 1.25000 1.00000 1.795 1.266 2.587 3.97 28.46 Plant.2
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Figure 7: Step response of plant.2 under different tuning methods.
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Figure 8: Step response of plant.3 under different tuning methods.

The plant.3 is a FOPTD plant with large dead time ratio
𝜏/𝑇 = 1.0. The results in Figure 8 show that all the tuning
methods show oscillation response. The overshoot of the Z-
N method (C-C) and Z-N method (PRC) are about 18.18%
and 21.17%, respectively. The results demonstrate that the
proposedmethodhas the smallest peak time 20.87 sec and the
smallest overshoot 6.67%, and the Cohen-Coon method has
the smallest rise time 17.252 sec and the smallest delay time
14.306 sec, and the Z-Nmethod (C-C) has about the smallest

setting time 51.60 sec. However, the Z-N method (PRC)
has the largest rise time 20.286 sec, delay time 14.635 sec,
and peak time 26.43 sec, and the Cohen-Coon method
has the largest setting time 67.05 sec and largest overshoot
38.06%. For plant.3, the Cohen-Coon method shows poorer
systemperformances than other tuningmethods. By studying
different tuning methods’ dynamic performances, it can be
known that the proposed method could provide good system
performances.
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Figure 9: Disturbance rejection ability of different tuning methods for plant.1.

Table 4: System performances of different tuning methods for plants.1–3.

Methods 𝑘
𝑝

𝑘
𝑖

𝑘
𝑑

Rise time
𝑡
𝑟
(sec)

Delay time
𝑡
𝑑
(sec)

Peak time
𝑡
𝑝
(sec)

Setting time
𝑡
𝑠
(sec)

Peak overshoot
𝑀
𝑝
(%) Plants

Proposed method 0.13121 0.58138 0.58655 4.060 1.685 5.310 3.54 4.08 Plant.1
Z-N method 0.5971 1.0750 0.2687 1.371 0.877 1.643 6.41 11.08 Plant.1
IA-ISE method 0.4479 0.9994 0.3340 1.678 0.983 4.015 3.13 4.24 Plant.1
IA-ITSE method 0.7377 0.9886 0.3557 1.429 0.845 3.506 4.88 5.27 Plant.1
Proposed method 1.15698 0.52966 0.86781 4.778 1.841 6.622 4.00 3.29 Plant.2
Z-N method 2.8130 1.7194 1.1505 1.620 1.195 2.458 3.81 43.09 Plant.2
Gain and phase method 2.3870 0.8747 0.9476 1.938 1.302 2.478 3.34 15.02 Plant.2
A-H method 2.5778 1.4518 1.2941 1.763 1.286 2.537 4.43 33.65 Plant.2
Proposed method 0.32447 0.01537 1.45256 19.486 14.306 20.87 60.56 6.67 Plant.3
Z-N method

Z-N method (C-C) 0.3060 0.0205 1.1384 19.238 14.367 24.98 51.60 18.18 Plant.3
Z-N method (PRC) 0.3000 0.0150 0.0600 20.286 14.635 26.43 56.06 21.17 Plant.3

Cohen-Coon method 0.3958 0.0219 1.2178 17.252 13.400 21.43 67.05 38.06 Plant.3
A-H method (real PID controller form) with derivative filter constant 𝑇𝑓 = 0.04947.
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Figure 10: Disturbance rejection ability of different tuning methods for plant.2.

4.2. Disturbance Rejection Ability of Different Methods. Dis-
turbance response results for plant.1, plant.2, and plant.3 are
shown in Figures 9, 10, and 11, respectively. For plant.1, the
results show that the proposed method, Z-N method, IA-ISE
and IA-ITSE methods have good ability to reject the distur-
bances, and they show roughly the samedisturbance response
amplitude (DRA) and disturbance attenuation time (DAT).
The proposed method has the best disturbance rejection
ability among the methods. The proposed method does not
show oscillatory behaviors, but Z-Nmethod, IA-ISEmethod,
and IA-ITSE method show oscillatory behaviors. For plant.2,
the disturbance response results of the proposed method, Z-
N method, A-H method, and gain and phase method are
shown in Figure 10.The results show that these methods have
good ability to reject disturbances and they have roughly the
same DAT.The DRAs of the proposed method, Z-N method,
A-H method, and gain and phase method are about 0.13,
0.10, 0.10, and 0.11, respectively. The proposed method has
larger DRA than the rest methods, but the proposed method
shows smooth disturbance response. For plant.3, disturbance

response results in Figure 11 show that these tuning methods
have roughly the same ability to reject disturbances. The
proposed method, Z-N method (C-C), Z-N method (PRC),
and Cohen-Coon method have roughly the same DRA and
DAT. Among these tuning methods, the DRA of the Z-N
method (PRC) is about 0.275, the proposed method, Z-N
method (C-C), andCohen-Coonmethod have the sameDRA
which is about 0.25. Overall, as known from disturbance
response results, it could be that the proposed method, A-H
method, and gain and phase method roughly have roughly
the same ability to reject disturbances.

To study 𝜀-Routh stability’s effects on disturbance rejec-
tion ability, the disturbance response results under various
𝜀 are shown in Figure 12. The disturbance response results
in Figure 12 clearly show that the 𝜀 has effects on the DRA
and DAT. The DAT will be continuously reduced when
the 𝜀 increases from 0.5 to 5.0. However, the DAR will be
gradually reduced and then be increased when the 𝜀 increases
from 0.5 to 5.0. The DAT reflects how fast the disturbances
will be eliminated, and DRA reveals how much disturbance
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Figure 11: Disturbance rejection ability of different tuning methods for plant.3.

amplitude of the control system. Thus, 𝜀-Routh stability has
effects on the disturbance rejection ability.

4.3. Experiment Results for the CWTS. The proposed PID
controller is utilized to control the liquid level of a CWTS
with interactive behavior. The proposed PID controllers’
experimental results of the CWTS under various control
weight matrix and different set points are shown in Figures
14, 15, 16, 17, 18, 19, 20, and 21. The theoretical model of
the CWTS is already obtained in previous section; therefore
the identification model can be acquired via open-loop
experiment. The liquid level’s real-time data is stored in the
disk of monitoring computer, and the date can be accessed
on-line for process control (OPC) database.The identification
model of CWTS is identified as ℎ

1
(𝑠)/𝑄
𝑖𝑐
(𝑠) = (0.4465𝑠 +

0.3064)/(𝑠
2
+ 1.340𝑠 + 0.01264) via least square method

(sample time is 1 second) when open ratio of control valve,
output valve-1, output valve-2, and connected valve-3 is set
at 75%, 100%, 30%, and 100%, respectively. The steady-state

liquid level is about 294.00mm, and it will take about 12
minutes to reach this liquid level. The actual liquid level and
the identification model’s liquid level are shown in Figure 13.
The identification model is consistent with the actual model
of the CWTS; thus, the identification model describes the
actual model accurately.

In the closed-loop experiment, the proposed method
is used to control the liquid level of the CWTS under
different set points. Proposed PID controllers under different
control weight matrices and 𝜀-Routh stability are used in
the experiments. The proposed PID controllers (𝑘

𝑝
=

10.000, 𝑘
𝑖

= 0.32549, 𝑘
𝑑

= 0.001, 𝜀 = 0; 𝑘
𝑝

=

10.000, 𝑘
𝑖

= 0.10118, 𝑘
𝑑

= 0.001, 𝜀 = 0; 𝑘
𝑝

=

10.000, 𝑘
𝑖
= 0.22986, 𝑘

𝑑
= 0.001, 𝜀 = 0; 𝑘

𝑝
= 6.000, 𝑘

𝑖
=

0.13817, 𝑘
𝑑
= 0.001, and 𝜀 = 0) are used to control liquid

level of the CWTS with interactive behaviors. The first group
experiments’ setting point of the liquid level ℎ

1
is set at

300.00mm and second group experiments’ setting point ℎ
1

is set at 160.00mm. The corresponding experiment results
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Figure 12: Disturbance rejection ability of the proposed method under various 𝜀-stability (for plant.2).

of the first group and second group experiments are shown
in Figures 14–21, respectively. In Figures 14–21, the solid red
line is the dynamic response of the liquid level ℎ

1
, the solid

magenta line is the dynamic response of the liquid level ℎ
2
,

and the solid cyan line is the control signal. In the first group
experiments, the dynamic response results of the proposed
method shown in Figures 14–17 obviously reveal that the
proposedmethod provides good systemperformances for the
CWTSwith interactive behaviors. In first group experiments,
the setting time for the CWTS is less than 7 minutes, and
the overshoot of the proposed method is less than 4% under
various control weight matrices of the proposed method.

In the second group experiments, the dynamic response
results of the proposed method shown in Figures 18–21
clearly reveal that the proposedmethodprovides good system
performances and robustness. The proposed PID controller
is designed for the liquid level of set point at 294mm. The
actual model of the CWTS has been changed in the second
group experiments because the liquid level set point hasmade
a huge change. In the second group experiments, the setting

time of the proposed method for the CWTS is less than 3.5
minutes, and the overshoot of the proposed method is less
than 12%. Figures 18 and 20 show that the liquid level has
a small fluctuation; however, overall system performances
are still accepted. The system parameters of liquid model
will show perturbations when the set point of liquid level
makes a huge change.The proposed method can still provide
good system performances when the set point of the liquid
level changes from 300mm to 160mm. Furthermore, the
dynamic response results in Figures 18–21 also reflect that the
proposed method shows good robustness to rejection model
perturbation, system parameters perturbation, and set point
variation.

Simulation results and experiment results reveal that the
proposedmethod can provide good system performances for
different processes. The proposed method also demonstrates
gooddisturbance rejection ability and robustness for different
processes.Therefore, the proposedmethod is useful to design
the optimal PID controller. In short, the proposed method
is suitable for different processes and can provide good
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Figure 14: Experimental response of the CWTS with the PID
controller 𝑘

∗

𝑝
= 10.000, 𝑘∗

𝑖
= 0.32549, 𝑘∗

𝑑
= 0.001, and 𝜀 = 0 in

set point 300mm.

Figure 15: Experimental response of the CWTS with the PID
controllers 𝑘∗

𝑝
= 10.000, 𝑘∗

𝑖
= 0.10118, 𝑘∗

𝑑
= 0.001, and 𝜀 = 0 in

set point 300mm.

Figure 16: Experimental response of the CWTS with the PID
controllers 𝑘∗

𝑝
= 10.000, 𝑘∗

𝑖
= 0.22986, 𝑘∗

𝑑
= 0.001, and 𝜀 = 0 in

set point 300mm.

Figure 17: Experimental response of the CWTS with the PID
controllers 𝑘

∗

𝑝
= 6.000, 𝑘∗

𝑖
= 0.13817, 𝑘∗

𝑑
= 0.001, and 𝜀 = 0 in

set point 300mm.

system performances.The simulation results and experiment
results show the effectiveness and usefulness of the proposed
method.

5. Conclusions

In this paper, a systematic method is presented to design the
optimal PID controller with 𝜀-Routh stability for different
processes via Lyapunov approach.The optimal PID controller
is obtained by minimizing AISE performance index which
contains the control error and at least first-order error
derivative, or evenmay contain the 𝑛th-order error derivative.
The proposed optimal control problem could be equivalently
transformed into a NLCO problem via Lyapunov theorems.
Therefore, the optimal PID controller can be obtained by
solving the NLCO problem via the interior method or
other optimization methods. Optimal PID controllers under
different control weight matrices and 𝜀-Routh stability are
presented for different processes. For the proposed method,
controlweightmatrix and 𝜀-Routh stability’s effects on system
performances are analyzed. Different tuningmethods’ system
performances are discussed.
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Figure 18: Experimental response of the CWTS with the PID
controllers 𝑘∗

𝑝
= 10.000, 𝑘∗

𝑖
= 0.32549, 𝑘∗

𝑑
= 0.001, and 𝜀 = 0 in

set point 160mm.

Figure 19: Experimental response of the CWTS with the PID
controllers 𝑘∗

𝑝
= 10.000, 𝑘∗

𝑖
= 0.10118, 𝑘∗

𝑑
= 0.001, and 𝜀 = 0 in

set point 160mm.

The controlweightmatrix and 𝜀-Routh stability have large
effects on system performances. For third-order processes,
systemperformances and response velocity are affected by the
control weight factors 𝑞

1
, 𝑞
2
, 𝑞
3
, and 𝑞

4
. The peak overshoot

and response velocity will be heightened by increasing weight
factor 𝑞

1
(with other factors fixed). Likewise, the overshoot

and response velocity will be heightened by reducing weight
factors 𝑞

2
, 𝑞
3
, and 𝑞

4
(with 𝑞

1
fixed). On the contrary, the

overshoot and response velocity will be reduced by reducing
weight factor 𝑞

1
(with other factors fixed) or increasing

weight factors 𝑞
2
, 𝑞
3
, and 𝑞

4
(with 𝑞

1
fixed). Through the

study, for 𝑛th-order processes, the above conclusions still
hold; it can be inferred that system performances are affected
by the control weight factors 𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑛+1
. The 𝜀-Routh

stability (with control weight matrix fixed) has effects on
system performances. The results show that the overshoots
and response velocity will be heightened by increasing the 𝜀.
Overshoots will be increased, and the rise time, delay time,
and peak time will be reduced by increasing the 𝜀. On the
contrary, overshoots will be reduced, and the rise time, delay
time, and peak time will be increased by reducing the 𝜀.

Disturbance rejection ability of different tuning methods
is also investigated, and simulation results reveal that the

Figure 20: Experimental response of the CWTS with the PID
controllers 𝑘∗

𝑝
= 10.000, 𝑘∗

𝑖
= 0.22986, 𝑘∗

𝑑
= 0.001, and 𝜀 = 0 in

set point 160mm.

Figure 21: Experimental response of the CWTS with the PID
controllers 𝑘

∗

𝑝
= 6.000, 𝑘∗

𝑖
= 0.13817, 𝑘∗

𝑑
= 0.001, and 𝜀 = 0 in

set point 160mm.

proposed method shows good disturbance rejection ability.
The 𝜀-Routh stability’s effects on disturbance rejection ability
are investigated. The disturbance response results clearly
show that the 𝜀 has effects on the DRA and DAT. The DAT
will be continuously reduced by increasing the 𝜀. However,
the DAR will be gradually reduced and then be increased by
increasing the 𝜀.

To further validate the proposed method, the proposed
method is utilized to control the liquid level of CWTS with
interactive behaviors. The experimental results under differ-
ent set points and control weight matrices are presented in
detail. Both simulation results and experimental results show
the effectiveness and usefulness of the proposed method.
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