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The Duhem model, widely used in structural, electrical, and mechanical engineering, gives an analytical description of a smooth
hysteretic behavior. In practice, the Duhem model is mostly used within the following black-box approach: given a set of
experimental input-output data, how to tune the model so that its output matches the experimental data. It may happen that a
Duhem model presents a good match with the experimental real data for a specific input but does not necessarily keep significant
physical properties which are inherent to the real data, independent of the exciting input. This paper presents a characterization of
different classes of Duhem models in terms of their consistency with the hysteresis behavior.

1. Introduction

Hysteresis is a nonlinear behavior encountered in a wide
variety of processes including biology, optics, electronics,
ferroelectricity, magnetism, mechanics, structures, among
other areas.The detailedmodeling of hysteresis systems using
the laws of Physics is an arduous task, and the obtained
models are often too complex to be used in applications. For
this reason, alternativemodels of these complex systems have
been proposed [1–5]. These models do not come, in general,
from the detailed analysis of the physical behavior of the
systems with hysteresis. Instead, they combine some physical
understanding of the system along with some kind of black-
box modeling.

One of the popular models for hysteresis is the Duhem
model proposed in [6]. The generalized form of the Duhem
model consists of an ordinary differential equation of the
form �̇� = 𝑓(𝑥, 𝑢)𝑔(�̇�), where 𝑢 is the input and 𝑥 is the state
or the output [7]. Other special forms of the model have been
used, like the form �̇� = 𝑓

1
(𝑥, 𝑢)max{�̇�, 0}+𝑓

2
(𝑥, 𝑢)min{�̇�, 0}

[8] or the semilinear form �̇� = (𝐴𝑥 + 𝐵𝑢)𝑔(�̇�) [9]. Other
important special cases of the Duhem model are the LuGre
model of friction [10], the Dahl model of friction [11], and the
Bouc-Wenmodel of hysteresis [12, 13].TheDuhemmodel has
been used to represent friction [7], electromagnetic behavior
[14, 15], or hysteresis in magnetorheological dampers [16].

In the current literature, the Duhem model is mostly
used within the following black-box approach: given a set of
experimental input-output data, how to adjust the Duhem
model so that the output of the model matches the experi-
mental data? The use of system identification techniques is
one practical way to perform this task. Once an identification
method has been applied to tune the Duhem model, the
resulting model is considered as a “good” approximation of
the true hysteresis when the error between the experimental
data and the output of the model is small enough. Then, this
model is used to study the behavior of the true hysteresis
under different excitations. By doing this, it is important
to consider the following remark. It may happen that a
Duhem model presents a good match with the experimental
real data for a specific input but does not necessarily keep
significant physical properties which are inherent to the
real data, independent of the exciting input. In the current
literature, this issue has been considered in [17, 18] regarding
the passivity/dissipativity of Duhem model.

In this paper, we investigate the conditions under which
the Duhem model is consistent with the hysteresis behavior.
The concept of consistency is formalized in [19] where a
general class of hysteresis operators is considered. The class
of operators that are considered in [19] are the causal ones,
with the additional condition that a constant input leads to
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a constant output. For these classes of systems, consistency
has been defined formally. This property is useful in system
modeling and identification as it limits the search for the
system’s parameters to those regionswhere consistency holds.
From the results of [19], it can be concluded that to check
consistency one has to consider the sequence of inputs𝑢

𝛾
(𝑡) =

𝑢(𝑡/𝛾), 𝑡 ≥ 0, 𝛾 > 0 and the corresponding sequence
of outputs 𝑥

𝛾
with �̇�

𝛾
= 𝑓(𝑥

𝛾
, 𝑢

𝛾
) 𝑔 (�̇�

𝛾
). For the Duhem

model to represent a hysteresis system, it is necessary that
the sequence of functions 𝑡 → 𝑥

𝛾
(𝛾𝑡) converges uniformly

when 𝛾 → ∞. In this paper, we seek necessary conditions
and sufficient ones for this uniform convergence to hold.

This paper is organized as follows. Section 2 presents the
needed mathematical background. The problem statement is
formalized in Section 3. A classification of functions 𝑔 that
is used throughout the paper, is introduced in Section 4.
Sections 5 and 6 present necessary conditions and sufficient
ones for theDuhemmodel to be consistent with the hysteresis
behavior. Conclusions are given in Section 7.

2. Background Results

This section summarizes the results obtained in [19].
A function ] : R → R is said to be increasing (resp.,

decreasing) if 𝑡
1

< 𝑡

2
⇒ ](𝑡

1
) < ](𝑡

2
) (resp. ](𝑡

1
) > ](𝑡

2
)),

and it is said to be nondecreasing (resp. nonincreasing) if 𝑡
1
<

𝑡

2
⇒ ](𝑡

1
) ≤ ](𝑡

2
) (resp., ](𝑡

1
) ≥ ](𝑡

2
)).

The Lebesgue measure on R is denoted 𝜇. A subset of
R is said to be measurable when it is Lebesgue measurable.
Consider a function 𝑝 : 𝐼 ⊂ R

+
= [0,∞) → R𝑚 for some

interval 𝐼; the function 𝑝 is said to be measurable when 𝑝 is
(𝑀, 𝐵)-measurable where 𝐵 is the class of Borel sets of R𝑚
and𝑀 is the class of measurable sets ofR

+
. For a measurable

function 𝑝 : 𝐼 ⊂ R
+

→ R𝑚, ‖𝑝‖

∞,𝐼
denotes the essential

supremum of the function |𝑝| on 𝐼 where | ⋅ | is the Euclidean
norm on R𝑚. When 𝐼 = R

+
, and it is denoted simply ‖𝑝‖

∞
.

Consider the Sobolev space 𝑊

1,∞
(R
+
,R𝑛) of absolutely

continuous functions 𝑢 : R
+

→ R𝑛, where 𝑛 is a
positive integer. For this class of functions, the derivative �̇�

is defined almost every where with ‖𝑢‖

∞
< ∞ and ‖�̇�‖

∞
<

∞. Endowed with the norm ‖𝑢‖

1,∞
= max(‖𝑢‖

∞
, ‖�̇�‖

∞
),

𝑊

1,∞
(R
+
,R𝑛) is a Banach space [20].

For 𝑢 ∈ 𝑊

1,∞
(R
+
,R𝑛), let 𝜌

𝑢
: R
+

→ R
+
be the total

variation of 𝑢 on [0, 𝑡]; that is, 𝜌
𝑢
(𝑡) = ∫

𝑡

0
|�̇�(𝜏)|𝑑𝜏 ∈ R

+
. The

function 𝜌

𝑢
is well defined as �̇� ∈ 𝐿

1

loc(R+,R
𝑛
). (𝐿1loc(R+,R

𝑛
)

is the space of locally integrable functions R
+

→ R𝑛). It is
nondecreasing and absolutely continuous. Denote 𝜌

𝑢,max =

lim
𝑡→∞

𝜌

𝑢
(𝑡). If 𝜌

𝑢,max = 𝜌

𝑢
(𝑡) for some 𝑡 ∈ R

+
, let 𝐼

𝑢
=

[0, 𝜌

𝑢,max] (in this case 𝜌

𝑢,max is necessarily finite). On the
other hand, if 𝜌

𝑢,max > 𝜌

𝑢
(𝑡) for all 𝑡 ∈ R

+
, let 𝐼
𝑢
= [0, 𝜌

𝑢,max)
(in this case 𝜌

𝑢,max may be finite or infinite).

Lemma 1. Let 𝑢 ∈ 𝑊

1,∞
(R
+
,R𝑛) be nonconstant. Then, there

exists a unique function 𝜓

𝑢
∈ 𝑊

1,∞
(𝐼

𝑢
,R𝑛) that satisfies

𝜓

𝑢
I 𝜌

𝑢
= 𝑢.

Consider the linear time scale change 𝑠

𝛾
(𝑡) = 𝑡/𝛾, for any

𝛾 > 0 and 𝑡 ≥ 0. Let Ξ be a set of initial conditions. LetH be

an operator that maps the input function 𝑢 ∈ 𝑊

1,∞
(R
+
,R𝑛)

and initial condition 𝜉

0
∈ Ξ to an output in 𝐿

∞
(R
+
,R𝑚),

where𝑚 is a positive integer.That isH : 𝑊

1,∞
(R
+
,R𝑛)×Ξ →

𝐿

∞
(R
+
,R𝑚). We consider causal operators such that for all

(𝑢

1
, 𝜉

0
), (𝑢

2
, 𝜉

0
) ∈ 𝑊

1,∞
(R
+
,R𝑛) × Ξ, if 𝑢

1
= 𝑢

2
in [0, 𝜏],

thenH(𝑢

1
, 𝜉

0
) = H(𝑢

2
, 𝜉

0
) in [0, 𝜏], [1, page 60].

Let (𝑢, 𝜉0) ∈ 𝑊

1,∞
(R
+
,R𝑛) × Ξ and let 𝑦 = H(𝑢, 𝜉

0
) ∈

𝐿

∞
(R
+
,R𝑚). In the rest of this work, only causal operators

are considered. Additionally, we consider that the following
holds.

Assumption 2. Let (𝑢, 𝜉

0
) ∈ 𝑊

1,∞
(R
+
,R𝑛) × Ξ and 𝑦 =

H(𝑢, 𝜉

0
) ∈ 𝐿

∞
(R
+
,R𝑚); if ∃𝜃 ∈ R

+
such that 𝑢 is constant

on [𝜃,∞); then 𝑦 is constant on [𝜃,∞).

Lemma 3. There exists a unique function 𝜑

𝑢
∈ 𝐿

∞
(𝐼

𝑢
,R𝑚)

that satisfies𝜑
𝑢
I 𝜌

𝑢
= 𝑦. Moreover, one has ‖𝜑

𝑢
‖

∞,𝐼
𝑢

≤ ‖𝑦‖

∞
.

If 𝑦 is continuous on R
+
, then 𝜑

𝑢
is continuous on 𝐼

𝑢
and one

has ‖𝜑
𝑢
‖

∞,𝐼
𝑢

= ‖𝑦‖

∞
.

Definition 4. Let 𝑢 ∈ 𝑊

1,∞
(R
+
,R𝑛) and initial condition

𝜉

0
∈ Ξ be given. The operatorH is said to be consistent with

respect to input 𝑢 and initial condition 𝑥

0
if and only if the

sequence of functions {𝜑

𝑢I𝑠
𝛾

}

𝛾>0
converges in 𝐿

∞
(𝐼

𝑢
,R𝑚) as

𝛾 → ∞.

It is shown in [19] that for hysteresis process, the sequence
of functions {𝜑

𝑢I𝑠
𝛾

}

𝛾>0
converges in 𝐿

∞
(𝐼

𝑢
,R𝑚) as 𝛾 → ∞.

This fact shows that consistency is a mathematical property
that any model of hysteresis should satisfy.

3. Problem Statement

The generalized Duhem model is defined for almost all 𝑡 ≥ 0

by [7]
�̇� (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡)) 𝑔 (�̇� (𝑡)) , (1)

𝑥 (0) = 𝑥

0
, (2)

where 𝑥

0
and state 𝑥(𝑡) take values in R𝑚 for some positive

integer 𝑚, input 𝑢 ∈ 𝑊

1,∞
(R
+
,R), function 𝑓 : R𝑚 × R →

R𝑚×𝑟 is continuous, where 𝑟 and 𝑚 are positive integers.
Finally, 𝑔 : R → R𝑟 is continuous and satisfies 𝑔(0) = 0.
Observe that if 𝑢 is constant; then 𝑥(𝑡) = 𝑥

0
, for all 𝑡 ≥ 0.

For this reason, we consider only nonconstant inputs 𝑢 in this
paper.

Since 𝑔 is continuous and �̇� ∈ 𝐿

∞
(R
+
,R), we have

𝑔 I �̇� ∈ 𝐿

∞
(R,R𝑟). The differential equation (1) satisfies

Carathéodory conditions, thus, for each initial state 𝑥

0
∈ R𝑚,

(1) has an absolutely continuous solution that is defined on an
interval of the form [0, 𝑇), 𝑇 > 0 [21, page 4].

Consider the time scale change 𝑠

𝛾
(𝑡) = 𝑡/𝛾, 𝛾 > 0, 𝑡 ≥ 0.

When the input 𝑢 I 𝑠

𝛾
is used instead of 𝑢, the system (1)-(2)

becomes

�̇�

𝛾
(𝑡) = 𝑓 (𝑥

𝛾
(𝑡) , 𝑢 I 𝑠

𝛾
(𝑡)) 𝑔 (

1

𝛾

�̇� I 𝑠

𝛾
(𝑡)) , (3)

𝑥

𝛾
(0) = 𝑥

0
, (4)
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where 𝑥

𝛾
is the maximal solution of (3). When 𝛾 = 1, system

(3)-(4) reduces to (1)-(2). For any 𝛾 > 0, define 𝜎

𝛾
: R
+

→

R𝑚 as 𝜎
𝛾
= 𝑥

𝛾
I 𝑠

1/𝛾
. System (3)-(4) can be rewritten as

𝜎

𝛾
(𝑡) = 𝑥

0
+ 𝛾∫

𝑡

0

𝑓 (𝜎

𝛾
(𝜏) , 𝑢 (𝜏)) 𝑔 (

1

𝛾

�̇� (𝜏)) 𝑑𝜏, (5)

for all 𝛾 > 0 and for almost all 𝑡 ∈ [0, 𝜔

𝛾
), where [0, 𝜔

𝛾
) is the

maximal interval of existence of the solution 𝜎

𝛾
.

Observe that Lemma 3 implies that for any 𝛾 > 0 there
exists a unique function 𝑥

𝑢I𝑠
𝛾

∈ 𝐿

∞
(𝐼

𝑢
,R𝑚) such that

𝑥

𝑢I𝑠
𝛾

I 𝜌

𝑢I𝑠
𝛾

= 𝑥

𝛾
(when 𝛾 = 1, we get 𝑥

𝑢
I 𝜌

𝑢
= 𝑥). The

latter equality is equivalent to 𝑥

𝑢I𝑠
𝛾

I 𝜌

𝑢
= 𝜎

𝛾
. According to

Definition 4, the system (1)-(2) is consistent with respect to
(𝑢, 𝑥

0
) if and only if the sequence of functions 𝑥

𝑢I𝑠
𝛾

converges
in 𝐿

∞
(𝐼

𝑢
,R𝑚).

Proposition 5. The system (1)-(2) is consistent with respect to
(𝑢, 𝑥

0
) in the sense of Definition 4 if and only if the sequence of

function 𝜎

𝛾
converges in 𝐿

∞
(R
+
,R𝑚) as 𝛾 → ∞.

Proof. To prove the if part, define the causal operator H :

𝑊

1,∞
(R
+
,R𝑛) × R𝑚 → 𝐿

∞
(R
+
,R𝑚) that maps (𝑢, 𝑥

0
)

to 𝑥, where 𝑥 is given in (1)-(2). Assume that there exists
𝜎

∗
∈ 𝐿

∞
(R
+
,R𝑚) such that lim

𝛾→∞
‖𝜎

𝛾
− 𝜎

∗
‖

∞
= 0. We

know from (5), that 𝜎
𝛾
is a sequence of continuous functions.

Thus, the function 𝜎

∗ is continuous as a uniform limit of
continuous function. Lemma 3 implies that there exists a
unique continuous function 𝑥

∗

𝑢
∈ 𝐿

∞
(𝐼

𝑢
,R𝑚) such that

𝑥

∗

𝑢
I 𝜌

𝑢
= 𝜎

∗. Let  ∈ 𝐼

𝑢
. Since 𝜌

𝑢
is continuous, there

exists some 𝑡 ≥ 0 such that  = 𝜌

𝑢
(𝑡). We get from the

relation 𝜎

𝛾
= 𝑥

𝑢I𝑠
𝛾

I 𝜌

𝑢
that for all 𝛾 > 0: |𝑥

𝑢I𝑠
𝛾

() −

𝑥

∗

𝑢
()| = |𝑥

𝑢I𝑠
𝛾

I 𝜌

𝑢
(𝑡) − 𝑥

∗

𝑢
I 𝜌

𝑢
(𝑡)| ≤ ‖𝜎

𝛾
− 𝜎

∗
‖

∞
.

This implies that ‖𝑥

𝑢I𝑠
𝛾

− 𝑥

∗

𝑢
‖

∞,𝐼
𝑢

≤ ‖𝜎

𝛾
− 𝜎

∗
‖

∞
so that

lim
𝛾→∞

‖𝑥

𝑢I𝑠
𝛾

− 𝑥

∗

𝑢
‖

∞,𝐼
𝑢

= 0, which means that the system
(1)-(2) is consistent with respect to (𝑢, 𝑥

0
).

To prove the only if part, assume that
lim
𝛾→∞

‖𝑥

𝑢I𝑠
𝛾

− 𝑥

∗

𝑢
‖

∞,𝐼
𝑢

= 0, then the relation
𝑥

𝑢I𝑠
𝛾

I 𝜌

𝑢
= 𝜎

𝛾
implies that for almost all 𝑡 ≥ 0











𝜎

𝛾
(𝑡) − 𝑥

∗

𝑢
I 𝜌

𝑢
(𝑡)











=













𝑥

𝑢I𝑠
𝛾

I 𝜌

𝑢
(𝑡) − 𝑥

∗

𝑢
I 𝜌

𝑢
(𝑡)













≤













𝑥

𝑢I𝑠
𝛾

− 𝑥

∗

𝑢











∞,𝐼
𝑢

.

(6)

Thus, we have ‖𝜎

𝛾
− 𝑥

∗

𝑢
I 𝜌

𝑢
‖

∞
≤ ‖𝑥

𝑢I𝑠
𝛾

− 𝑥

∗

𝑢
‖

∞,𝐼
𝑢

so that
lim
𝛾→∞

‖𝜎

𝛾
− 𝑥

∗

𝑢
I 𝜌

𝑢
‖

∞
= 0.

Proposition 5 implies that the consistency of the system
(1)-(2) can be investigated by studying the uniform conver-
gence of the sequence of functions 𝜎

𝛾
instead of 𝑥

𝑢I𝑠
𝛾

. Thus,
we know from Section 2 that the system (1)-(2) is a hysteresis
only if 𝜎

𝛾
converges uniformly as 𝛾 → ∞.

Problem. In this paper, our objective is to derive necessary
conditions and sufficient ones for the uniform convergence
of the sequence of functions 𝜎

𝛾
as 𝛾 → ∞.

4. Classification of Function 𝑔

This section introduces a classification for the function 𝑔 that
is used throughout the paper.

Definition 6. Let 𝐺 ∈ 𝐶

0
([𝑡

1
, 𝑡

2
],R) (𝐶

0
([𝑡

1
, 𝑡

2
],R) = {𝑝 :

[𝑡

1
, 𝑡

2
] → R such that 𝑝 is continuous on [𝑡

1
, 𝑡

2
]}). The right

and left local fractional derivatives of 𝐺 at 𝑡

3
∈ (𝑡

1
, 𝑡

2
) with

respect to order 𝜆 > 0 are defined respectively as follows [22]:

𝑑

𝜆

+
𝐺 (𝑡

3
) = Γ (1 + 𝜆) lim

𝜅→ 𝑡
3
+

𝐺 (𝜅) − 𝐺 (𝑡

3
)

(𝜅 − 𝑡

3
)

𝜆
∈ R,

𝑑

𝜆

−
𝐺 (𝑡

3
) = Γ (1 + 𝜆) lim

𝜅→ 𝑡
3
−

𝐺 (𝑡

3
) − 𝐺 (𝜅)

(𝑡

3
− 𝜅)

𝜆
∈ R,

(7)

where Γ is the gamma function.

The local fractional derivative of a vector-valued function
is the vector of local fractional derivatives of its components.

Definition 7. The function 𝑔 ∈ 𝐶

0
(R,R𝑟) is said to be of class

𝜆 > 0 if 𝑔 (0) = 0 and the quantities 𝑑

𝜆

+
𝑔 (0) and 𝑑

𝜆

−
𝑔 (0)

exist, are finite, and at least one of them is nonzero.

Proposition 8. The function 𝑔 ∈ 𝐶

0
(R,R𝑟) is of class 𝜆 if and

only if

∀𝜗 ∈ R, one has lim
𝛾→∞

𝛾

𝜆
𝑔(

𝜗

𝛾

) = 𝑔

∗
(𝜗) , (8)

where 𝑔

∗
∈ 𝐶

0
(R,R𝑟) is defined as

𝑔

∗
(𝜗) =

{

{

{

{

{

{

{

𝜗

𝜆 lim
𝜅→0+

𝑔 (𝜅)

𝜅

𝜆
𝜗 ≥ 0,

(−𝜗)

𝜆 lim
𝜅→0−

𝑔 (𝜅)

(−𝜅)

𝜆
𝜗 < 0.

(9)

Proof. Immediate using of the change of variables 𝜅 = 𝜗/𝛾.

Proposition 9. If the function 𝑔 ∈ 𝐶

0
(R,R𝑟) is of class 𝜆; then

lim
𝛾→∞

‖𝛾

𝜆
𝑔(�̇�/𝛾) − 𝑔

∗
(�̇�)‖

∞
= 0, where 𝑔

∗
∈ 𝐶

0
(R,R𝑟) is

defined in (9).

Proof. The result is trivial when 𝑢 is constant. Assume that 𝑢
is nonconstant. Given 𝜀 > 0. Since 𝑔 ∈ 𝐶

0
(R,R𝑟) is of class 𝜆,

there exists some 𝑐

𝜀
; that depend solely on 𝜀, such that





















𝑔 (𝜗)

𝜗

𝜆
−

𝑑

𝜆

+
𝑔 (0)

Γ (1 + 𝜆)





















<

𝜀

‖�̇�‖

𝜆

∞

, whenever 0 < 𝜗 < 𝑐

𝜀
,





















𝑔 (𝜗)

(−𝜗)

𝜆
−

𝑑

𝜆

−
𝑔 (0)

Γ (1 + 𝜆)





















<

𝜀

‖�̇�‖

𝜆

∞

, whenever − 𝑐

𝜀
< 𝜗 < 0.

(10)
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The boundedness of �̇� implies that there exists a positive
constant 𝛾∗ such that |�̇�(𝑡)|/𝛾 < 𝑐

𝜀
, for all 𝛾 > 𝛾

∗. Thus, we
have for all 𝛾 > 𝛾

∗,




















𝛾

𝜆
𝑔 (�̇�/𝛾)

(�̇�)

𝜆
−

𝑑

𝜆

+
𝑔 (0)

Γ (1 + 𝜆)





















<

𝜀

‖�̇�‖

𝜆

∞

, whenever �̇� > 0,





















𝛾

𝜆
𝑔 (�̇�/𝛾)

(−�̇�)

𝜆
−

𝑑

𝜆

−
𝑔 (0)

Γ (1 + 𝜆)





















<

𝜀

‖�̇�‖

𝜆

∞

, whenever �̇� < 0.

(11)

Thus, we get from (9) that
















𝛾

𝜆
𝑔(

�̇�

𝛾

) − 𝑔

∗
(�̇�)

















≤ |�̇�|

𝜆max{





















𝛾

𝜆𝑔 (�̇�)

|�̇�|

𝜆
−

𝑑

𝜆

+
𝑔 (0)

Γ (1 + 𝜆)





















,





















𝛾

𝜆𝑔 (�̇�)

|�̇�|

𝜆
−

𝑑

𝜆

−
𝑔 (0)

Γ (1 + 𝜆)





















} < 𝜀,

∀𝛾 > 𝛾

∗
,

(12)

which completes the proof.

Proposition 10. If the function 𝑔 ∈ 𝐶

0
(R,R𝑟) is of class 𝜆

1

for some 𝜆

1
> 0; then it cannot be of any class 𝜆

2
> 0 different

than 𝜆

1
.

Proof. Assume that the function 𝑔 ∈ 𝐶

0
(R,R𝑟) is of class 𝜆

1

and 𝜆

2
with 𝜆

1
< 𝜆

2
. Then,

𝑑

𝜆
1

+
𝑔 (0)

Γ (1 + 𝜆

1
)

= lim
𝜅→0+

𝑔 (𝜅)

𝜅

𝜆
1

= lim
𝜅→0+

𝜅

𝜆
2
−𝜆
1

𝑔 (𝜅)

𝜅

𝜆
2

= 0 ×

𝑑

𝜆
2

+
𝑔 (0)

Γ (1 + 𝜆

2
)

= 0,

𝑑

𝜆
1

−
𝑔 (0)

Γ (1 + 𝜆

1
)

= lim
𝜅→0−

𝑔 (𝜅)

(−𝜅)

𝜆
1

= lim
𝜅→0−

|𝜅|

𝜆
2
−𝜆
1

𝑔 (𝜅)

|𝜅|

𝜆
2

= 0 ×

𝑑

𝜆
2

−
𝑔 (0)

Γ (1 + 𝜆

2
)

= 0,

(13)

which contradicts the fact that 𝑔 is of class 𝜆

1
.

Proposition 11. If the function 𝑔 ∈ 𝐶

0
(R,R𝑟) is of class 𝜆 > 0;

then there exists 𝑔
0
∈ 𝐶

0
(R,R
+
), such that

















𝛾

𝜆
𝑔(

𝜗

𝛾

)

















≤ 𝑔

0
(𝜗) , ∀𝛾 > 1, ∀𝜗 ∈ R. (14)

Proof. see Appendix A.

5. Necessary Conditions

The objective of this section is to derive necessary conditions
for the uniform convergence of the sequence of functions 𝜎

𝛾

as 𝛾 → ∞.

The standard way to ensure that the system (1)-(2) admits
a unique solution is to prove that the right-hand side of (1)-(2)
is Lipschitz with respect to 𝑥. A function ] : 𝐷 ⊆ R𝑚×R

+
→

R𝑚 is Lipschitz with respect to 𝑥 if there exists a summable
function 𝑙 : R

+
→ R
+
such that |](𝛼

1
, 𝑡)−](𝛼

2
, 𝑡)| ≤ 𝑙(𝑡)|𝛼

1
−

𝛼

2
|, for almost all 𝑡 ≥ 0 and for all 𝛼

1
, 𝛼

2
∈ R𝑚 that satisfy

(𝑡, 𝛼

1
), (𝑡, 𝛼

2
) ∈ 𝐷 [21].

Lemma 12. Assume that the system (1)-(2) has a unique global
solution for each input 𝑢 ∈ 𝑊

1,∞
(R
+
,R) and initial condition

𝑥

0
∈ R𝑚. Assume that the function 𝑔 is of class 𝜆 > 0. Suppose

that there exists a continuous function𝑄 : R
+
×R
+
×R
+

→ R
+

such that

|𝑥 (𝑡)| ≤ 𝑄 (









𝑥

0









, ‖𝑢‖

∞
, ‖�̇�‖∞

) , ∀𝑡 ≥ 0, (15)

for each initial state𝑥
0
∈ R𝑚 and each input𝑢 ∈ 𝑊

1,∞
(R
+
,R).

Assume that the system (1)-(2) is consistent with respect to
(𝑢, 𝑥

0
); that is, there exists 𝑞

𝑢
∈ 𝐿

∞
(R
+
,R𝑚) such that

lim
𝛾→∞

‖𝜎

𝛾
− 𝑞

𝑢
‖

∞
= 0 (see Proposition 5); then

If 𝜆 = 1, one has

(i) 𝑞

𝑢
∈ 𝑊

1,∞
(R
+
,R𝑚).

(ii) one has for all 𝑡 ≥ 0 that

𝑞

𝑢
(𝑡) = 𝑥

0
+ ∫

𝑡

0

𝑓 (𝑞

𝑢
(𝜏) , 𝑢 (𝜏)) 𝑔

∗
(�̇� (𝜏)) 𝑑𝜏,

(16)

where 𝑔

∗ is given in (9).

If 𝜆 ∈ (0, 1), one has

(i) 𝑞

𝑢
∈ 𝐶

0
(R
+
,R𝑚) ∩ 𝐿

∞
(R
+
,R𝑚).

(ii) 𝑞

𝑢
(0) = 𝑥

0
.

(iii) one has for almost all 𝑡 ≥ 0 that

𝑓 (𝑞

𝑢
(𝑡) , 𝑢 (𝑡)) 𝑔

∗
(�̇� (𝑡)) = 0, (17)

where 𝑔

∗ is defined in (9).

If 𝜆 > 1, one has 𝑞
𝑢
(𝑡) = 𝑥

0
, for all 𝑡 ≥ 0.

Proof. By (15), the fact that 𝑢 ∈ 𝑊

1,∞
(R
+
,R𝑛), the continuity

of the function 𝑄, and the relation ‖𝑢‖

∞
= ‖𝑢 I 𝑠

𝛾
‖

∞
, for all

𝛾 > 0, there exists some 𝑎 > 0 independent of 𝛾, and 𝛾

0
> 0

such that










𝑥

𝛾
(𝑡)











≤ 𝑄(









𝑥

0









, ‖𝑢‖

∞
,

‖�̇�‖∞

𝛾

) ≤ 𝑎, ∀𝑡 ≥ 0, ∀𝛾 > 𝛾

0
,

(18)

where 𝑥

𝛾
is given in (3)-(4). Thus,











𝑥

𝛾









∞
≤ 𝑎, ∀𝛾 > 𝛾

0
. (19)

On the other hand, we conclude from Lemma 3 that 𝑥
𝑢I𝑠
𝛾

∈

𝐶

0
(𝐼

𝑢
,R𝑚) ∩ 𝐿

∞
(𝐼

𝑢
,R𝑚) and ‖𝑥

𝑢I𝑠
𝛾

‖

∞,𝐼
𝑢

= ‖𝑥

𝛾
‖

∞
, for all 𝛾 >

0. Hence, the continuity of 𝑥
𝑢I𝑠
𝛾

and (19) imply that










𝜎

𝛾
(𝑡)











=













𝑥

𝑢I𝑠
𝛾

I 𝜌

𝑢
(𝑡)













≤













𝑥

𝑢I𝑠
𝛾











∞,𝐼
𝑢

=











𝑥

𝛾









∞
≤ 𝑎,

∀𝑡 ≥ 0, ∀𝛾 > 𝛾

0
.

(20)
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Thus, the continuity of 𝑓 and 𝑔, the boundedness of �̇�, and
Proposition 11, imply that there exists a constant 𝑏 > 0

independent of 𝛾 such that 𝛾𝜆|𝑓(𝜎

𝛾
(𝜏), 𝑢(𝜏))𝑔(�̇�(𝜏)/𝛾)| ≤ 𝑏,

for almost all 𝜏 ≥ 0, for all 𝛾 > 1. Thus, we can apply the
Dominated LebesgueTheorem [23] to get

lim
𝛾→∞

𝛾

𝜆
∫

𝑡

0

𝑓 (𝜎

𝛾
(𝜏) , 𝑢 (𝜏)) 𝑔 (

�̇� (𝜏)

𝛾

) 𝑑𝜏

= ∫

𝑡

0

𝑓 (𝑥

∗

𝑢
I 𝜌

𝑢
(𝜏) , 𝑢 (𝜏)) 𝑔

∗
(�̇� (𝜏)) 𝑑𝜏, ∀𝑡 ≥ 0.

(21)

On the other hand, since 𝑞

𝑢
is continuous as a uniform

limit of continuous sequence of functions, we have 𝑞

𝑢
∈

𝐶

0
(R
+
,R𝑚) ∩ 𝐿

∞
(R
+
,R𝑚) and 𝑞

𝑢
(0) = 𝑥

0
(note that 𝜎

𝛾
(0) =

𝑥

0
, for all 𝛾 > 0).
When 𝜆 = 1, we obtain from (21) and (5) that 𝑞

𝑢
(𝑡) = 𝑥

0
+

∫

𝑡

0
𝑓(𝑞

𝑢
(𝜏), 𝑢(𝜏))𝑔

∗
(�̇�(𝜏))𝑑𝜏, for all 𝑡 ≥ 0.Thus, the continuity

of the functions 𝑓 and 𝑔

∗ along with the boundedness of the
functions 𝑞

𝑢
, 𝑢, and �̇� implies that the function ̇𝑞

𝑢
is bounded.

Therefore, 𝑞
𝑢
∈ 𝑊

1,∞
(R
+
,R𝑚) and (16) is satisfied.

When 𝜆 ∈ (0, 1), we get from inequality (20) that
‖𝜎

𝛾
− 𝑥

0
‖

∞
/𝛾

1−𝜆
→ 0 as 𝛾 → ∞. Moreover, (5) can be

written for all 𝑡 ≥ 0 as
𝜎

𝛾
(𝑡) − 𝑥

0

𝛾

1−𝜆
= 𝛾

𝜆
∫

𝑡

0

𝑓 (𝜎

𝛾
(𝜏) , 𝑢 (𝜏)) 𝑔 (

�̇� (𝜏)

𝛾

) 𝑑𝜏. (22)

The fact that lim
𝛾→0

‖𝜎

𝛾
− 𝑥

0
‖

∞
/𝛾

1−𝜆
= 0, along with (21)

and (22) implies that

∫

𝑡

0

𝑓 (𝑥

∗

𝑢
I 𝜌

𝑢
(𝜏) , 𝑢 (𝜏)) 𝑔

∗
(�̇� (𝜏)) 𝑑𝜏 = 0, ∀𝑡 ≥ 0,

(23)

which proves (17).
Finally, when 𝜆 > 1, (5) implies for all 𝑡 ≥ 0 that

𝜎

𝛾
(𝑡) − 𝑥

0
= 𝛾

1−𝜆
𝛾

𝜆
∫

𝑡

0

𝑓 (𝜎

𝛾
(𝜏) , 𝑢 (𝜏)) 𝑔 (

�̇� (𝜏)

𝛾

) 𝑑𝜏,

(24)

and thus, we get from (21) that lim
𝛾→∞

𝜎

𝛾
(𝑡) = 𝑥

0
, for all

𝑡 ≥ 0. Therefore, the uniqueness of limits and the continuity
of 𝑞
𝑢
imply that 𝑞

𝑢
(𝑡) = 𝑥

0
, for all 𝑡 ≥ 0.

Remark 13. Observe that for 𝜆 > 1, the fact that 𝑞

𝑢
(𝑡) =

𝑥

0
, for all 𝑡 ≥ 0, means that system(1)-(2)does not represent

a hysteresis behavior [24].

Remark 14. For the case 𝜆 ∈ (0, 1), (17) and the fact that
𝑞

𝑢
(0) = 𝑥

0
imply that 𝑓(𝑥

0
, 𝑢(0))𝑔(�̇�(0)) = 0, whenever �̇�(0)

exists.

Example 15. Consider the Following LuGre model [10]:

�̇� = �̇� − 𝜃

|�̇�|

𝜁 (�̇�)

𝑥 = [1 𝑥]

[

[

�̇�

−𝜃

|�̇�|

𝜁 (�̇�)

]

]

= 𝑓 (𝑥) 𝑔 (�̇�) , (25)

𝑥 (0) = 𝑥

0
, (26)

where parameter 𝜃 is the stiffness, 𝑥 ∈ R is the average
deflection of the bristles and is the output of the system,
𝑥

0
∈ R is the initial condition,𝑢 ∈ 𝑊

1,∞
(R
+
,R) is the relative

displacement, and is the input of the system. The function
𝜁 : R → R is defined as

𝜁 (𝛼) = 𝐹

𝐶
+ (𝐹

𝑆
− 𝐹

𝐶
) 𝑒

−|𝛼/V
𝑠
|
, ∀𝛼 ∈ R,

(27)

where 𝐹

𝐶
> 0 is the Coulomb friction force, 𝐹

𝑆
> 0 is the

stiction force, and V
𝑠
> 0 is the Stribeck velocity.

System (25)-(26) has a unique global solution [21, page
5]. On the other hand, the sequence of function 𝜎

𝛾
is given by

(see (5))

�̇�

𝛾
(𝑡) = �̇� (𝑡) − 𝜃

|�̇� (𝑡)|

𝜁 (�̇� (𝑡) /𝛾)

𝜎

𝛾
(𝑡) , for almost all 𝑡 ≥ 0.

(28)

The following facts are proved in Example 29.

(i) There exist 𝛾
1
, 𝐸 > 0 such that |𝑥

𝛾
(𝑡)| ≤ 𝐸, for all 𝛾 >

𝛾

1
, where 𝑥

𝛾
is the output when we use input 𝑢 I 𝑠

𝛾

instead of 𝑢 (see system (3)-(4)).

(ii) ‖𝜎

𝛾
− 𝑞

𝑢
‖

∞
→ 0 as 𝛾 → ∞, where the function

𝑞

𝑢
∈ 𝑊

1,∞
(R
+
,R𝑚) is defined for all 𝑡 ≥ 0 as

𝑞

𝑢
(𝑡) = 𝑥

0

+ ∫

𝑡

0

(�̇� (𝜏) −

𝜃 |�̇� (𝜏)|

𝐹

𝑆

𝑞

𝑢
(𝜏)) 𝑑𝜏.

(29)

Thus, all conditions of Lemma 12 are satisfied.
Now, we have to find the value of 𝜆 and the function 𝑔

∗.
We have

lim
𝜅→0+

𝑔 (𝜅)

𝜅

=

[

[

1

−𝜃

𝐹

𝑆

]

]

,

lim
𝜅→0−

𝑔 (𝜅)

(−𝜅)

=

[

[

−1

−𝜃

𝐹

𝑆

]

]

.

(30)

Thus, the function 𝑔 ∈ 𝐶

0
(R
+
,R𝑟) in (25) is of class 𝜆 = 1

(see Definition 7) and the function 𝑔

∗
∈ 𝐶

0
(R
+
,R𝑟) in (9) is

defined as

𝑔

∗
(𝜗) =

[

[

𝜗

−𝜃

𝐹

𝑆

|𝜗|

]

]

, ∀𝜗 ∈ R. (31)

Therefore, by applying Lemma 12, it follows that the system
(29) satisfies (16).

Simulations. Take 𝜃 = 10

5N/m, V
𝑠
= 0.001m/s, 𝐹

𝑆
= 1.5N,

𝐹

𝐶
= 1.0N, 𝑥(0) = 0N, and 𝑢(𝑡) = 10

−4 sin(𝑡)m, for
all 𝑡 ≥ 0 (values taken from [7]). Figure 1(a) shows that
the graphs {(𝜎

𝛾
(𝑡), 𝑢(𝑡)), 𝑡 ≥ 0} converge to the hysteresis

loop {(𝑞

𝑢
(𝑡), 𝑢(𝑡)), 𝑡 ≥ 0} as 𝛾 → ∞. This is the
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main characteristic of a hysteresis system. Also, observe that
{(𝜎

𝛾
(𝑡), 𝑢(𝑡)), 𝑡 ≥ 0} are different for different values of 𝛾.This

is what is called “rate-dependent” property of themodel (25)-
(26). Figure 1(b) presents the graph of (𝜎

𝛾
−𝑞

𝑢
)(𝑡) versus 𝑡; we

observe that 𝜎
𝛾
−𝑞

𝑢
converges uniformly to the zero function

as 𝛾 → ∞ which means that 𝜎
𝛾
converges uniformly to 𝑞

𝑢

when 𝛾 → ∞. The graph of 𝑞

𝑢
(𝑡) versus 𝑡 is presented in

Figure 1(c).

6. Sufficient Conditions

This section presents sufficient conditions for the uniform
convergence of the sequence of functions 𝜎

𝛾
as 𝛾 → ∞ (and

hence for consistency of the system (1)-(2) with respect to
(𝑢, 𝑥

0
)). The main results of this section are given in Lemmas

20, 23, and 27.

6.1. Class 𝜆 ∈ (0, 1) Functions. In this subsection, sufficient
conditions for the uniform convergence of 𝜎

𝛾
as 𝛾 → ∞, are

derived when the function 𝑔 is of class 𝜆 ∈ (0, 1).

Definition 16 (see [25]). A continuous function 𝛽 : R
+

→

R
+
is said to belong to class K

∞
if it is increasing, satisfies

𝛽(0) = 0, and lim
𝑡→∞

𝛽(𝑡) = ∞.

The following lemma generalizes Theorem 4.18 in [25,
page 172]. Indeed, in [25], continuous differentiability is
needed, while in Lemma 17, we only need absolute continuity.
Also, in [25], the inequality on the derivative of the Lyapunov
function is needed everywhere, while in Lemma 17 it is
needed only almost everywhere.

Lemma 17. Consider a function 𝑧 : [0, 𝜔) ⊆ R
+

→ R
+
,

where 𝜔 > 0 is finite or infinite. Assume the following.

(1) The function 𝑧 is absolutely continuous on each com-
pact interval of [0, 𝜔).

(2) There exist 𝑧
1
≥ 0 and 𝑧

2
> 0 such that 𝑧

1
< 𝑧

2
, 𝑧(0) <

𝑧

2
and

�̇� (𝑡) ≤ 0 for almost all 𝑡 ∈ [0, 𝜔)

that satisfy 𝑧

1
< 𝑧 (𝑡) < 𝑧

2
.

(32)

Then, 𝑧(𝑡) ≤ max(𝑧(0), 𝑧
1
), for all 𝑡 ∈ [0, 𝜔).

Proof. see Appendix B.

Example 18. We want to study the stability of the following
system

�̇� (𝑡) = −𝑥

3
(𝑡) + 𝑢 (𝑡) ,

𝑥 (0) = 𝑥

0
,

(33)

where 𝑥

0
and state 𝑥 take values in R, and input 𝑢 ∈

𝑊

1,∞
(R
+
,R). System (33) has an absolutely continuous

solution that is defined on an interval of the form [0, 𝜔) [21,
page 4].

Let 𝑧 : [0, 𝜔) → R
+
be such that 𝑧(𝑡) = 𝑥

2
(𝑡), for all 𝑡 ∈

[0, 𝜔). The function 𝑧 is absolutely continuous on each
compact subset of [0, 𝜔) because 𝑥 is absolutely continuous.
Thus, condition (1) in Lemma 17 is satisfied.

We have for almost all 𝑡 ∈ [0, 𝜔) that

�̇� (𝑡) = 2𝑥 (𝑡) ⋅ �̇� (𝑡) = 2𝑥 (𝑡) (−𝑥

3
(𝑡) + 𝑢 (𝑡))

≤ −2𝑧

2
(𝑡) + 2‖𝑢‖∞

√
𝑧 (𝑡).

(34)

Thus,

�̇� (𝑡) ≤ 0 for almost all 𝑡 ∈ [0, 𝜔)

that satisfy ‖𝑢‖

2/3

∞
< 𝑧 (𝑡) .

(35)

Therefore, condition (2) in Lemma 17 is satisfied with
𝑧

1
= ‖𝑢‖

2/3

∞
and 𝑧

2
can be any positive real number such

that 𝑧

2
> max(𝑧(0), 𝑧

1
) = max(𝑥2

0
, ‖𝑢‖

2/3

∞
). Thus, we

deduce from Lemma 17 that 𝑧(𝑡) ≤ max(𝑧(0), ‖𝑢‖2/3
∞

) =

max(𝑥2
0
, ‖𝑢‖

2/3

∞
), for all 𝑡 ∈ [0, 𝜔), and hence |𝑥(𝑡)| ≤

max(|𝑥
0
|,

3

√‖𝑢‖

∞
), for all 𝑡 ∈ [0, 𝜔).

Corollary 19. Consider a function 𝑧 : [0, 𝜔) ⊆ R
+

→ R
+
,

where 𝜔 > 0 may be infinite. Assume the following.

(1) The function 𝑧 is absolutely continuous on each com-
pact subset of [0, 𝜔).

(2) There exist a class K
∞

function 𝛽 : R
+

→ R
+
and

constants 𝑧

1
≥ 0, 𝑧

2
> 0, and 𝑧

3
≥ 0 such that

max{𝛽−1(𝑧
3
), 𝑧

1
, 𝑧(0)} < 𝑧

2
, and

�̇� (𝑡) ≤ −𝛽 (𝑧 (𝑡))

+ 𝑧

3
for almost all 𝑡 ∈ [0, 𝜔)

that satisfy 𝑧

1
< 𝑧 (𝑡) < 𝑧

2
.

(36)

Then, 𝑧(𝑡) ≤ max{𝑧(0), 𝑧
1
, 𝛽

−1
(𝑧

3
)}, for all 𝑡 ∈ [0, 𝜔).

Proof. We have from (36) that

�̇� (𝑡) ≤ 0 for almost all 𝑡 ∈ [0, 𝜔)

that satisfymax {𝛽

−1
(𝑧

3
) , 𝑧

1
} < 𝑧 (𝑡) < 𝑧

2
,

(37)

and hence the result follows directly from Lemma 17.

Although the latter corollary follows immediately from
Lemma 17, it is useful in many situations [25].
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Figure 1: (a) 𝜎
𝛾
(𝑡) versus 𝑢(𝑡) for different values of 𝛾. (b) (𝜎

𝛾
− 𝑞

𝑢
)(𝑡) versus 𝑡 for different values of 𝛾. (c) 𝑞

𝑢
(𝑡) versus 𝑡. The plots are for the

LuGre model (25)-(26), where the solid lines are for 𝑞

𝑢
.

Lemma 20. Suppose that the system (1)-(2) has a unique
solution and that the function 𝑔 is of class 𝜆 ∈ (0, 1). Assume
that there exists 𝑞

𝑢
∈ 𝑊

1,∞
(R
+
,R𝑚) such that for almost all

𝑡 ≥ 0

𝑞

𝑢
(0) = 𝑥

0
,

𝑓 (𝑞

𝑢
(𝑡) , 𝑢 (𝑡)) 𝑔

∗
(�̇� (𝑡)) = 0.

(38)

For all 𝛾 > 0, define 𝑦

𝛾
: R
+

→ R𝑚 as

𝑦

𝛾
(𝑡) = 𝜎

𝛾
(𝑡) − 𝑞

𝑢
(𝑡) = 𝑥

𝛾
(𝛾𝑡) − 𝑞

𝑢
(𝑡) , (39)

for all 𝑡 ∈ [0, 𝜔

𝛾
), where [0, 𝜔

𝛾
) is the maximal interval of

existence of solution 𝜎

𝛾
in (5). Suppose that we can find a

continuously differentiable function 𝑉 : R𝑚 → R
+
such that

(1) there exists a function 𝛿

1
: R
+

→ R
+
that satisfies

𝛿

1
(𝛾) → 0 𝑎𝑠 𝛾 → ∞, (40)

(2) there exist constants 𝛾

∗
, 𝛿

2
> 0, continuous functions

𝑅

1
, 𝑅

2
: R
+

→ R
+
andK

∞
class functions𝛽

1
, 𝛽

2
, 𝛽

3
:

R
+

→ R
+
, satisfying

𝛽

1
(|𝛼|) ≤ 𝑉 (𝛼) ≤ 𝛽

2
(|𝛼|) , ∀𝛼 ∈ R

𝑚
, (41)

𝑑𝑉 (𝛼)

𝑑𝛼















𝛼=𝑦
𝛾
(𝑡)

⋅ 𝑓 (𝑦

𝛾
(𝑡) + 𝑞

𝑢
(𝑡) , 𝑢 (𝑡)) 𝑔 (

�̇� (𝑡)

𝛾

)

≤ −

1

𝛾

𝜆
𝛽

3
(











𝑦

𝛾
(𝑡)











)

+

1

𝛾

𝑅

1
(











𝑦

𝛾
(𝑡)











) for almost all 𝑡 ∈ [0, 𝜔

𝛾
) , ∀𝛾 > 𝛾

∗

that satisfy 𝛿

1
(𝛾) <











𝑦

𝛾
(𝑡)











< 𝛿

2
,

(42)
















𝑑𝑉 (𝛼)

𝑑𝛼

















≤ 𝑅

2
(|𝛼|) , ∀𝛼 ∈ R

𝑚
. (43)

Then,

(i) there exist𝐸, 𝛾

∗
> 0 such that for all 𝛾 > 𝛾

∗ : 𝜔
𝛾
= +∞

and ‖𝑥

𝛾
‖

∞
≤ 𝐸, where 𝑥

𝛾
is given in (3)-(4).

(ii) lim
𝛾→∞

‖𝜎

𝛾
− 𝑞

𝑢
‖

∞
= 0.
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Proof. From (5) and (39), we get for all 𝛾 > 0 and almost all
𝑡 ∈ [0, 𝜔

𝛾
) that 𝑦

𝛾
(0) = 0 and

̇𝑦

𝛾
(𝑡) = 𝛾𝑓 (𝑦

𝛾
(𝑡) + 𝑞

𝑢
(𝑡) , 𝑢 (𝑡)) 𝑔 (

�̇� (𝑡)

𝛾

) − ̇𝑞

𝑢
(𝑡) . (44)

For any 𝛾 > 0, define 𝑉

𝛾
: (0, 𝜔

𝛾
] → R

+
as 𝑉

𝛾
(𝑡) =

𝑉(𝑦

𝛾
(𝑡)), for all 𝑡 ∈ (0, 𝜔

𝛾
]. Note that function 𝑉

𝛾
is

absolutely continuous on each compact subset of [0, 𝜔
𝛾
) as a

composition of a continuously differentiable function 𝑉 and
an absolutely continuous function 𝑦

𝛾
. The derivative of 𝑉

along with trajectories (44) is given for almost all 𝑡 ∈ [0, 𝜔

𝛾
)

and all 𝛾 > 0 by

̇

𝑉

𝛾
(𝑡) =

𝑑𝑉 (𝛼)

𝑑𝛼















𝛼=𝑦
𝛾
(𝑡)

⋅ ̇𝑦

𝛾
(𝑡)

=

𝑑𝑉 (𝛼)

𝑑𝛼















𝛼=𝑦
𝛾
(𝑡)

⋅ [𝛾𝑓 (𝑦

𝛾
(𝑡) + 𝑞

𝑢
(𝑡) , 𝑢 (𝑡)) − ̇𝑞

𝑢
(𝑡)] .

(45)

By (40), there exists some 𝛾

1
> 𝛾

∗
, such that 𝛽

2
I 𝛿

1
(𝛾) <

𝛽

1
(𝛿

2
), for all 𝛾 > 𝛾

1
. Let Ω

𝛾
= (𝛽

2
I 𝛿

1
(𝛾), 𝛽

1
(𝛿

2
)). By (41),

we have for any 𝛾 > 𝛾

1
, for almost all 𝑡 ∈ [0, 𝜔

𝛾
) that

𝑉

𝛾
(𝑡) ∈ Ω

𝛾
⇒ 𝛿

1
(𝛾) <











𝑦

𝛾
(𝑡)











< 𝛿

2
. (46)

Thus, we deduce from (42), (43), (45), and (46) that

̇

𝑉

𝛾
(𝑡)

≤ −𝛾

1−𝜆
𝛽

3
(











𝑦

𝛾
(𝑡)











) + 𝑅

1
(











𝑦

𝛾
(𝑡)











)

+









̇𝑞

𝑢







∞
𝑅

2
(











𝑦

𝛾
(𝑡)











) , for almost all 𝑡∈[0, 𝜔

𝛾
) , ∀𝛾> 𝛾

1

that satisfy 𝑉

𝛾
(𝑡) ∈ Ω

𝛾
.

(47)

Therefore, (46) and the continuity of the functions𝑅
1
and 𝑅

2

imply that there exists a constant 𝑎 > 0 that does not depend
on 𝛾, such that

̇

𝑉

𝛾
(𝑡)

≤ −𝛾

1−𝜆
𝛽

3
(











𝑦

𝛾
(𝑡)











)+ 𝑎, for almost all 𝑡∈[0, 𝜔

𝛾
) , ∀𝛾>𝛾

1

that satisfy 𝑉

𝛾
(𝑡) ∈ Ω

𝛾
.

(48)

Thus, we deduce from (41) that

̇

𝑉

𝛾
(𝑡)

≤ −𝛽

𝛾
(𝑉

𝛾
(𝑡)) + 𝑎, for almost all 𝑡 ∈ [0, 𝜔

𝛾
) , ∀𝛾 > 𝛾

1

that satisfy 𝑉

𝛾
(𝑡) ∈ Ω

𝛾
,

(49)

where 𝛽

𝛾
: R
+

→ R
+
is defined as 𝛽

𝛾
= 𝛾

1−𝜆
𝛽

3
I 𝛽

−1

2
.

On the other hand, since 𝜆 ∈ (0, 1), there exists
𝛾

2
> 𝛾

1
such that 𝛽

−1

𝛾
(𝑎) = 𝛽

2
I 𝛽

−1

3
(𝑎𝛾

𝜆−1
) <

𝛽

1
(𝛿

2
), for all 𝛾 > 𝛾

2
. Hence, Corollary 19 and the fact

that 𝑉
𝛾
(0) = 0, for all 𝛾 > 0, imply that 𝑉

𝛾
(𝑡) ≤ max{𝛽−1

𝛾
(𝑎),

𝛽

2
I 𝛿

1
(𝛾)} = max{𝛽

2
I 𝛽

−1

3
(𝑎𝛾

𝜆−1
), 𝛽

2
I 𝛿

1
(𝛾)}, for all 𝑡 ∈

[0, 𝜔

𝛾
) and for all 𝛾 > 𝛾

2
. Therefore, (41) implies for

all 𝛾 > 𝛾

2
and for all 𝑡 ∈ [0, 𝜔

𝛾
) that











𝑦

𝛾
(𝑡)











≤ max {𝛽

−1

1
I 𝛽

2
I 𝛽

−1

3
(𝑎𝛾

𝜆−1
) ,

𝛽

−1

1
I 𝛽

2
I 𝛿

3
(𝛾)} .

(50)

Thus, 𝜔
𝛾

= +∞, for all 𝛾 > 𝛾

2
. Furthermore, (40), (50), and

the fact that 𝜆 ∈ (0, 1) imply that ‖𝑦
𝛾
‖

∞
= ‖𝜎

𝛾
− 𝑞

𝑢
‖

∞
→ 0

as 𝛾 → ∞.This proves the consistencywith respect to (𝑢, 𝑥

0
)

because of Proposition 5.
Moreover, by (50), there exist some 𝐸 > 0, 𝛾

∗
> 𝛾

2
, such

that










𝜎

𝛾









∞
≤ 𝐸, ∀𝛾 > 𝛾

∗
. (51)

On the other hand, let 𝛾 > 𝛾

∗. Since 𝑥

𝛾
is continuous,

Lemma 3 ensures that ‖𝑥

𝑢I𝑠
𝛾

‖

∞,𝐼
𝑢

= ‖𝑥

𝛾
‖

∞
. Let  ∈ 𝐼

𝑢
.

Due to the continuity of 𝜌

𝑢
, there exists some 𝑡 ≥ 0 such

that  = 𝜌

𝑢
(𝑡) and thus (51) and the continuity of 𝜎

𝛾
lead to

|𝑥

𝑢I𝑠
𝛾

()| = |𝑥

𝑢I𝑠
𝛾

I 𝜌

𝑢
(𝑡)| = |𝜎

𝛾
(𝑡)| ≤ ‖𝜎

𝛾
‖

∞
≤ 𝐸, for all 𝛾 >

𝛾

∗. Therefore, ‖𝑥
𝑢I𝑠
𝛾

‖

∞

= ‖𝑥

𝛾
‖

∞
≤ 𝐸, for all 𝛾 > 𝛾

∗, which
completes the proof.

Remark 21. For 𝜆 ∈ (0, 1),if the function 𝑞

𝑢
∈ 𝐶

0
(R
+
,R𝑚) ∩

𝐿

∞
(R
+
,R𝑚) in Lemma 20, such that 𝑞

𝑢
= 𝑅(𝑢) for some 𝑅 :

R → R𝑚, then the graphs {(𝜎

𝛾
(𝑡), 𝑢(𝑡)), 𝑡 ≥ 0} converge

to the curve 𝑅 as 𝛾 → ∞. Hence, (1)-(2) is not a hysteresis
because the hysteresis loop cannot be a function [24]. This
fact is illustrated in Example 22.

Example 22. Consider the following semilinear Duhem
model:

�̇� = (𝐴𝑥 + 𝐵𝑢) 𝑔 (�̇�) ,

𝑥 (0) = 𝑥

0
,

(52)

where 𝐴 is a Hurwitz 𝑚 × 𝑚 matrix (i.e., every eigenvalue
of 𝐴 has a negative real part), vector 𝐵 and state 𝑥 take
values in R𝑚. The right-hand side of (52) is Lipschitz and
thus the system has a unique solution [21]. Take an input
𝑢 ∈ 𝑊

1,∞
(R
+
,R) such that 𝐴

−1
𝐵𝑢(0) = −𝑥

0
and that

|�̇�(𝑡)| ≥ 𝑀 for almost all 𝑡 ∈ R and for some 𝑀 > 0.
Assume that the function 𝑔 : R → R

+
is of class 𝜆 ∈ (0, 1)

and that 𝑑

𝜆

+
𝑔(0), 𝑑

𝜆

−
𝑔(0) > 0. Thus, there exists 𝐿 > 0 such

that 𝑔

∗
(𝜗) ≥ 𝐿|𝜗|

𝜆, for all 𝜗 ∈ R, where the function 𝑔

∗ is
defined in (9). On the other hand, Proposition 9 states that
lim
𝛾→∞

‖𝛾

𝜆
𝑔(�̇�/𝛾) − 𝑔

∗
(�̇�)‖

∞
= 0. This means that there

exists 𝛾

1
> 0 such that we get for almost all 𝑡 ≥ 0, and all

𝛾 > 𝛾

1
that

𝛾

𝜆
𝑔(

�̇� (𝑡)

𝛾

) > 𝑔

∗
(�̇� (𝑡)) −

𝐿𝑀

𝜆

2

.
(53)
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Thus, the facts that |�̇�| ≥ 𝑀 and 𝑔

∗
(⋅) ≥ 𝐿| ⋅ |

𝜆 imply that

𝑔(

�̇� (𝑡)

𝛾

) >

𝐿𝑀

𝜆

2𝛾

𝜆
, for almost all 𝑡 ≥ 0, ∀𝛾 > 𝛾

1
. (54)

The function 𝑞

𝑢
∈ 𝑊

1,∞
(R
+
,R) which is defined as 𝑞

𝑢
=

−𝐴

−1
𝐵𝑢 satisfies (38) because 𝐴

−1
𝐵𝑢(0) = −𝑥

0
.

Since 𝐴 is Hurwitz, there exists a 𝑚 × 𝑚 positive-definite
matrix 𝑃 such that [25, page 136]

𝑃𝐴 + 𝐴

𝑇
𝑃 = −𝐼, (55)

where 𝐼 is the identity matrix. Consider the continuously
differentiable quadratic Lyapunov function candidate 𝑉 :

R𝑚 → R such that 𝑉(𝛼) = 𝛼

𝑇
𝑃𝛼, for all 𝛼 ∈ R𝑚. Since

𝑃 is symmetric, we have for all 𝛼 ∈ R𝑚 that

𝜆min (𝑃) |𝛼|

2
≤ 𝑉 (𝛼) = 𝛼

𝑇
𝑃𝛼 ≤ 𝜆max (𝑃) |𝛼|

2
, (56)

where 𝜆max(𝑃) and 𝜆min(𝑃) are, respectively, the maximum
and minimum eigenvalues of the matrix 𝑃. This shows that
(41) is satisfied with 𝛽

1
(𝜂) = 𝜆min(𝑃)𝜂

2 and 𝛽

2
(𝜂) =

𝜆max(𝑃)𝜂

2 for all 𝜂 > 0. Since 𝑃 is symmetric, we have the
following matrices derivation:

𝑑𝑉 (𝛼)

𝑑𝛼

= (𝑃 + 𝑃

𝑇
) 𝛼 = 2𝑃𝛼, ∀𝛼 ∈ R

𝑚
.

(57)

Thus, we get
















𝑑𝑉 (𝛼)

𝑑𝛼

















= 2 |𝑃𝛼| ≤ 2 |𝑃| |𝛼| , ∀𝛼 ∈ R
𝑚
, (58)

where |𝑃| is the induced 2-norm for the matrix 𝑃 and hence
(43) is satisfied with 𝑅

2
(𝜂) = 2|𝑃|𝜂, for all 𝜂 ≥ 0. From (57),

we have for all 𝛼 ∈ R𝑚 that

𝑑𝑉 (𝛼)

𝑑𝛼

⋅ 𝐴𝛼 = 2𝑃𝛼 ⋅ 𝐴𝛼 = 𝛼

𝑇
(𝑃𝐴 + 𝐴

𝑇
𝑃) 𝛼 = −|𝛼|

2
.
(59)

Therefore, (54) implies that for almost all 𝑡 ∈ R
+
and 𝛾 > 0

that

𝑑𝑉 (𝛼)

𝑑𝛼















𝛼=𝑦
𝛾
(𝑡)

⋅ [𝐴 (𝑦

𝛾
(𝑡) + 𝑞

𝑢
(𝑡)) + 𝐵𝑢 (𝑡)] 𝑔 (

�̇� (𝑡)

𝛾

)

= −𝑔(

�̇� (𝑡)

𝛾

)











𝑦

𝛾
(𝑡)











2

≤ −

𝐿𝑀

𝜆

2𝛾

𝜆











𝑦

𝛾
(𝑡)











2

,

(60)

where 𝑦

𝛾
is defined in (39).Thus, (42) is satisfied with 𝛽

3
(𝜂) =

(𝐿𝑀

𝜆
/2)𝜂

2, for all 𝜂 ≥ 0 and 𝑅

1
(𝜂) = 0, for all 𝜂 ≥ 0.

Let 𝛿

1
be the zero function. Then (40) is verified. Take

𝛿

2
, 𝛾

∗
arbitrary in R

+
(say 𝛿

2
= 1, 𝛾

∗
= 1). Hence, all

conditions of Lemma 20 are satisfied. Thus, it follows from
Lemma 20 that there exist some𝐸, 𝛾

∗
> 0 such that for all 𝛾 >

𝛾

∗, the solution of (52) is global with |𝑥

𝛾
(𝑡)| ≤ 𝐸, for all 𝑡 ≥ 0.

Moreover, the operator which maps (𝑢, 𝑥
0
) to 𝑥 is consistent.

In particular, we have ‖𝜎

𝛾
− 𝑞

𝑢
‖

∞
= ‖𝜎

𝛾
+ 𝐴

−1
𝐵𝑢‖

∞
→ 0 as

𝛾 → ∞.

As a conclusion, the graphs {(𝜎
𝛾
(𝑡), 𝑢(𝑡)), 𝑡 ≥ 0} converge

to the graph of the linear function 𝑅 : R → R𝑚, which is
defined as 𝑅(𝛼) = −𝐴

−1
𝐵𝛼, for all 𝛼 ∈ R. This means that for

𝜆 ∈ (0, 1), the model (52) does not represent a hysteresis (see
Remark 21).

Simulations. Take 𝑚 = 1, 𝐵 = 1.0, 𝐴 = −1.0, and 𝑥

0
= 0.

Let 𝑔(𝜗) =
√

|𝜗|, for all 𝜗 ∈ R, then 𝑑

𝜆

+
𝑔(0) = 𝑑

𝜆

−
𝑔(0) =

Γ(3/2) = Γ(1/2)/2 = √𝜋/2 > 0. Let 𝑢 ∈ 𝑊

1,∞
(R
+
,R) be the

function of period 2 such that 𝑢(𝑡) = 𝑡, for all 𝑡 ∈ [0, 1], and
𝑢(𝑡) = 2 − 𝑡, for all 𝑡 ∈ [1, 2]. Then, we have |�̇�(𝑡)| = 1, for
almost all 𝑡 ≥ 0. We also have 𝑞

𝑢
= −𝐴

−1
𝐵𝑢 = 𝑢. Figure 2(a)

shows that the graph {(𝜎

𝛾
(𝑡), 𝑢(𝑡)), 𝑡 ≥ 0} collapses into the

identity function when 𝛾 → ∞. This happens because of the
fact that 𝑞

𝑢
= 𝑢 and Remark 21. Figure 2(b) shows that the

sequence of functions 𝜎

𝛾
converges uniformly to 𝑞

𝑢
= 𝑢 as

𝛾 → ∞.

6.2. Class 𝜆 = 1 Functions. In this subsection, we consider
class 𝜆 = 1 functions. (A function 𝑔 ∈ 𝐶

0
(R,R𝑟) is of

class 𝜆 = 1 if 𝑔(0) = 0 and the limits lim
𝜅→0+

𝑔(𝜅)/|𝜅| and
lim
𝜅→0−

𝑔(𝜅)/|𝜅| exist, are finite, and at least one of them is
nonzero (see Section 5)). The main results of this subsection
are given in Lemmas 23 and 27.

Lemma 23. Assume the following.

(1) The system (1)-(2) has a unique global solution.
(2) For the function 𝑔 in system (1)-(2), there exist 𝑎

1
, 𝑎

2
∈

R𝑟 such that

𝑔 (𝜗) = {

𝑎

1
𝜗 𝜗 ≥ 0,

𝑎

2
𝜗 𝜗 < 0.

(61)

Then, the sequence of functions 𝜎

𝛾
of (5) is independent of 𝛾

and the operator which maps (𝑢, 𝑥
0
) to 𝑥 is consistent.

Proof. By condition (2), the right-hand side of (5) is indepen-
dent of 𝛾. Thus, the solution 𝜎

𝛾
of (5) is independent of 𝛾.

Since 𝑥

𝑢I𝑠
𝛾

I 𝜌

𝑢
= 𝜎

𝛾
, the function 𝑥

𝑢I𝑠
𝛾

is also independent
of 𝛾 (this is the so-called “rate-independent hysteresis”) and
hence consistency holds.

Example 24. Consider Bouc’s hysteresismodel [13] as follows:

�̇� = −𝑐 |�̇�| 𝑥 + Φ


(𝑢) �̇�, (62)

where 𝑐 > 0, Φ ∈ 𝐶

1
(R,R), input 𝑢 ∈ 𝑊

1,∞
(R
+
,R), and

Φ


(𝑢) = 𝑑Φ(𝛼)/𝑑𝛼|

𝛼=𝑢
.

The right-hand side of (62) is Lipschitz with respect to 𝑥.
Thus, the system has a unique solution. Furthermore, we have

�̇� ≤ −











Φ


(𝑢) �̇�











+ Φ


(𝑢) �̇� ≤ 0, when 𝑥 ≥

1

𝑐











Φ


(𝑢)











,

�̇� ≥











Φ


(𝑢) �̇�











+ Φ


(𝑢) �̇� ≥ 0, when 𝑥 ≤ −

1

𝑐











Φ


(𝑢)











.

(63)
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Figure 2: (a) 𝜎
𝛾
(𝑡) versus 𝑢(𝑡) for different values of 𝛾. (b) 𝜎

𝛾
(𝑡) versus 𝑡 for different values of 𝛾. In each plot, the function 𝑞

𝑢
is the solid line.
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(b) 𝜎𝛾(𝑡) versus 𝑢(𝑡)

Figure 3: (a) 𝜎
𝛾
(𝑡) versus 𝑡. (b) 𝜎

𝛾
(𝑡) versus 𝑢(𝑡) for Boucs hysteresis model (62).

Thus, |𝑥| ≤ max{|Φ(𝑢)|/𝑐, |𝑥(0)|}, for each input 𝑢 ∈

𝑊

1,∞
(R
+
,R) and each initial state 𝑥(0) ∈ R. Since 𝑢

is bounded and Φ


(𝑢) is continuous, the solution 𝑥 of

(62) is bounded and hence global. Hence, condition (1) in
Lemma 23 is satisfied. Equation (62) can be written as

�̇� = 𝑓 (𝑥, 𝑢) 𝑔 (�̇�)

= [− 𝑐𝑥 + Φ


(𝑢) 𝑐𝑥 + Φ


(𝑢)] [

max {0, �̇�}

min {0, �̇�}

] .

(64)

Clearly, the function 𝑔 is of class 𝜆 = 1 and satisfies condition
(2) in Lemma 23. This fact implies that the operator which
maps (𝑢, 𝑥(0)) to 𝑥 is consistent and 𝜎

𝛾
is independent of 𝛾.

Simulations. Let 𝑐 = 1, Φ(𝛼) = 𝛼

3
/3, for all 𝛼 ∈ R, 𝑥(0) = 0,

and input 𝑢(𝑡) = sin(𝑡), for all 𝑡 ≥ 0. The function 𝜎

𝛾
is

independent of 𝛾 and is plotted in Figure 3(a). Furthermore,
Figure 3(b) shows a rate-independent hysteresis behavior;
that is graphs {(𝜎

𝛾
(𝑡), 𝑢(𝑡)), 𝑡 ≥ 0} are the same for different

values of 𝛾.

Proposition 25. Let 𝑢 ∈ 𝑊

1,∞
(R
+
,R) be nonconstant. There

exists a unique function V
𝑢

∈ 𝐿

∞
(𝐼

𝑢
,R) that is defined by

V
𝑢
I 𝜌

𝑢
= �̇�. Moreover, ‖V

𝑢
‖

∞,𝐼
𝑢

≤ ‖�̇�‖

∞
. Assume that �̇� is

nonzero on a set 𝐴 ⊆ R that satisfies 𝜇(𝜌
𝑢
(R \ 𝐴)) = 0. Then,

V
𝑢
is nonzero almost everywhere.

Proof. Consider the left-derivative operator Δ

−
defined on

𝑊

1,∞
(R
+
,R) by [Δ

−
(𝑢)](𝑡) = lim

𝜏↑𝑡
((𝑢(𝜏) − 𝑢(𝑡))/(𝜏 − 𝑡)).

The operator Δ

−
is causal as [Δ

−
(𝑢)](𝑡) depends only on

values of 𝑢(𝜏) for 𝜏 ≤ 𝑡, and we have Δ

−
(𝑢) = �̇� almost

every where as 𝑢 ∈ 𝑊

1,∞
(R
+
,R) so thatΔ

−
(𝑢) ∈ 𝐿

∞
(R
+
,R).

The operator Δ

−
satisfies Assumption 2. The first part of

Proposition 25 follows immediately from Lemma 3. Now, let
𝐵 = { ∈ 𝐼

𝑢
/V
𝑢
() = 0}, then 𝐵 ⊆ 𝜌

𝑢
(R \ 𝐴) which implies

that 𝜇(𝐵) = 0.

Remark 26. Observe that if �̇� is nonzero almost everywhere,
then 𝜇(R \𝐴) = 0 so that by [26] we have 𝜇(𝜌

𝑢
(R \𝐴)) = 0 as

𝜌

𝑢
is absolutely continuous. An example in which �̇� does not

need to be nonzero almost everywhere, is when 𝑢 is constant
on some interval, or on a finite number of intervals, or an
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infinite number of intervals such that this infinite number has
measure zero (e.g., countable).

Lemma 27. Let 𝑢 ∈ 𝑊

1,∞
(R
+
,R) be such that �̇� is nonzero

on a set 𝐴 ⊆ R that satisfies 𝜇(𝜌

𝑢
(R \ 𝐴)) = 0. Consider the

semilinear Duhem model with 𝑚 = 1 and 𝜆 = 1 as follows:

�̇� = (𝐴𝑥 + 𝐵𝑢 + 𝐶) 𝑔 (�̇�) ,

𝑥 (0) = 𝑥

0
,

(65)

where𝐴 = [𝑎1
𝑎

2
⋅ ⋅ ⋅ 𝑎

𝑟] ̸= 0, 𝐵, and 𝐶 are 1× 𝑟 row vectors,
state 𝑥 ∈ R and function 𝑔 ∈ 𝐶

0
(R,R𝑟) and of class 𝜆 = 1,

and nonconstant input 𝑢 ∈ 𝑊

1,∞
(R
+
,R). Denote

lim
𝜅→0+

𝑔 (𝜅)

|𝜅|

= 𝐺

∗

+
=

[

[

[

[

[

[

[

𝐺

∗

+,1

𝐺

∗

+,2

...
𝐺

∗

+,𝑟

]

]

]

]

]

]

]

,

lim
𝜅→0−

𝑔 (𝜅)

|𝜅|

= 𝐺

∗

−
=

[

[

[

[

[

[

[

𝐺

∗

−,1

𝐺

∗

−,2

...
𝐺

∗

−,𝑟

]

]

]

]

]

]

]

.

(66)

For any 𝑖 ∈ {1, 2, . . . , 𝑟}, assume that

𝐺

∗

+,𝑖
, 𝐺

∗

−,𝑖
≥ 0, whenever 𝑎

𝑖
< 0,

𝐺

∗

+,𝑖
, 𝐺

∗

−,𝑖
≤ 0, whenever 𝑎

𝑖
> 0.

(67)

Suppose that there exists some 𝑖

0
∈ {1, 2, . . . , 𝑟}, such that

𝑎

𝑖
0

̸= 0,











𝐺

∗

+,𝑖
0











+











𝐺

∗

−,𝑖
0











> 0. (68)

Then,

(i) there exist 𝐸, 𝛾

1
> 0 such that ‖𝑥

𝛾
‖

∞
≤ 𝐸, for all 𝛾 >

𝛾

1
(𝑥
𝛾
is the output of the system (65) when we use the

input 𝑢 I 𝑠

𝛾
instead of the input 𝑢 (see system (3)-(4))).

(ii) There exists a function 𝑞

𝑢
∈ 𝑊

1,∞
(R
+
,R) such that

‖𝜎

𝛾
− 𝑞

𝑢
‖

1,∞
→ 0, as 𝛾 → ∞ where ‖ ⋅ ‖

1,∞
is the

norm of the Banach space 𝑊

1,∞
(R
+
,R𝑚) (and hence

the consistency of the system (65) is guaranteed with
respect to input 𝑢 and initial condition 𝑥

0
).

(iii) 𝑞

𝑢
(0) = 𝑥

0
. Furthermore, for almost all 𝑡 ≥ 0, one has

̇𝑞

𝑢
(𝑡) = (𝐴𝑞

𝑢
(𝑡) + 𝐵𝑢 (𝑡) + 𝐶) 𝑔

∗
(�̇� (𝑡)) , (69)

where the function 𝑔

∗
∈ 𝐶

0
(R,R) is defined as in (9),

that is;

𝑔

∗
(𝜗) = {

𝜗𝐺

∗

+
𝜗 ≥ 0,

−𝜗𝐺

∗

−
𝜗 < 0.

(70)

Proof. The semilinear Duhem model has a unique global
solution due to the Lipschitz property of the right-hand-side
[21, page 5].

For any 𝑖 ∈ {1, 2, . . . , 𝑟} and any 𝜅 ∈ R \ {0}, let 𝐺
𝑖
(𝜅) be

the 𝑖th component of the function 𝑔(𝜅)/|𝜅|. From (66), there
exists some constant 𝜁 > 0, such that for all 𝑖 ∈ {1, 2, . . . , 𝑟}

𝐺

∗

+,𝑖
−











𝐺

∗

+,𝑖











2

< 𝐺

𝑖
(𝜅)

< 𝐺

∗

+,𝑖
+











𝐺

∗

+,𝑖











2

, whenever 𝜅 ∈ (0, 𝜁) ,

𝐺

∗

−,𝑖
−











𝐺

∗

−,𝑖











2

< 𝐺

𝑖
(𝜅)

< 𝐺

∗

−,𝑖
+











𝐺

∗

−,𝑖











2

, whenever 𝜅 ∈ (−𝜁, 0) .

(71)

Let 𝑖 ∈ {1, 2, . . . , 𝑟}. We get from (67) and (71) that

𝑎

𝑖
𝐺

𝑖
(𝜅) ≤ −max{









𝑎

𝑖



















𝐺

∗

+,𝑖











2

,









𝑎

𝑖



















𝐺

∗

−,𝑖











2

}

= −𝑀

𝑖
, whenever 𝜅 ∈ (−𝜁, 𝜁) \ {0} , 𝑎

𝑖
̸= 0.

(72)

For the case 𝑎

𝑖
= 0, take𝑀

𝑖
= 0. Let𝑀 = ∑

𝑟

𝑖=1
𝑀

𝑖
. From (67)

and (68), we get 𝑀 > 0. Thus, we get from (72) that

𝐴

𝑔 (𝜅)

|𝜅|

=

𝑟

∑

𝑖=1

𝑎

𝑖
𝐺

𝑖
(𝜅) ≤ −𝑀 < 0, ∀𝜅 ∈ (−𝜁, 𝜁) \ {0} . (73)

By Proposition 25, a function V
𝑢

∈ 𝐿

∞
(𝐼

𝑢
,R) can be defined

almost every where as V
𝑢
I 𝜌

𝑢
= �̇� with V

𝑢
̸= 0 almost every

where The boundedness of V
𝑢
implies that there exists 𝛾

0
> 0

such that V
𝑢
()/𝛾 ∈ (−𝜁, 𝜁) for almost all  ∈ 𝐼

𝑢
and all 𝛾 > 𝛾

0
.

Thus, we deduce from (73) that for all 𝛾 > 𝛾

0
,

𝛾𝐴

𝑔 (V
𝑢
() /𝛾)









V
𝑢
()









≤ −𝑀, for almost all  ∈ 𝐼

𝑢
. (74)

Let 𝐻 : R → R𝑟 be a function such that

𝐻(𝜅) = {

𝐺

∗

+
𝜅 > 0,

𝐺

∗

−
𝜅 < 0.

(75)

For any 𝛾 > 0, define 𝜒

𝛾
: 𝐼

𝑢
→ R𝑟 as

𝜒

𝛾
() =

{

{

{

{

{

𝛾

𝑔 (V
𝑢
() /𝛾)









V
𝑢
()









− 𝐻 (V
𝑢
()) V

𝑢
() ̸= 0,

0 otherwise.
(76)

Since V
𝑢
∈ 𝐿

∞
(𝐼

𝑢
,R), relations (66) imply that

lim
𝛾→∞











𝜒

𝛾









∞
= 0. (77)

This result can be easily checked using the same techniques
used in the proof of Proposition 9. Now, consider the system

̇

ℎ = (𝐴ℎ + 𝐵𝜓

𝑢
+ 𝐶) (𝐻 I V

𝑢
) , (78)

ℎ (0) = 𝑥

0
, (79)
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where state ℎ ∈ R. The differential equation (78) veri-
fies Carathéodory conditions with Lipschitz property with
respect to ℎ. Thus, system (78)-(79) has a unique and
absolutely continuous local solution [21, page 4]. Consider the
Lyapunov function 𝑊 = ℎ

2. We deduce from (78)-(79) that
𝑊(0) = 𝑥

2

0
and that

̇

𝑊 = 2𝐴 (𝐻 I V
𝑢
)𝑊 + 2 (𝐵𝜓

𝑢
+ 𝐶) (𝐻 I V

𝑢
)

√

𝑊. (80)

We get from (67) and (68) that 𝐴𝐻(V
𝑢
()) ≤

−∑

𝑟

𝑖=1
max{|𝑎

𝑖
||𝐺

∗

+,𝑖
|, |𝑎

𝑖
||𝐺

∗

−,𝑖
|} = −2𝑀 for almost all  ∈ 𝐼

𝑢
.

Thus, the boundedness of the function 𝜓

𝑢
(see Lemma 1)

along with (80) imply that ̇

𝑊 ≤ −4𝑀𝑊 + 𝐷

1
√

𝑊, for some
𝐷

1
> 0. This leads to ̇

𝑊 ≤ 0, whenever 𝑊 ≥ (𝐷

1
/4𝑀)

2.
Therefore, Lemma 17 and the fact that 𝑊(0) = 𝑥

2

0
imply that

𝑊 ≤ max{𝑥2
0
, (𝐷

1
/4𝑀)

2
} which means that the solution

of the system (78)-(79) is bounded and hence is global
(i.e., is defined on 𝐼

𝑢
). On the other hand, the relation

𝜎

𝛾
= 𝑥

𝑢I𝑠
𝛾

I 𝜌

𝑢
implies that �̇�

𝛾
= |�̇�|�̇�

𝑢I𝑠
𝛾

I 𝜌

𝑢
. Thus,

we obtain from systems (65) and (5) and the relations
V
𝑢
I 𝜌

𝑢
= �̇�, and 𝜓

𝑢
I 𝜌

𝑢
= 𝑢, that 𝑥

𝑢I𝑠
𝛾

(0) = 𝑥

0
and that

�̇�

𝑢I𝑠
𝛾

() = 𝛾 (𝐴𝑥

𝑢I𝑠
𝛾

() + 𝐵𝜓

𝑢
() + 𝐶)

𝑔 (V
𝑢
() /𝛾)









V
𝑢
()









(81)

for all 𝛾 > 0, for almost all  ∈ [0, 𝜏

𝛾
) ⊆ 𝐼

𝑢
, where [0, 𝜏

𝛾
) is the

maximal interval of existence [21, page 4]. For any 𝛾 > 0, let
𝑦

𝛾
: 𝐼

𝑢
→ R be defined as 𝑦

𝛾
= 𝑥

𝑢I𝑠
𝛾

− ℎ. Since 𝑥

𝑢I𝑠
𝛾

(0) =

ℎ(0) = 𝑥

0
, the system (81) can be written for all 𝛾 > 0, for

almost all  ∈ [0, 𝜏

𝛾
) as

̇𝑦

𝛾
() = 𝛾𝐴

𝑔 (V
𝑢
() /𝛾)









V
𝑢
()









𝑦

𝛾
()

+ (𝐴ℎ () + 𝐵𝜓

𝑢
() + 𝐶) 𝜒

𝛾
() ,

(82)

𝑦

𝛾
(0) = 0. (83)

For any 𝛾 > 0, consider the Lyapunov function𝑉

𝛾
: [0, 𝜏

𝛾
) →

R
+
with 𝑉

𝛾
() = 𝑦

2

𝛾
(), for all  ∈ [0, 𝜏

𝛾
). By (82) and the

boundedness of both 𝜓

𝑢
and the solution of (78)-(79), there

exists some 𝐷

2
> 0 such that for almost all  ∈ [0, 𝜏

𝛾
) and all

𝛾 > 𝛾

0
,

̇

𝑉

𝛾
() ≤ 2𝛾𝐴

𝑔 (V
𝑢
() /𝛾)









V
𝑢
()









𝑉

𝛾
() + 𝐷

2











𝜒

𝛾









∞
√𝑉

𝛾
(). (84)

Thus, we get from (74) that

̇

𝑉

𝛾
() ≤ 0, for almost all  ∈ [0, 𝜏

𝛾
) , ∀𝛾 > 𝛾

0
,

that satisfy 𝑉

𝛾
() > (

𝐷

2











𝜒

𝛾









∞

2𝑀

)

2

.

(85)

Therefore, Lemma 17 and the fact that 𝑉
𝛾
(0) = 0 imply that

𝑉

𝛾
() ≤ (𝐷

2
‖𝜒

𝛾
‖

∞
/2𝑀)

2 for all 𝛾 > 𝛾

0
and almost all  ∈

[0, 𝜏

𝛾
), and hence we obtain, for almost all  ∈ [0, 𝜏

𝛾
) that











𝑦

𝛾
()











=













𝑥

𝑢I𝑠
𝛾

() − ℎ ()













≤

𝐷

2

2𝑀











𝜒

𝛾









∞
, ∀𝛾 > 𝛾

0
,
(86)

which implies that [0, 𝜏
𝛾
) = 𝐼

𝑢
, for all 𝛾 > 𝛾

0
and (77) implies

that

lim
𝛾→∞













𝑥

𝑢I𝑠
𝛾

− ℎ











∞,𝐼
𝑢

= 0. (87)

On the other hand, the continuity of 𝑥

𝛾
implies that

‖𝑥

𝑢I𝑠
𝛾

‖

∞,𝐼
𝑢

= ‖𝑥

𝛾
‖

∞
, for all 𝛾 > 𝛾

0
(see Lemma 3). Thus,

there exists some 𝐸 > 0 and 𝛾

1
> 𝛾

0
with













𝑥

𝑢I𝑠
𝛾











∞

=











𝑥

𝛾









∞
≤ 𝐸, ∀𝛾 > 𝛾

1
. (88)

Moreover, we get from (78) and (81) for all 𝛾 > 𝛾

1
that

�̇�

𝑢I𝑠
𝛾

−

̇

ℎ = (𝐴𝑥

𝑢I𝑠
𝛾

+ 𝐵𝜓

𝑢
+ 𝐶)𝜒

𝛾

+ 𝐴(𝑥

𝑢I𝑠
𝛾

− ℎ) (𝐻 I V
𝑢
) .

(89)

Thus, by the boundedness of functions �̇� and 𝜓

𝑢
, and

the relation (88), there exist positive constants 𝐷

3
and 𝐷

4

independent of 𝛾, such that












�̇�

𝑢I𝑠
𝛾

−

̇

ℎ













≤ 𝐷

3











𝜒

𝛾









∞
+ 𝐷

4













𝑥

𝑢I𝑠
𝛾

− ℎ











∞

, ∀𝛾 > 𝛾

1
, (90)

whichmeans that 𝑥
𝑢I𝑠
𝛾

converges to ℎ in𝑊

1,∞
(𝐼

𝑢
,R) as 𝛾 →

∞ because of (77) and (87). Define 𝑞

𝑢
∈ 𝐶

0
(R
+
,R) as 𝑞

𝑢
=

ℎ I 𝜌

𝑢
. Since for all ̇𝑞

𝑢
= |�̇�|

̇

ℎ I 𝜌

𝑢
, relations (78)-(79) imply

for all 𝑡 ≥ 0 that

𝑞

𝑢
(𝑡) = 𝑥

0
+ ∫

𝑡

0

(𝐴𝑞

𝑢
(𝜏) + 𝐵𝑢 (𝜏) + 𝐶) 𝑔

∗
(�̇� (𝜏)) 𝑑𝜏.

(91)

Moreover, using the relation 𝜎

𝛾
= 𝑥

𝑢I𝑠
𝛾

I 𝜌

𝑢
, it can be easily

verified that lim
𝛾→∞

‖𝜎

𝛾
− 𝑞

𝑢
‖

1,∞
= 0.

Remark 28. In Lemma 27, the sequence of functions 𝜎

𝛾

converges in 𝑊

1,∞
(R
+
,R) as 𝛾 → ∞. This result is

stronger than the one obtained in Lemma 20, where the
convergence is only in 𝐿

∞
(R
+
,R). An application to this

stronger convergence is given in the following example.

Example 29. TheLuGremodel is described by [10] as follows:

�̇� = �̇� − 𝜃

|�̇�|

𝜁 (�̇�)

𝑥 = [1 𝑥]

[

[

�̇�

−𝜃

|�̇�|

𝜁 (�̇�)

]

]

= 𝑓 (𝑥) 𝑔 (�̇�) ,

𝑥 (0) = 𝑥

0
,

(92)

𝐹 = 𝜃𝑥 + 𝑐

1
�̇� + 𝑐

2
�̇�, (93)

where parameters 𝜃, 𝑐

1
, and 𝑐

2
> 0 are, respectively, the

stiffness, damping, and viscous friction coefficients, 𝑥 ∈ R

is the average deflection of the bristles, 𝑥
0

∈ R is the initial
state, 𝑢 ∈ 𝑊

1,∞
(R
+
,R) is the relative displacement and is

the input of the system, and 𝐹 is the friction force and is the
output of the system. The function 𝜁 : R → R is defined as

𝜁 (𝛼) = 𝐹

𝐶
+ (𝐹

𝑆
− 𝐹

𝐶
) 𝑒

−|𝛼/V
𝑠
|
, ∀𝛼 ∈ R,

(94)
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where 𝐹

𝐶
> 0 is the Coulomb friction force, 𝐹

𝑆
> 0 is the

stiction force, and V
𝑠
> 0 is the Stribeck velocity.

The LuGremodel can be written in the form of the system
(65) with 𝐴 = [𝑎1

𝑎

2] = [0 1], 𝐵 = [0 0], and 𝐶 = [1 0].
We have

lim
𝜅→0+

𝑔 (𝜅)

|𝜅|

= 𝐺

∗

+
= [

𝐺

∗

+,1

𝐺

∗

+,2

] =

[

[

1

−𝜃

𝐹

𝑆

]

]

,

lim
𝜅→0−

𝑔 (𝜅)

|𝜅|

= 𝐺

∗

−
= [

𝐺

∗

−,1

𝐺

∗

−,2

] =

[

[

−1

−𝜃

𝐹

𝑆

]

]

.

(95)

Clearly, conditions (67) and (68) are satisfied. Thus,
Lemma 27 implies that ‖𝜎

𝛾
− 𝑞

𝑢
‖

1,∞
→ 0, as 𝛾 → ∞,

where the functions 𝜎

𝛾
: R
+

→ R and 𝑞

𝑢
∈ 𝑊

1,∞
(R
+
,R)

are defined for all 𝑡 ≥ 0 as

𝜎

𝛾
(𝑡) = 𝑥

0
+ ∫

𝑡

0

(�̇� (𝜏) −

𝜃 |�̇� (𝜏)|

𝜁 (�̇� (𝜏) /𝛾)

𝑞

𝑢
(𝜏)) 𝑑𝜏, (96)

𝑞

𝑢
(𝑡) = 𝑥

0
+ ∫

𝑡

0

(�̇� (𝜏) −

𝜃 |�̇� (𝜏)|

𝐹

𝑆

𝑞

𝑢
(𝜏)) 𝑑𝜏. (97)

Also, there exist some 𝐸, 𝛾
1

> 0 such that for all 𝛾 > 𝛾

1
, the

solution of (92) is global with ‖𝑥

𝛾
‖

∞
≤ 𝐸.

Now, the following analysis is not a part of Lemma 27, but
it follows straightforwardly from it.

Let 𝐹
𝛾
be the output of the system when we use the input

𝑢 I 𝑠

𝛾
instead of 𝑢. We obtain from (93) for almost all 𝑡 ≥ 0

that

𝐹

𝛾
(𝑡) = 𝜃𝑥

𝛾
(𝑡) + 𝑐

1
�̇�

𝛾
(𝑡) +

𝑐

2

𝛾

�̇� I 𝑠

𝛾
(𝑡) , ∀𝛾 > 0, (98)

which leads to

𝜎

𝛾,𝐹
(𝑡) = 𝜃𝜎

𝛾
(𝑡) + 𝑐

1

�̇�

𝛾
(𝑡)

𝛾

+

𝑐

2

𝛾

�̇� (𝑡) , ∀𝛾 > 0, (99)

where 𝜎

𝛾,𝐹
: R
+

→ R𝑚 is defined as 𝜎

𝛾,𝐹
(𝑡) = 𝐹

𝛾
(𝛾𝑡), for all

𝛾 > 0 and for all 𝑡 ≥ 0.
Since ‖𝜎

𝛾
− 𝑞

𝑢
‖

1,∞
→ 0, as 𝛾 → ∞, we have

lim
𝛾→∞

‖𝜎

𝛾
− 𝑞

𝑢
‖

∞
= 0 and lim

𝛾→∞
‖�̇�

𝛾
− ̇𝑞

𝑢
‖

∞
= 0. Thus,

we get from the boundedness of �̇� and (99) that

lim
𝛾→∞











𝜎

𝛾,𝐹
(𝑡) − 𝜃𝑞

𝑢









∞
= 0, (100)

whichmeans that the operator whichmaps input 𝑢 and initial
state 𝑥

0
to output 𝐹 is consistent.

The conclusion of the analysis is that the hysteresis loop
of the LuGremodel is {(𝜃 ̇𝑞

𝑢
(𝑡), 𝑢(𝑡)), 𝑡 ≥ 0}, where 𝑞

𝑢
is given

in (97). Observe that this conclusion has been obtained due
to the convergence of 𝜎

𝛾
in 𝑊

1,∞
(R
+
,R) (see Remark 28).

Simulations. Take 𝜃 = 4N/m, V
𝑠

= 0.001m/s, 𝐹
𝑆

= 3N,
𝐹

𝐶
= 1N, 𝑐

1
= 1N ⋅ s/m, 𝑐

2
= 1N ⋅ s/m, and 𝑥(0) = 0

N. Let 𝑢 ∈ 𝑊

1,∞
(R
+
,R) be a function of period 2 that is

measured in meters such that 𝑢(𝑡) = 𝑡, for all 𝑡 ∈ [0, 1] s, and
𝑢(𝑡) = 2 − 𝑡, for all 𝑡 ∈ [1, 2] s. Figure 4(a) shows the uniform
convergence of 𝜎

𝛾,𝐹
to 𝜃𝑞

𝑢
as 𝛾 → ∞. Figure 4(b) shows

that the graphs {(𝜎
𝛾
(𝑡), 𝑢(𝑡)), 𝑡 ≥ 0} converge to the hysteresis

loop {(𝜃𝑞

𝑢
(𝑡), 𝑢(𝑡)), 𝑡 ≥ 0}. Figures 4(c) and 4(d) show that

the sequence of functions 𝜎

𝛾
and �̇�

𝛾
converges uniformly to

𝑞

𝑢
and ̇𝑞

𝑢
as 𝛾 → ∞. Figures 4(e) and 4(f) give the graphs of

the functions 𝑞
𝑢
and ̇𝑞

𝑢
.

7. Conclusion

This paper presented a classification of the possible Duhem
models in terms of their consistency with the hysteresis
behavior. Three classes of models have been considered in
relation with the range of a parameter 𝜆. For 𝜆 > 1, it
has been shown that the corresponding generalized Duhem
model does not represent a hysteresis behavior. For 0 < 𝜆 <

1, it has been shown that the semilinear Duhem model is
not compatible with a hysteresis behavior. In all other cases,
necessary conditions and sufficient ones have been derived
to insure the consistency of the Duhem model with the
hysteresis property. Numerical simulations have been carried
out to illustrate the obtained results.

Appendices

A. Proof of Proposition 11

Without loss of generality, assume that 𝑟 = 1. Definition 7
implies that there exists some 𝑐

0
> 0, such that





















𝑔 (𝜅)

𝜅

𝜆
−

𝑑

𝜆

+
𝑔 (0)

Γ (1 + 𝜆)





















< 1, ∀𝜅 ∈ (0, 𝑐

0
) ,





















𝑔 (𝜅)

(−𝜅)

𝜆
−

𝑑

𝜆

−
𝑔 (0)

Γ (1 + 𝜆)





















< 1, ∀𝜅 ∈ (−𝑐

0
, 0) .

(A.1)

Therefore, there exists some 𝑑 > 0 with









𝑔 (𝜅)









≤ 𝑑|𝜅|

𝜆
, ∀ |𝜅| < 𝑐

0
.

(A.2)

Thus, the substitution 𝜅 = 𝜗/𝛾 implies that

















𝛾

𝜆
𝑔(

𝜗

𝛾

)

















≤ 𝑑|𝜗|

𝜆
, ∀𝜗 ∈ R, ∀𝛾 > 0, ∀𝛾 > 𝛾

1

that satisfy |𝜗| /𝛾 < 𝑐

0
.

(A.3)

Define 𝑔

1
: R → R

+
, as

𝑔

1
(𝜗) =

{

{

{

{

{

{

{

{

{

sup
0≤𝑠≤𝜗









𝑔 (𝑠)









𝜗 > 0,

0 𝜗 = 0,

sup
𝜗≤𝑠≤0









𝑔 (𝑠)









𝜗 < 0.

(A.4)
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Figure 4: (a) 𝜎
𝛾,𝐹

(𝑡) versus 𝑡. (b) 𝜎
𝛾,𝐹

(𝑡) versus 𝑢(𝑡). (c) 𝜎
𝛾
(𝑡) versus 𝑡. (d) �̇�

𝛾
(𝑡) versus 𝑡. (e) 𝑞

𝑢
(𝑡) versus 𝑡. (f) ̇𝑞

𝑢
(𝑡) versus 𝑡. The plots are for

system (92) of Example 29. In each plot, 𝑞
𝑢
and ̇𝑞

𝑢
are the solid black lines.

The function 𝑔

1
is continuous because 𝑔 is continuous.

Moreover, we have |𝑔(𝜗)| ≤ 𝑔

1
(𝜗), for all 𝜗 ∈ R.The function

𝑔

1
is nondecreasing on [0,∞) and nonincreasing on (−∞, 0].

This implies that

















𝛾

𝜆
𝑔(

𝜗

𝛾

)

















≤

|𝜗|

𝜆

𝑐

𝜆

0

𝑔

1
(𝜗) , ∀𝜗 ∈ R, ∀𝛾 > 1

that satisfy |𝜗|

𝛾

≥ 𝑐

0
.

(A.5)

Thus, we get from (A.3) for all 𝜗 ∈ R and all 𝛾 > 1 that

















𝛾

𝜆
𝑔(

𝜗

𝛾

)

















≤ max{𝑑|𝜗|

𝜆
,

|𝜗|

𝜆

𝑐

𝜆

0

𝑔

1
(𝜗)} = 𝑔

0
(𝜗) , (A.6)

which completes the proof.

B. Proof of Lemma 17

We discuss two cases, Case 1 𝑧(0) ≤ 𝑧

1
and Case 2 𝑧

1
<

𝑧(0) < 𝑧

2
.
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Case 1 (𝑧(0) ≤ 𝑧

1
). The objective of what follows is to prove

that for all 𝑡 ∈ [0, 𝜔) we have 𝑧(𝑡) ≤ 𝑧

1
. To this end, assume

that ∃𝑡

1
∈ (0, 𝜔), such that 𝑧(𝑡

1
) > 𝑧

1
. Put 𝐶 = {𝜏 ∈

(0, 𝜔)/𝑧(𝑡) ≤ 𝑧

1
, ∀𝑡 ∈ [0, 𝜏]}. The set 𝐶 is nonempty because

0 ∈ 𝐶. Define 𝑡

2
:= Sup𝐶; then there exists a real sequence

{𝜏

𝑛
∈ 𝐶}

∞

𝑛=1
such that lim

𝑛→∞
𝜏

𝑛
= 𝑡

2
. By the continuity of

𝑧, we have 𝑧(𝑡

2
) = lim

𝑛→∞
𝑧(𝜏

𝑛
) ≤ 𝑧

1
. This fact implies

that 𝑡

2
∈ 𝐶 leading to 𝑡

2
< 𝑡

1
. Also, there exists a real

sequence {𝜏



𝑛
> 𝑡

2
}

∞

𝑛=1
such that 𝑧(𝜏

𝑛
) > 𝑧

1
, for all 𝑛 ∈ N and

lim
𝑛→∞

𝜏



𝑛
= 𝑡

2
. Since 𝑧 is continuous, we get 𝑧(𝑡

2
) ≥ 𝑧

1

which leads to 𝑧(𝑡

2
) = 𝑧

1
. Let 𝐷 = {𝑡 ∈ [𝑡

2
, 𝑡

1
]/𝑧(𝑡) = 𝑧

1
}.

The set 𝐷 is nonempty since 𝑡

2
∈ 𝐷. Define 𝑡

3
:= Sup𝐷;

then using a similar argument as above we get 𝑡
3
∈ 𝐷 which

implies that 𝑧(𝑡
3
) = 𝑧

1
and 𝑡

3
< 𝑡

1
.

Claim 1. 𝑧(𝑡) > 𝑧

1
, for all 𝑡

3
< 𝑡 ≤ 𝑡

1
.

Proof. Assume that ∃𝑡

4
∈ (𝑡

3
, 𝑡

1
] such that 𝑧(𝑡

4
) ≤ 𝑧

1
. By

definition of 𝑡
3
, we get 𝑧(𝑡

4
) < 𝑧

1
. Since 𝑧 is continuous and

𝑧(𝑡

4
) < 𝑧

1
< 𝑧(𝑡

1
), we can use the intermediate value theorem

to find 𝑡

5
∈ (𝑡

4
, 𝑡

1
) such that 𝑧(𝑡

5
) = 𝑧

1
which implies that

𝑡

5
∈ 𝐷 and 𝑡

5
> 𝑡

3
which is a contradiction.

Let 𝐸 = {𝑡 ∈ [𝑡

3
, 𝑡

1
]/𝑧(𝑡) = 𝑧

2
}. We consider the following

subcases 𝐸 = 0 and 𝐸 ̸= 0. If 𝐸 = 0, then 𝑧(𝑡

1
) < 𝑧

2
and hence

Claim 1 and (32) imply that

�̇� (𝑡) ≤ 0, for almost all 𝑡 ∈ (𝑡

3
, 𝑡

1
] . (B.1)

Thus, the absolute continuity of the function 𝑧 implies that
∫

𝑡
1

𝑡
3

�̇�(𝑡)𝑑𝑡 = 𝑧(𝑡

1
) − 𝑧(𝑡

3
) ≤ 0 which contradicts the fact that

𝑧(𝑡

3
) = 𝑧

1
< 𝑧(𝑡

1
). Now, if 𝐸 ̸= 0, let 𝑡

6
= Inf𝐸. It can be

shown that 𝑡
6
∈ 𝐸 and 𝑡

3
< 𝑡

6
. Thus, Claim 1 and (32) give

�̇� (𝑡) ≤ 0, for almost all 𝑡 ∈ (𝑡

3
, 𝑡

6
) , (B.2)

which also contradicts the facts that 𝑧 is absolutely continu-
ous on each compact interval and 𝑧(𝑡

3
) = 𝑧

1
< 𝑧

2
= 𝑧(𝑡

6
).

We have, thus, proved that in Case 1,

𝑧 (𝑡) ≤ 𝑧

1
, ∀𝑡 ∈ [0, 𝜔) , whenever 𝑧 (0) ≤ 𝑧

1
. (B.3)

Case 2 (𝑧
1
< 𝑧(0) < 𝑧

2
). Assume that ∃𝑡

1
∈ (0, 𝜔) such that

𝑧(𝑡

1
) = 𝑧

1
. Let 𝑡

2
> 0 be the smallest real number such that

𝑧(𝑡

2
) = 𝑧

1
(it exists due to the continuity of 𝑧). Then, seeing

𝑡

2
as an initial time, and 𝑧

1
as an initial condition, it follows

from Case 1 that for all 𝑡 ≥ 𝑡

2
, we have 𝑧(𝑡) ≤ 𝑧

1
. So, we

have to just analyze what happens in the interval [0, 𝑡
2
] and

discuss the case for all 𝑡 ∈ [0, 𝜔), 𝑧(𝑡) > 𝑧

1
. The analysis

of both situations is the same so that we focus on the case
for all 𝑡 ∈ [0, 𝜔), 𝑧(𝑡) > 𝑧

1
.

Assume that ∃𝑡

3
∈ (0, 𝜔) such that 𝑧(𝑡

3
) = 𝑧

2
. Let 𝑡

4
> 0

be the smallest real number such that 𝑧(𝑡

4
) = 𝑧

2
(it exists

due to the continuity of 𝑧). Then, for all 𝑡 ∈ [0, 𝑡

4
), we have

𝑧

1
< 𝑧(𝑡) < 𝑧

2
which implies that for almost all 𝑡 ∈ [0, 𝑡

4
) we

have �̇�(𝑡) ≤ 0. Since 𝑧 is absolutely continuous, it follows that
∫

𝑡
4

0
�̇�(𝑡)𝑑𝑡 = 𝑧(𝑡

4
) − 𝑧(0) = 𝑧

2
− 𝑧(0) ≤ 0. This contradicts the

fact that 𝑧
2
> 𝑧(0) which means that for all 𝑡 ≥ 0, 𝑧(𝑡) < 𝑧

2
.

Since for all 𝑡 ∈ [0, 𝜔), 𝑧(𝑡) > 𝑧

1
, it follows that for all 𝑡 ∈

[0, 𝜔), �̇�(𝑡) ≤ 0 so that for all 𝑡 ∈ [0, 𝜔), ∫

𝑡

0
�̇�(𝜏)𝑑𝜏 = 𝑧(𝑡) −

𝑧(0) ≤ 0.
As a conclusion, we have proved that in Case 2, for all 𝑡 ∈

[0, 𝜔), 𝑧(𝑡) ≤ 𝑧(0).
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