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For the switched systems, switching behavior always affects the finite-time stability (FTS) property, which was neglected by
most previous studies. This paper is mainly concerned with the problem of delay-dependent finite-time and L

2
-gain analysis

for switched systems with time-varying delay. Several less conservative sufficient conditions related to finite-time stability and
boundness of switched system with time-varying delays are proposed; the system trajectory stays within a special bound with
the information of switching signal. At last, a numerical example is also given to illustrate the efficiency of the developed
method.

1. Introduction

During the past decades, the systems with time delays have
receivedmuch attention since they often fall in various practi-
cal systems, for instance, neural networks, networked control
systems, engineering systems, biology, economics, and other
fields. However, time delay is always frequently the major
cause of oscillation and instability; the stability for systems
with time delays has been devoted to a lot of effort. Nowadays,
the stability of time delay is parted into two classes: delay-
independent stability criteria and delay-dependent ones. It
should be pointed out that delay-independent criteria turn
out to be more conservative, especially for the small-size
delays. The problem of delay-dependent stability analysis for
time-delay systems has received considerable attention, and
lots of important results have also been reported [1–12].

In recent years, there has been an increasing interest
in analysis of hybrid and switched systems due to their
importance both in theory and its applications. As an
important class of hybrid systems, switched linear systems
comprise a collection of linear subsystems described by
differential equations as well as a switching law to specify the

switching during these subsystems. A switched system is a
type of hybrid system with a combination of the discrete and
continuous dynamical systems.These systems are recognized
as models for appearance which cannot be denoted by
exclusively continuous or discrete processes. Recently, based
on the Lyapunov functions and other analysis tools, the
corresponding stability and stabilization for both linear and
nonlinear and switched systems have been investigated and
many good results have been obtained; for a recent survey on
this issue and related matters, one can also refer to [13–26].

Most of the existing results have concentrated on
Lyapunov-based asymptotic stability for the switched sys-
tems; the behavior of that is above the infinite time inter-
val. However, in practical engineering, there exists the bad
transient characteristics; the system is asymptotically stable
without unusable. For the systems which work in a short
time interval, for instance, control system,missile system, and
communication network system,whichmainly care about the
behavior over a finite time interval. To deal with this problem,
in 1961, Dorato presented the idea of finite-time stability
in [27]. Over the past few years, many study efforts have
been dedicated to the finite-time stability (FTS) of switched
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systems due to its wide applications. Comparing with the
classical Lyapunov stability, which currently is the focus on
a large and growing interdisciplinary area of research. To
study the transient behavior of systems, FTS concerns the
stability of a system over a finite interval of time and plays
an important role. It is important to emphasize the discon-
nection between classical Lyapunov stability and finite-time
stability.The problem about finite-time stabilization has been
widely learned in the literature [28–44]. It is worth pointing
out that there is a difference between finite-time stability and
Lyapunov asymptotic stability, and they are also independent
of each other.

Recently, some papers are found to be related to finite-
time stability for switched systems. For example, based on the
technique of average dwell time, the problem of finite-time
boundedness for the switched linear system with time delays
was investigated in [36]. The issue of finite-time stability
and 𝐻

∞
stabilization for switched nonlinear discrete-time

systems was developed in [37]. The problem of finite-time
quantized 𝐻

∞
control problem for a class of discrete-time

switched time-delay systems with time-varying exogenous
disturbances was also discussed in [38]. But, to the best of
the authors’ knowledge, the finite-time 𝐿

2
-gain problems

for switched systems have not been completely studied.
The previous research has some conservatism of stability
criterion; it is natural to look for an alternative way to reduce
the conservatism of corresponding stability criteria.This idea
motivates to our study.

The main contribution of this paper is that we present a
novel approach for finite-time stability of the given switched
system. Moreover, several sufficient conditions ensuring the
finite-time stability and boundness are proposed with differ-
ent information we know about the switching signal. It shows
the less conservative results when more information about
the switching signal is available. By selecting the appropriate
Lyapunov-Krasovskii functional, the sufficient conditions are
obtained to guarantee finite-time stability of the systems and
the closed-loop system trajectory stays in a special bound.
The finite-time stability criteria can also be dealt with in
the form of linear matrix inequalities and average dwell
time. Finally, a numerical example is given to illustrate the
effectiveness of the developed techniques.

2. Preliminaries

In this paper, the following switched systems are described as
follows:

�̇� (𝑡) = 𝐴
𝜎(𝑡)

𝑥 (𝑡) + 𝐵
𝜎(𝑡)

𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐺
𝜎(𝑡)

𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶
𝜎(𝑡)

𝑥 (𝑡) + 𝐷
𝜎(𝑡)

𝜔 (𝑡) , 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector of the system, 𝑧(𝑡) ∈ R𝑚

is the controlled output, and 𝜔(𝑡) ∈ 𝐿
𝑞

2
[0,∞] is the external

disturbance vector and satisfies the constraint:

∫

𝑇

0

𝜔
⊺
(𝑡) 𝜔 (𝑡) ≤ 𝑑, 𝑑 ≥ 0. (2)

𝐴
𝜎(𝑡)

, 𝐵
𝜎(𝑡)

, 𝐺
𝜎(𝑡)

, 𝐶
𝜎(𝑡)

, and 𝐷
𝜎(𝑡)

are the constant real
matrices with appropriate dimension. 𝜏(𝑡) represents the
mode-dependent time-varying state delay in the switched
system and satisfies the following conditions:

0 < 𝜏 (𝑡) ≤ ℎ < ∞, (3)

̇𝜏 (𝑡) ≤ 𝜏, (4)

where ℎ is the upper bound of the time-varying delay 𝜏(𝑡)

and 𝜏 is the variation rate of the time-varying delay 𝜏(𝑡). 𝜙(𝑡)
is the differentiable vector-valued initial function on [−ℎ, 0].
𝜎(𝑡) : [0,∞) → N = {1, 2, . . . , 𝑁} is the right continuous
piecewise constant switching signal to be designed.

Corresponding to the switching signal 𝜎(𝑡), we get the
follwing switching sequence:

∑ = {𝑥
0
; (𝑖

0
, 𝑡
0
) , . . . , (𝑖

𝑘
, 𝑡
𝑘
) , . . . , | 𝑖

𝑘
∈ N, 𝑘 = 0, 1, . . .} ,

(5)

where 𝑡
0
is the initial time when 𝑡

𝑘
∈ [𝑡

𝑘
, 𝑡
𝑘+1

), 𝑥(𝑡
0
)

is the initial state and 𝑖
𝑘
th subsystem is active. Therefore,

the trajectory 𝑥(𝑡) of the switched system (1) is called the
trajectory of the 𝑖

𝑘
th subsystem. As assumed before, we get

rid of Zeno behavior for all types related to switching signal.
Throughout this paper, we assumed that the state of the
switched system (1) does not jump at the switching instants;
that is, the trajectory 𝑥(𝑡) is continuous everywhere.

Firstly, we will give the definitions and lemmas about
switched system (1), which plays an major role in the
derivation of our results.

Definition 1. Switch system (1) is said to be finite-time
bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇, 𝑆, 𝑑), if condition (6) holds:

max
−𝜏≤𝑡0≤0

{𝑥
⊺
(𝑡
0
) 𝑆𝑥 (𝑡

0
) , �̇�

⊺
(𝑡
0
) 𝑆�̇� (𝑡

0
)}

≤ 𝑐
1
⇒ 𝑥

⊺
(𝑡) 𝑆𝑥 (𝑡) < 𝑐

2
,

∀𝑡 ∈ [0, 𝑇] , ∀𝜔 (𝑡) : ∫

𝑇

0

𝜔
⊺
(𝑠) 𝜔 (𝑠) 𝑑𝑠 ≤ 𝑑,

(6)

where 𝑐
2
> 𝑐

1
≥ 0 and 𝑆 > 0.

Definition 2. For 𝛾 > 0, 𝑑 > 0, 𝑇 > 0, 𝜂 > 0, Λ > 0, and
𝑐
2
> 𝑐

1
> 0, system (3) is said to be finite-time stable with a

weighted 𝐿
2
performance 𝛾 with respect to (𝑐

1
, 𝑐
2
, 𝑇, 𝑆, 𝑑), if

the following condition holds:
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∫

𝑇

0

[𝜂𝑠 − ln 𝜆
1
𝑐
2

Λ𝑐
1
+ 𝑑𝛾

2
(1/𝜂) (1 − 𝑒

𝜂𝑇
)
] 𝑧

⊺
(𝑠) 𝑧 (𝑠) 𝑑𝑠

≤ 𝛾
2
𝑒
−𝜂𝑇

∫

𝑇

0

𝜔
⊺
(𝑠) 𝜔 (𝑠) 𝑑𝑠,

(7)

and under zero initial condition, it holds for all nonzero 𝜔:
∫
𝑇

0
𝜔
⊺
(𝑠)𝜔(𝑠)𝑑𝑠 ≤ 𝑑.

Definition 3 (see [21]). For any 𝑇
2
> 𝑇

1
≥ 0, let 𝑁

𝜎
(𝑇

1
, 𝑇

2
)

denote the switching number of 𝜎(𝑡) during (𝑇
1
, 𝑇

2
). If

𝑁
𝜎
(𝑇

1
, 𝑇

2
) ≤ 𝑁

0
+ (𝑇

2
− 𝑇

1
)/𝜏

𝑎
holds for𝑁

0
≥ 0 and 𝜏

𝑎
> 0,

then𝑁
0
and 𝜏

𝑎
are called chattering bound and average dwell

time, respectively. Here we assume 𝑁
0
= 0 for simplicity as

supported by reference.

Lemma 4 (see [9]). Let 𝑓
𝑖
: R𝑚

→ R (𝑖 = 1, 2, . . . , 𝑁) have
positive values in an open subset D of R𝑚. Then, the recipro-
cally convex combination of 𝑓

𝑖
overD satisfiesz

min
{𝛽𝑖|𝛽𝑖>0,∑𝑖 𝛽𝑖=1}

∑

𝑖

1

𝛽
𝑖

𝑓
𝑖
(𝑡) = ∑

𝑖

𝑓
𝑖
(𝑡) +max

𝑔𝑖,𝑗(𝑡)

∑

𝑖 ̸= 𝑗

𝑔
𝑖,𝑗
(𝑡)

subject to

{𝑔
𝑖,𝑗
: R

𝑚
→ R, 𝑔

𝑗,𝑖
(𝑡) = 𝑔

𝑖,𝑗
(𝑡) , [

𝑓
𝑖
(𝑡) 𝑔

𝑖,𝑗
(𝑡)

𝑔
𝑖,𝑗
(𝑡) 𝑓

𝑗
(𝑡)

] ≥ 0} .

(8)

Lemma 5 (see [11]). For any constant matrix 𝑍 ∈ R𝑛×𝑛, 𝑍 =

𝑍
⊺
> 0, scalars ℎ > 0, such that the following integrations are

well defined; then

−ℎ∫

𝑡

𝑡−ℎ

𝑥
⊺
(𝑠) 𝑍𝑥 (𝑠) 𝑑𝑠 ≤ −[∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

⊺

𝑍[∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠] ,

−
ℎ
2

2
∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑥
⊺
(𝑠) 𝑍𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

≤ −[∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃]

⊺

𝑍[∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃] .

(9)

Lemma 6 (Schur’s complement). Given constant matrices 𝑋,
𝑌, 𝑍, where𝑋 = 𝑋

⊺ and 0 < 𝑌 = 𝑌
⊺, then𝑋 + 𝑍

⊺
𝑌
−1
𝑍 < 0 if

and only if

[
𝑋 𝑍

⊺

∗ −𝑌
] < 0 or [

−𝑌 𝑍

∗ 𝑋
] < 0. (10)

3. Finite-Time Boundedness Analysis

Theorem 7. System (3) is said to be finite-time stability
with respect to (𝑐

1
, 𝑐
2
, 𝑅, 𝑑, 𝑇) if there exist symmetric positive

matrices 𝑃
𝑖
, 𝑄

𝑠𝑖
𝑠 = 1, 2, 𝑋

𝑘𝑖
(𝑘 = 1, 2), 𝑌

𝑖
and matrices 𝑀

𝑖
,

𝑁
𝑖
, 𝑉

𝑖
, scalars 𝛼 ≥ 0, 𝜇 ≥ 1, 𝜆

𝑙
> 0 (𝑙 = 1, 2, . . . , 8), 𝑑 > 0,

ℎ > 0, Λ > 0, 𝜏 > 0, 𝑟(𝜏); such that ∀𝑖, 𝑗 ∈ N, we have the
following linear matrix inequalities:

Ξ
1𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
11𝑖

Ξ
12𝑖

𝑊
𝑖

𝐴
⊺

𝑖
𝑉
⊺

𝑖
ℎ𝐴

⊺

𝑖
𝑀

⊺

𝑖
+ 𝑌

𝑖
+ 𝑌

⊺

𝑖
𝑌
𝑖
+ 𝑌

⊺

𝑖
𝑃
𝑖
𝐺
𝑖

∗ Ξ
22𝑖

−𝑊
𝑖
+
𝑋
2𝑖

ℎ
𝐵
⊺

𝑖
𝑉
⊺

𝑖
ℎ𝐵

⊺

𝑖
𝑀

⊺

𝑖
0 0

∗ ∗ −𝑄
1𝑖
−
𝑋
2𝑖

ℎ
0 0 0 0

∗ ∗ ∗ Ξ
44𝑖

−ℎ𝑀
⊺

𝑖
0 𝑉

𝑖
𝐺
𝑖

∗ ∗ ∗ ∗ −ℎ𝑋
1𝑖
− 𝑌

𝑖
− 𝑌

⊺

𝑖
0 ℎ𝑀

𝑖
𝐺
𝑖

∗ ∗ ∗ ∗ ∗ −𝑌
𝑖
− 𝑌

⊺

𝑖
0

∗ ∗ ∗ ∗ ∗ ∗ −𝜂𝐻
𝑖

]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

Ξ
2𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
11𝑖

Ξ
12𝑖

𝑊
𝑖

𝐴
⊺

𝑖
𝑉
⊺

𝑖
𝑌
𝑖
+ 𝑌

⊺

𝑖
ℎ𝐴

⊺

𝑖
𝑁

⊺

𝑖
+ 𝑌

𝑖
+ 𝑌

⊺

𝑖
𝑃
𝑖
𝐺
𝑖

∗ Ξ
22𝑖

−𝑊
𝑖
+
𝑋
2𝑖

ℎ
𝐵
⊺

𝑖
𝑉
⊺

𝑖
0 ℎ𝐵

⊺

𝑖
𝑁

⊺

𝑖
0

∗ ∗ −𝑄
1𝑖
−
𝑋
2𝑖

ℎ
0 0 0 0

∗ ∗ ∗ Ξ
44𝑖

0 −ℎ𝑁
⊺

𝑖
𝑉
𝑖
𝐺
𝑖

∗ ∗ ∗ ∗ −𝑌
𝑖
− 𝑌

⊺

𝑖
0 0

∗ ∗ ∗ ∗ ∗ −ℎ𝑋
1𝑖
− 𝑌

𝑖
− 𝑌

⊺

𝑖
ℎ𝑁

𝑖
𝐺
𝑖

∗ ∗ ∗ ∗ ∗ ∗ −𝜂𝐻
𝑖

]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(11)

𝑃
𝑖
< 𝜇𝑃

𝑗
, 𝑄

1𝑖
< 𝜇𝑄

1𝑗
, 𝑄

2𝑖
< 𝜇𝑄

2𝑗
,

𝑋
1𝑖
< 𝜇𝑋

1𝑗
, 𝑋

2𝑖
< 𝜇𝑋

2𝑗
, 𝑌

𝑖
< 𝜇𝑌

𝑗
,

(12)

𝜆
1
𝑐
2
𝑒
−𝜂𝑇

> Λ𝑐
1
+ 𝑑𝜆

8
(1 − 𝑒

−𝜂𝑇
) . (13)

with the average dwell time of the switching signal 𝜎 satisfying

𝜏
𝑎
> 𝜏

∗

𝑎
=

𝑇 ln 𝜇
ln (𝜆

1
𝑐
2
) − ln [Λ𝑐

1
+ 𝑑𝜆

8
(1 − 𝑒

−𝜂𝑇
)] − 𝜂𝑇

, (14)
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where

Ξ
11𝑖

= 𝛿𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝐴

⊺

𝑖
𝑃
𝑖
+ 𝑒

𝛿ℎ
(𝑄

1𝑖
+ 𝑄

2𝑖
)

+ ℎ𝑋
1𝑖
−
𝑋
2𝑖

ℎ
− 2𝑌

𝑖
− 2𝑌

⊺

2𝑖
,

Ξ
12𝑖

= 𝑃
𝑖
𝐵
𝑖
+
𝑋
2𝑖

ℎ
−𝑊

𝑖
,

Ξ
22𝑖

= 𝑟 (𝜏)𝑄
1𝑖
−
𝑋
2𝑖

ℎ
+𝑊

𝑖
+𝑊

⊺

𝑖
−
𝑋
⊺

2𝑖

ℎ
,

Ξ
44𝑖

= ℎ𝑋
2𝑖
+
𝑒
𝛿ℎ

− 𝛿ℎ − 1

𝛿
2

𝑌
𝑖
− 𝑉

𝑖
− 𝑉

⊺

𝑖
,

𝑟 (𝜏) = {
− (1 − 𝜏) 𝑒

𝛿ℎ
, if 𝜏 > 1;

− (1 − 𝜏) , if 𝜏 ≤ 1.

(15)

Consider

Λ = 𝜆
2
+ ℎ𝑒

𝛿ℎ
(𝜆

3
+ 𝜆

4
) + ℎ

2
𝑒
𝛿ℎ
(𝜆

5
+ 𝜆

6
) +

1

2
𝜆
7
ℎ
3
𝑒
𝛿ℎ
,

(16)

𝜆
1
= min

𝑖∈N
{𝜆min (𝑃𝑖)} , 𝜆

2
= max

𝑖∈N
{𝜆max (𝑃𝑖)} , (17)

𝜆
3
= max

𝑖∈N
{𝜆max (𝑄1𝑖

)} , 𝜆
4
= max

𝑖∈N
{𝜆max (𝑄2𝑖

)} , (18)

𝜆
5
= max

𝑖∈N
{𝜆max (𝑋1𝑖

)} , 𝜆
6
= max

𝑖∈N
{𝜆max (𝑋2𝑖

)} , (19)

𝜆
7
= max

𝑖∈N
{𝜆max (𝑌𝑖

)} , 𝜆
8
= max

𝑖∈N
{𝜆max (𝐻𝑖

)} . (20)

Proof. Define 𝑥
𝑡
(𝑠) = 𝑥(𝑡 + 𝑠). We consider the following

Lyapunov-Krasovskii functional:

𝑉
𝜎(𝑡)

(𝑥
𝑡
, 𝑡) =

4

∑

𝑙=1

𝑉
𝑙𝜎(𝑡)

(𝑥
𝑡
, 𝑡) ,

𝑉
1𝜎(𝑡)

(𝑥
𝑡
, 𝑡) = 𝑥

⊺
(𝑡) 𝑒

𝛿𝑡
𝑃
𝜎(𝑡)

𝑥 (𝑡) ,

𝑉
2𝜎(𝑡)

(𝑥
𝑡
, 𝑡) = ∫

𝑡

𝑡−ℎ

𝑒
𝛿(𝑠+ℎ)

𝑥
⊺
(𝑠) 𝑄

1𝜎(𝑡)
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝛿(𝑠+ℎ)

𝑥
⊺
(𝑠) 𝑄

2𝜎(𝑡)
𝑥 (𝑠) 𝑑𝑠,

𝑉
3𝜎(𝑡)

(𝑥
𝑡
, 𝑡) = ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠−𝜃)

𝑥
⊺
(𝑠)𝑋

1𝜎(𝑡)
𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠−𝜃)

�̇�
⊺
(𝑠)𝑋

2𝜎(𝑡)
�̇� (𝑠) 𝑑𝑠 𝑑𝜃,

𝑉
4𝜎(𝑡)

(𝑥
𝑡
, 𝑡) = ∫

0

−ℎ

∫

0

𝜃

∫

𝑡

𝑡+𝜐

𝑒
𝛿(𝑠−𝜃)

�̇�
⊺
(𝑠) 𝑌

𝜎(𝑡)
�̇� (𝑠) 𝑑𝑠 𝑑𝜐 𝑑𝜃.

(21)

Taking the time derivative of 𝑉
𝜎(𝑡)

(𝑥
𝑡
, 𝑡) along the trajec-

tory of the system (1), one has

�̇�
1𝑖
(𝑥

𝑡
, 𝑡) = 𝑥

⊺
(𝑡) 𝑒

𝛿𝑡
(𝛿𝑃

𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝐴

⊺

𝑖
𝑃
𝑖
) 𝑥 (𝑡)

+ 2𝑒
𝛿𝑡
𝑥
⊺
(𝑡) 𝑃

𝑖
𝐵
𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑒
𝛿𝑡
𝑥
⊺
(𝑡) 𝑃

𝑖
𝐺
𝑖
𝜔 (𝑡) ,

�̇�
2𝑖
(𝑥

𝑡
, 𝑡) = 𝑒

𝛿𝑡
𝑥
⊺
(𝑡) 𝑒

𝛿ℎ
(𝑄

1𝑖
+ 𝑄

2𝑖
) 𝑥 (𝑡)

− 𝑒
𝛿𝑡
𝑥
⊺
(𝑡 − ℎ)𝑄

1𝑖
𝑥 (𝑡 − ℎ)

− (1 − ̇𝜏 (𝑡)) 𝑒
𝛿𝑡
𝑥
⊺
(𝑡 − 𝜏 (𝑡)) 𝑄

2𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) .

(22)
Since

0 ≤ 𝜏 (𝑡) ≤ ℎ, (23)

we define

𝑟 (𝜏) = {
− (1 − 𝜏) 𝑒

𝛿ℎ
, if 𝜏 > 1;

− (1 − 𝜏) , if 𝜏 ≤ 1.
(24)

Then,

�̇�
2𝑖
(𝑥

𝑡
, 𝑡) = 𝑒

𝛿𝑡
𝑥
⊺
(𝑡) 𝑒

𝛿ℎ
(𝑄

1𝑖
+ 𝑄

2𝑖
) 𝑥 (𝑡)

− 𝑒
𝛿𝑡
𝑥
⊺
(𝑡 − ℎ)𝑄

1𝑖
𝑥 (𝑡 − ℎ)

+ 𝑒
𝛿𝑡
𝑥
⊺
(𝑡 − 𝜏 (𝑡)) 𝑟 (𝜏) 𝑄

2𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) ,

�̇�
3𝑖
(𝑥

𝑡
, 𝑡) = 𝑒

𝛿𝑡
𝑥
⊺
(𝑡) ℎ𝑋

1𝑖
𝑥 (𝑡) + 𝑒

𝛿𝑡
�̇�
⊺
(𝑡) ℎ𝑋

2𝑖
�̇� (𝑡)

− ∫

𝑡

𝑡−ℎ

𝑒
𝛿(𝑠+ℎ)

𝑥
⊺
(𝑠)𝑋

1𝑖
𝑥 (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−ℎ

𝑒
𝛿(𝑠+ℎ)

�̇�
⊺
(𝑠)𝑋

2𝑖
�̇� (𝑠) 𝑑𝑠

≤ 𝑒
𝛿𝑡
𝑥
⊺
(𝑡) ℎ𝑋

1𝑖
𝑥 (𝑡) + 𝑒

𝛿𝑡
�̇�
⊺
(𝑡) ℎ𝑋

2𝑖
�̇� (𝑡)

− 𝑒
𝛿𝑡
∫

𝑡

𝑡−𝜏(𝑡)

𝑥
⊺
(𝑠)𝑋

1𝑖
𝑥 (𝑠) 𝑑𝑠

− 𝑒
𝛿𝑡
∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝑥
⊺
(𝑠)𝑋

1𝑖
𝑥 (𝑠) 𝑑𝑠

− 𝑒
𝛿𝑡
∫

𝑡

𝑡−ℎ

�̇�
⊺
(𝑠)𝑋

2𝑖
�̇� (𝑠) 𝑑𝑠.

(25)

By Lemma 5, one can obtain

−∫

𝑡

𝑡−𝜏(𝑡)

𝑥
⊺
(𝑠)𝑋

1𝑖
𝑥 (𝑠) 𝑑𝑠 ≤ −𝜏 (𝑡) 𝑈

⊺

1
𝑋
1𝑖
𝑈
1
,

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝑥
⊺
(𝑠)𝑋

1𝑖
𝑥 (𝑠) 𝑑𝑠 ≤ − (ℎ − 𝜏 (𝑡)) 𝑈

⊺

2
𝑋
1𝑖
𝑈
2
,

(26)
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where

𝑈
1
=

1

𝜏 (𝑡)
∫

𝑡

𝑡−𝜏(𝑡)

𝑥 (𝑠) 𝑑𝑠, 𝑈
2
=

1

ℎ − 𝜏 (𝑡)
∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠,

lim
𝜏(𝑡)→0

1

𝜏 (𝑡)
∫

𝑡

𝑡−𝜏(𝑡)

𝑥 (𝑠) 𝑑𝑠 = 𝑥 (𝑡) ,

lim
𝜏(𝑡)→ℎ

1

ℎ − 𝜏 (𝑡)
∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠 = 𝑥 (𝑡 − ℎ) .

(27)

From the Leibniz-Newton formula, the following equa-
tion is true for any matrices 𝑀

𝑖
, 𝑁

𝑖
, and 𝑉

𝑖
with appropriate

dimensions:

(2𝜏 (𝑡) 𝑈
⊺

1
𝑀

𝑖
+ 2 (ℎ − 𝜏 (𝑡)) 𝑈

⊺

2
𝑁
𝑖
+ 2�̇�

⊺
(𝑡) 𝑉

𝑖
)

× [−�̇� (𝑡) + 𝐴
𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐺

𝑖
𝜔 (𝑡)] = 0.

(28)

From Lemma 4, it yields

− ∫

𝑡

𝑡−ℎ

�̇�
⊺
(𝑠)𝑋

2𝑖
�̇� (𝑠) 𝑑𝑠

= −∫

𝑡

𝑡−𝜏(𝑡)

�̇�
⊺
𝑋
2𝑖
�̇� (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ

�̇�
⊺
𝑋
2𝑖
�̇� (𝑠) 𝑑𝑠

≤ −
ℎ

ℎ − 𝜏 (𝑡)
[∫

𝑡−𝜏(𝑡)

𝑡−ℎ

�̇�𝑑𝑠]

⊺

𝑋
2𝑖

ℎ
[∫

𝑡−𝜏(𝑡)

𝑡−ℎ

�̇�𝑑𝑠]

−
ℎ

𝜏 (𝑡)
[∫

𝑡

𝑡−𝜏(𝑡)

�̇�𝑑𝑠]

⊺
𝑋
2𝑖

ℎ
[∫

𝑡

𝑡−𝜏(𝑡)

�̇�𝑑𝑠]

≤ −[
𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏 (𝑡))

𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥 (𝑡 − ℎ)
]

⊺

×
[
[

[

𝑋
2𝑖

ℎ
𝑊

𝑖

∗
𝑋
2𝑖

ℎ

]
]

]

[
𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏 (𝑡))

𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥 (𝑡 − ℎ)
]

�̇�
4𝑖
(𝑥

𝑡
, 𝑡) = 𝑒

𝛿𝑡
�̇�
⊺
(𝑡) 𝑌

𝑖
�̇� (𝑡) ∫

0

−ℎ

∫

0

𝜃

𝑒
−𝛿𝜐

𝑑𝜐 𝑑𝜃

− 𝑒
𝛿𝑡
∫

0

−ℎ

∫

𝑡

𝑡+𝜃

�̇�
⊺
(𝑠) 𝑌

𝑖
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

= 𝑒
𝛿𝑡
�̇�
⊺
(𝑡)

𝑒
𝛿ℎ

− 𝛿ℎ − 1

𝛿
2

𝑌
𝑖
�̇� (𝑡)

− 𝑒
𝛿𝑡
∫

0

−ℎ

∫

𝑡

𝑡+𝜃

�̇�
⊺
(𝑠) 𝑌

𝑖
�̇� (𝑠) 𝑑𝑠 𝑑𝜃.

(29)

By using Lemma 5, we have

− ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

�̇� (𝑠) 𝑌
𝑖
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

= −∫

0

−𝜏(𝑡)

∫

𝑡

𝑡+𝜃

�̇� (𝑠) 𝑌
𝑖
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

− ∫

−𝜏(𝑡)

−ℎ

∫

𝑡

𝑡+𝜃

�̇� (𝑠) 𝑌
𝑖
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

≤ −
2

𝜏
2
(𝑡)

[∫

0

−𝜏(𝑡)

∫

𝑡

𝑡+𝜃

�̇� (𝑠) 𝑑𝑠 𝑑𝜃]

⊺

× 𝑌
𝑖
[∫

0

−𝜏(𝑡)

∫

𝑡

𝑡+𝜃

�̇� (𝑠) 𝑑𝑠 𝑑𝜃]

−
2

(ℎ − 𝜏 (𝑡))
2
[∫

−𝜏(𝑡)

−ℎ

∫

𝑡

𝑡+𝜃

�̇� (𝑠) 𝑑𝑠 𝑑𝜃]

⊺

× 𝑌
𝑖
[∫

−𝜏(𝑡)

−ℎ

∫

𝑡

𝑡+𝜃

�̇� (𝑠) 𝑑𝑠 𝑑𝜃]

= −
2

𝜏
2
(𝑡)

[𝜏 (𝑡) 𝑥 (𝑡) − ∫

𝑡

𝑡−𝜏(𝑡)

𝑥 (𝑠) 𝑑𝑠]

⊺

× 𝑌
𝑖
[𝜏 (𝑡) 𝑥 (𝑡) − ∫

𝑡

𝑡−𝜏(𝑡)

𝑥 (𝑠) 𝑑𝑠]

−
2

(ℎ − 𝜏 (𝑡))
2
[(ℎ − 𝜏 (𝑡) 𝑥 (𝑡)) − ∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

⊺

× 𝑌
𝑖
[(ℎ − 𝜏 (𝑡) 𝑥 (𝑡)) − ∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

= −2[𝑥 (𝑡) −
1

𝜏 (𝑡)
∫

𝑡

𝑡−𝜏(𝑡)

𝑥 (𝑠) 𝑑𝑠]

⊺

× 𝑌
𝑖
[𝑥 (𝑡) −

1

𝜏 (𝑡)
∫

𝑡

𝑡−𝜏(𝑡)

𝑥 (𝑠) 𝑑𝑠]

− 2[𝑥 (𝑡) −
1

ℎ − 𝜏 (𝑡)
∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

⊺

× 𝑌
𝑖
[𝑥 (𝑡) −

1

ℎ − 𝜏 (𝑡)
∫

𝑡−𝜏(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

= −2[𝑥 (𝑡) − 𝑈
1
]
⊺

𝑌
𝑖
[𝑥 (𝑡) − 𝑈

1
]

− 2[𝑥 (𝑡) − 𝑈
2
]
⊺

𝑌
𝑖
[𝑥 (𝑡) − 𝑈

2
] .

(30)

Therefore, for a given 𝜂 > 0 and from (21)–(30), one can
obtain that

�̇�
𝑖
(𝑥

𝑡
, 𝑡) − 𝜂𝜔

⊺
𝐻
𝑖
𝜔 (𝑡) ≤ 𝑒

𝛿𝑡
𝜉
⊺
(𝑡) Ξ

𝑖
𝜉 (𝑡) , (31)

where
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𝜉
⊺
(𝑡) = [𝑥

⊺
(𝑡) , 𝑥

⊺
(𝑡 − 𝜏 (𝑡)) , 𝑥

⊺
(𝑡 − ℎ) , �̇�

⊺
(𝑡) , 𝑈

⊺

1
, 𝑈

⊺

2
, 𝜔

⊺
(𝑡)] .

Ξ
𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
11𝑖

Ξ
12𝑖

𝑊
𝑖

𝐴
⊺

𝑖
𝑉
⊺

𝑖
𝜏 (𝑡) 𝐴

⊺

𝑖
𝑀

⊺

𝑖
+ 𝑌

𝑖
+ 𝑌

⊺

𝑖
(ℎ − 𝜏 (𝑡)) 𝐴

⊺

𝑖
𝑁

⊺

𝑖
+ 𝑌

𝑖
+ 𝑌

⊺

𝑖
𝑃
𝑖
𝐺
𝑖

∗ Ξ
22𝑖

−𝑊
𝑖
+
𝑋
2𝑖

ℎ
𝐵
⊺

𝑖
𝑉
⊺

𝑖
𝜏 (𝑡) 𝐵

⊺

𝑖
𝑀

⊺

𝑖
(ℎ − 𝜏 (𝑡)) 𝐵

⊺

𝑖
𝑁

⊺

𝑖
0

∗ ∗ −𝑄
1𝑖
−
𝑋
2𝑖

ℎ
0 0 0 0

∗ ∗ ∗ Ξ
44𝑖

−𝜏 (𝑡)𝑀
⊺

𝑖
− (ℎ − 𝜏 (𝑡))𝑁

⊺

𝑖
𝑉
𝑖
𝐺
𝑖

∗ ∗ ∗ ∗ −𝜏 (𝑡)𝑋
1𝑖
− 𝑌

𝑖
− 𝑌

⊺

𝑖
0 𝜏 (𝑡)𝑀

𝑖
𝐺
𝑖

∗ ∗ ∗ ∗ ∗ − (ℎ − 𝜏 (𝑡))𝑋
1𝑖
− 𝑌

𝑖
− 𝑌

⊺

𝑖
(ℎ − 𝜏 (𝑡))𝑁

𝑖
𝐺
𝑖

∗ ∗ ∗ ∗ ∗ ∗ −𝜂𝐻
𝑖

]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(32)

The LMIs (11) lead to 𝜏(𝑡) → ℎ and to 𝜏(𝑡) → 0,
respectively. It is easy to see that Ξ

1𝑖
results from Ξ

𝑖
| 𝜏(𝑡) = ℎ

and Ξ
2𝑖
results from Ξ

𝑖
| 𝜏(𝑡) = 0. Thus, we obtain

�̇�
𝑖
(𝑥

𝑡
, 𝑡) − 𝜂𝑉

𝑖
(𝑥

𝑡
, 𝑡) < 𝜂𝜔

⊺
(𝑡)𝐻

𝑖
𝜔 (𝑡) . (33)

Notice that

𝑑

𝑑𝑡
(𝑒

−𝜂𝑡
𝑉
𝑖
(𝑥

𝑡
, 𝑡)) < 𝜂𝑒

−𝜂𝑡
𝜔
⊺
(𝑡)𝐻

𝑖
𝜔 (𝑡) . (34)

Integrating (34) from 𝑡
𝑘
to 𝑡, we can get that

𝑉
𝑖
(𝑥

𝑡
, 𝑡) < 𝑒

𝜂(𝑡−𝑡𝑘)
𝑉
𝑖
(𝑥

𝑡𝑘
, 𝑡
𝑘
) + 𝜂∫

𝑡

𝑡𝑘

𝑒
𝜂(𝑡−𝑠)

𝜔
⊺
(𝑠)𝐻

𝑖
𝜔 (𝑠) 𝑑𝑠.

(35)

Note that (12) and 𝜇 ≥ 1, it yields

𝑉
𝜎(𝑡𝑘)

(𝑥
𝑡𝑘
, 𝑡
𝑘
) ≤ 𝜇𝑉

𝜎(𝑡𝑘−1)
(𝑥

𝑡𝑘
, 𝑡
𝑘
) . (36)

Then, we can easily have

𝑉
𝜎(𝑡𝑘−1)

(𝑥
𝑡𝑘
, 𝑡
𝑘
) < 𝑒

𝜂(𝑡𝑘−𝑡𝑘−1)
𝑉
𝜎(𝑡𝑘−1)

(𝑥
𝑡𝑘−1

, 𝑡
𝑘−1

)

+ 𝜂∫

𝑡𝑘

𝑡𝑘−1

𝑒
𝜂(𝑡𝑘−𝑠)

𝜔
⊺
(𝑠)𝐻

𝑖
𝜔 (𝑠) 𝑑𝑠.

(37)

Thus, from (35)–(37), it yields

𝑉
𝜎(𝑡)

(𝑥
𝑡
, 𝑡) ≤ 𝑒

𝜂(𝑡−𝑡𝑘)
𝑉
𝜎(𝑡𝑘)

(𝑥
𝑡𝑘
, 𝑡
𝑘
)

+ 𝜂∫

𝑡

𝑡𝑘

𝑒
𝜂(𝑡−𝑠)

𝜔
⊺
(𝑠)𝐻

𝑖
𝜔 (𝑠) 𝑑𝑠

≤ 𝜇𝑒
𝜂(𝑡−𝑡𝑘)

𝑉
𝜎(𝑡𝑘−1)

(𝑥
𝑡𝑘
, 𝑡
𝑘
)

+ 𝜂∫

𝑡

𝑡𝑘

𝑒
𝜂(𝑡−𝑠)

𝜔
⊺
(𝑠)𝐻

𝑖
𝜔 (𝑠) 𝑑𝑠

≤ 𝜇𝑒
𝜂(𝑡−𝑡𝑘−1)

𝑉
𝜎(𝑡𝑘−1)

(𝑥
𝑡𝑘−1

, 𝑡
𝑘−1

)

+ 𝜂𝜇∫

𝑡𝑘

𝑡𝑘−1

𝑒
𝜂(𝑡−𝑠)

𝜔
⊺
(𝑠)𝐻

𝑖
𝜔 (𝑠) 𝑑𝑠

+ 𝜂∫

𝑡

𝑡𝑘

𝑒
𝜂(𝑡−𝑠)

𝜔
⊺
(𝑠)𝐻

𝑖
𝜔 (𝑠) 𝑑𝑠

≤ 𝜇
2
𝑒
𝜂(𝑡−𝑡𝑘−2)

𝑉
𝜎(𝑡𝑘−2)

(𝑥
𝑡𝑘−2

, 𝑡
𝑘−2

)

+ 𝜂𝜇
2
∫

𝑡𝑘−1

𝑡𝑘−2

𝑒
𝜂(𝑡−𝑠)

𝜔
⊺
(𝑠)𝐻

𝑖
𝜔 (𝑠) 𝑑𝑠

+ 𝜂𝜇∫

𝑡𝑘

𝑡𝑘−1

𝑒
𝜂(𝑡−𝑠)

𝜔
⊺
(𝑠)𝐻

𝑖
𝜔 (𝑠) 𝑑𝑠

+ 𝜂∫

𝑡

𝑡𝑘

𝑒
𝜂(𝑡−𝑠)

𝜔
⊺
(𝑠)𝐻

𝑖
𝜔 (𝑠) 𝑑𝑠

≤ ⋅ ⋅ ⋅ ≤ 𝜇
𝑁𝜎(0,𝑡)

𝑒
𝜂𝑡
𝑉
𝜎(0)

(𝑥
0
, 0)

+ 𝜂𝜇
𝑁𝜎(0,𝑡)

∫

𝑡1

0

𝑒
𝜂(𝑡−𝑠)

𝜔
⊺
(𝑠)𝐻

𝑖
𝜔 (𝑠) 𝑑𝑠

+ 𝜂𝜇
𝑁𝜎(𝑡1 ,𝑡)

∫

𝑡2

𝑡1

𝑒
𝜂(𝑡−𝑠)

𝜔
⊺
(𝑠)𝐻

𝑖
𝜔 (𝑠) 𝑑𝑠

+ ⋅ ⋅ ⋅ + 𝜂∫

𝑡

𝑡𝑘

𝑒
𝜂(𝑡−𝑠)

𝜔
⊺
(𝑠)𝐻

𝑖
𝜔 (𝑠) 𝑑𝑠

= 𝜇
𝑁𝜎(0,𝑡)

𝑒
𝜂𝑡
𝑉
𝜎(0)

(𝑥
0
, 0)
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+ 𝜂∫

𝑡

0

𝑒
𝜂(𝑡−𝑠)

𝜇
𝑁𝜎(𝑠,𝑡)

𝜔
⊺
(𝑠)𝐻

𝑖
𝜔 (𝑠) 𝑑𝑠

≤ 𝜇
𝑁𝜎(0,𝑡)

𝑒
𝜂𝑇
𝑉
𝜎(0)

(𝑥
0
, 0)

+ 𝜂𝜇
𝑁𝜎(0,𝑡)

𝑑𝜆max (𝐻𝑖
) 𝑒

𝛼𝑇
∫

𝑡

0

𝑒
−𝜂𝑠

𝑑𝑠

≤ 𝜇
𝑁𝜎(0,𝑇)

𝑒
𝜂𝑇

× {𝑉
𝜎(0)

(𝑥
0
, 0) + 𝑑𝜆max (𝐻𝑖

) 𝜂 ∫

𝑇

0

𝑒
−𝜂𝑠

𝑑𝑠}

≤ 𝜇
𝑇/𝜏𝑎

𝑒
𝜂𝑇

{𝑉
𝜎(0)

(𝑥
0
, 0) + 𝑑𝜆max (𝐻𝑖

) (1 − 𝑒
−𝜂𝑇

)}

≤ 𝜇
𝑁𝜎(0,𝑇)

𝑒
𝜂𝑇

× {𝑉
𝜎(0)

(𝑥
0
, 0) + 𝑑𝜆max (𝐻𝑖

) 𝜂 ∫

𝑇

0

𝑒
−𝜂𝑠

𝑑𝑠}

= 𝜇
𝑇/𝜏𝑎

𝑒
𝜂𝑇

{𝑉
𝜎(0)

(𝑥
0
, 0) + 𝑑𝜆

8
(1 − 𝑒

−𝜂𝑇
)} .

(38)

Define 𝑃
𝑖
= 𝑅

−1/2
𝑃
𝑖
𝑅
−1/2

, 𝑄
𝑠𝑖
= 𝑅

−1/2
𝑄
𝑠𝑖
𝑅
−1/2

(𝑠 = 1, 2),
𝑋
𝑙𝑖
= 𝑅

−1/2
𝑋
𝑙𝑖
𝑅
−1/2

(𝑙 = 1, 2), 𝑌
𝑖
= 𝑅

−1/2
𝑌
𝑖
𝑅
−1/2.

Note that

𝑉
𝜎(0)

(𝑥
0
, 0)

= max
𝑖∈N

𝜆max (𝑃𝑖) 𝑥
⊺
(0) 𝑅𝑥 (0)

+ (max
𝑖∈N

𝜆max (𝑄1𝑖
) +max

𝑖∈N
𝜆max (𝑄2𝑖

)) 𝑒
𝛿ℎ

× ∫

0

−ℎ

𝑒
𝛿𝑠
𝑥
⊺
(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠

+max
𝑖∈N

𝜆max (𝑋1𝑖
) 𝑒

𝛿ℎ
∫

0

−ℎ

∫

0

𝜃

𝑒
−𝛿𝜃

𝑥
⊺
(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

+max
𝑖∈N

𝜆max (𝑋2𝑖
) 𝑒

𝛿ℎ
∫

0

−ℎ

∫

0

𝜃

𝑒
−𝛿𝜃

�̇�
⊺
(𝑠) 𝑅�̇� (𝑠) 𝑑𝑠 𝑑𝜃

+max
𝑖∈N

𝜆max (𝑋2𝑖
) 𝑒

𝛿ℎ

× ∫

0

−ℎ

∫

0

𝜃

∫

0

𝜐

𝑒
−𝛿𝜃

�̇�
⊺
(𝑠) 𝑅�̇� (𝑠) 𝑑𝑠 𝑑𝜃 𝑑𝜐

≤ {max
𝑖∈N

𝜆max (𝑃𝑖)

+ ℎ𝑒
𝛿ℎ
(max
𝑖∈N

𝜆max (𝑄1𝑖
) +max

𝑖∈N
𝜆max (𝑄2𝑖

))

+ ℎ
2
𝑒
𝛿ℎ
(max
𝑖∈N

𝜆max (𝑋1𝑖
) +max

𝑖∈N
𝜆max (𝑋2𝑖

))

+
1

2
ℎ
3
𝑒
𝛿ℎmax

𝑖∈N
𝜆max (𝑌𝑖

)}

× sup
−ℎ≤𝑠≤0

{𝑥
⊺
(𝑠) 𝑅𝑥 (𝑠) , �̇�

⊺
(𝑠) 𝑅�̇� (𝑠)}

≤ (𝜆
2
+ ℎ𝑒

𝛿ℎ
(𝜆

3
+ 𝜆

4
)

+ℎ
2
𝑒
𝛿ℎ
(𝜆

5
+ 𝜆

6
) +

1

2
𝜆
7
ℎ
3
𝑒
𝛿ℎ
)

× sup
−ℎ≤𝑠≤0

{𝑥
⊺
(𝑠) 𝑅𝑥 (𝑠) , �̇�

⊺
(𝑠) 𝑅�̇� (𝑠)}

≤ (𝜆
2
+ ℎ𝑒

𝛿ℎ
(𝜆

3
+ 𝜆

4
) + ℎ

2
𝑒
𝛿ℎ
(𝜆

5
+ 𝜆

6
)

+
1

2
𝜆
7
ℎ
3
𝑒
𝛿ℎ
) 𝑐

1
= Λ𝑐

1
.

(39)

Thus,

𝑉
𝜎(𝑡)

(𝑥
𝑡
, 𝑡) ≤ 𝜇

𝑇/𝜏𝑎
𝑒
𝛼𝑇

{Λ𝑐
1
+ 𝑑𝜆

8
(1 − 𝑒

−𝜂𝑇
)}

= 𝑒
(𝛼+ln 𝜇/𝜏𝑎)𝑇

{Λ𝑐
1
+ 𝑑𝜆

8
(1 − 𝑒

−𝜂𝑇
)} .

(40)

On the other hand,

𝑉
𝜎(𝑡)

(𝑥
𝑡
, 𝑡) ≥ 𝜆min (𝑃𝑖) 𝑥

⊺
(𝑡) 𝑅𝑥 (𝑡) = 𝜆

1
𝑥
⊺
(𝑡) 𝑅𝑥 (𝑡) . (41)

From (40) and (41), one obtains

𝑥
⊺
(𝑡) 𝑅𝑥 (𝑡) ≤

Λ𝑐
1
+ 𝑑𝜆

8
(1 − 𝑒

−𝜂𝑇
)

𝜆
1

𝑒
(𝜂+ln 𝜇/𝜏𝑎)𝑇

. (42)

When 𝜇 = 1, which is the trivial case, from (13),
𝑥
⊺
(𝑡)𝑅𝑥(𝑡) < 𝑐

2
𝑒
−𝜂𝑇

𝑒
𝜂𝑇

= 𝑐
2
. When 𝜇 ≥ 1, from (13),

ln(𝜆
1
𝑐
2
) − ln[Λ𝑐

1
+ 𝑑𝜆

8
(1 − 𝑒

−𝜂𝑇
)] − 𝛼𝑇 > 0, we have

𝑇

𝜏
𝑎

<

ln (𝜆
1
𝑐
2
) − ln [Λ𝑐

1
+ 𝑑𝜆

8
(1 − 𝑒

−𝜂𝑇
)] − 𝜂𝑇

ln 𝜇

=

ln (𝜆
1
𝑐
2
𝑒
−𝜂𝑇

/ (Λ𝑐
1
+ 𝑑𝜆

8
(1 − 𝑒

−𝜂𝑇
)))

ln 𝜇
.

(43)

Substituting (43) into (42) yields

𝑥
⊺
(𝑡) 𝑅𝑥 (𝑡) < 𝑐

2
. (44)

The proof is completed.

Remark 8. It should be mentioned that to reduce
the conservatism, −∫

0

−𝜏(𝑡)
∫
𝑡

𝑡+𝜃
�̇�
⊺
(𝑠)𝑍

𝑖
�̇�𝑑𝑠𝑑𝜃 and

−∫
−𝜏(𝑡)

−ℎ
∫
𝑡

𝑡+𝜃
�̇�
⊺
(𝑠)𝑍

𝑖
�̇�𝑑𝑠𝑑𝜃 are bounded with −2[𝑥(𝑡) − 𝑈

1
]
⊺

𝑍
𝑖
[𝑥(𝑡) − 𝑈

1
] and −2[𝑥(𝑡) − 𝑈

2
]
⊺
𝑍
𝑖
[𝑥(𝑡) − 𝑈

2
], respectively.

Remark 9. One can clearly see that criteria given in
Theorem 7 are delay-dependent. It is well known that the
delay-dependent criteria are less conservative than delay-
independent criteria when the delay is small or belongs to a
given interval. Interval time-varying delay is a time delay that
varies in an interval inwhich the lower bound is not restricted
to zero.

Remark 10. InTheorem 7, the free weight matrix technology
is employed, which reduces the conservativeness of the
stability condition.
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4. Finite-Time Weighted 𝐿
2
-Gain Analysis

Theorem 11. System (3) is finite-time bounded with respect
to (𝑐

1
, 𝑐
2
, 𝑅, 𝑑, 𝑇) if there exist symmetric positive matrices 𝑃

𝑖
,

𝑄
𝑠𝑖
𝑠 = 1, 2, 𝑋

𝑘𝑖
(𝑘 = 1, 2), 𝑌

𝑖
and matrices𝑀

𝑖
,𝑁

𝑖
, 𝑉

𝑖
, scalars

𝛼 ≥ 0, 𝜇 ≥ 1, 𝜆
𝑙
> 0 (𝑙 = 1, 2, . . . , 7), 𝑑 > 0, ℎ > 0, Λ > 0,

𝛾 > 0, 𝜏 > 0, 𝑟(𝜏), such that ∀𝑖, 𝑗 ∈ N; we have the following
linear matrix inequalities:

Σ
1𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
11𝑖

Ξ
12𝑖

𝑊
𝑖

𝐴
⊺

𝑖
𝑉
⊺

𝑖
ℎ𝐴

⊺

𝑖
𝑀

⊺

𝑖
+ 𝑌

𝑖
+ 𝑌

⊺

𝑖
𝑌
𝑖
+ 𝑌

⊺

𝑖
𝑃
𝑖
𝐺
𝑖

𝐶
⊺

𝑖

∗ Ξ
22𝑖

−𝑊
𝑖
+
𝑋
2𝑖

ℎ
𝐵
⊺

𝑖
𝑉
⊺

𝑖
ℎ𝐵

⊺

𝑖
𝑀

⊺

𝑖
0 0 0

∗ ∗ −𝑄
1𝑖
−
𝑋
2𝑖

ℎ
0 0 0 0 0

∗ ∗ ∗ Ξ
44𝑖

−ℎ𝑀
⊺

𝑖
0 𝑉

𝑖
𝐺
𝑖

0

∗ ∗ ∗ ∗ −ℎ𝑋
1𝑖
− 𝑌

𝑖
− 𝑌

⊺

𝑖
0 ℎ𝑀

𝑖
𝐺
𝑖

0

∗ ∗ ∗ ∗ ∗ −𝑌
𝑖
− 𝑌

⊺

𝑖
0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2
𝐼 𝐷

⊺

𝑖

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

Σ
2𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
11𝑖

Ξ
12𝑖

𝑊
𝑖

𝐴
⊺

𝑖
𝑉
⊺

𝑖
𝑌
𝑖
+ 𝑌

⊺

𝑖
ℎ𝐴

⊺

𝑖
𝑁

⊺

𝑖
+ 𝑌

𝑖
+ 𝑌

⊺

𝑖
𝑃
𝑖
𝐺
𝑖

𝐶
⊺

𝑖

∗ Ξ
22𝑖

−𝑊
𝑖
+
𝑋
2𝑖

ℎ
𝐵
⊺

𝑖
𝑉
⊺

𝑖
0 ℎ𝐵

⊺

𝑖
𝑁

⊺

𝑖
0 0

∗ ∗ −𝑄
1𝑖
−
𝑋
2𝑖

ℎ
0 0 0 0 0

∗ ∗ ∗ Ξ
44𝑖

0 −ℎ𝑁
⊺

𝑖
𝑉
𝑖
𝐺
𝑖

0

∗ ∗ ∗ ∗ −𝑌
𝑖
− 𝑌

⊺

𝑖
0 0 0

∗ ∗ ∗ ∗ ∗ −ℎ𝑋
1𝑖
− 𝑌

𝑖
− 𝑌

⊺

𝑖
ℎ𝑁

𝑖
𝐺
𝑖

0

∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2
𝐼 𝐷

⊺

𝑖

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(45)

𝑃
𝑖
< 𝜇𝑃

𝑗
, 𝑄

1𝑖
< 𝜇𝑄

1𝑗
, 𝑄

2𝑖
< 𝜇𝑄

2𝑗
,

𝑋
1𝑖
< 𝜇𝑋

1𝑗
, 𝑋

2𝑖
< 𝜇𝑋

2𝑗
, 𝑌

𝑖
< 𝜇𝑌

𝑗
,

𝜆
1
𝑐
2
𝑒
−𝜂𝑇

> Λ𝑐
1
+ 𝑑𝛾

2 1

𝜂
(1 − 𝑒

−𝜂𝑇
) ,

(46)

with the average dwell time of the switching signal 𝜎 satisfying

𝜏
𝑎
> 𝜏

∗

𝑎
=

𝑇 ln 𝜇
ln (𝜆

1
𝑐
2
) − ln [Λ𝑐

1
+ 𝑑𝛾

2
(1/𝜂) (1 − 𝑒

−𝜂𝑇
)] − 𝜂𝑇

.

(47)

Proof. Choose the same Lyapunov-Krasovskii functional as
in Theorem 7; after some mathematical manipulation and
Schur complement, we can get

�̇�
𝜎(𝑡)

(𝑥
𝑡
, 𝑡) + 𝑒

⊺
(𝑡) 𝑒 (𝑡) − 𝛾

2
𝜔
⊺
(𝑡) 𝜔 (𝑡) = 𝜉

⊺
(𝑡) Σ

𝑠𝑖
𝜉 (𝑡) ,

(𝑠 = 1, 2) .

(48)

Define

𝐽 (𝑡) = 𝑒
⊺
(𝑡) 𝑒 (𝑡) − 𝛾

2
𝜔
⊺
(𝑡) 𝜔 (𝑡) . (49)

From (45), we obtain

�̇�
𝜎(𝑡)

(𝑥
𝑡
, 𝑡) − 𝜂𝑉

𝜎(𝑡)
(𝑥

𝑡
, 𝑡) + 𝐽 (𝑡) < 0. (50)

When 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

], where 𝑡
𝑘
is the 𝑘th switching instant,

𝑉
𝜎(𝑡)

(𝑥
𝑡
, 𝑡) < 𝑒

𝜂(𝑡−𝑡𝑘)
𝑉
𝜎(𝑡𝑘)

(𝑥
𝑡𝑘
, 𝑡
𝑘
) − ∫

𝑡

𝑡𝑘

𝑒
𝜂(𝑡−𝑠)

𝐽 (𝑠) 𝑑𝑠. (51)

Notice that 𝑥(𝑡
𝑘
) = 𝑥(𝑡

−

𝑘
); then one obtains

𝑉
𝜎(𝑡𝑘)

(𝑥 (𝑡
𝑘
) , 𝑡

𝑘
) ≤ 𝜇𝑉

𝜎(𝑡
−

𝑘
)
(𝑥 (𝑡

𝑘
) , 𝑡

𝑘
) . (52)

For any 𝑡 ∈ [0, 𝑇], one has

𝑉
𝜎(𝑡)

(𝑥
𝑡
, 𝑡) ≤ 𝑒

𝜂(𝑡−𝑡𝑘)
𝑉
𝜎(𝑡𝑘)

(𝑥
𝑡𝑘
, 𝑡
𝑘
) + 𝜂∫

𝑡

𝑡𝑘

𝑒
𝜂(𝑡−𝑠)

𝐽 (𝑠) 𝑑𝑠

≤ 𝜇𝑒
𝜂(𝑡−𝑡𝑘−1)

𝑉
𝜎(𝑡𝑘−1)

(𝑥
𝑡𝑘−1

, 𝑡
𝑘−1

)

+ 𝜂𝜇∫

𝑡𝑘

𝑡𝑘−1

𝑒
𝜂(𝑡−𝑠)

𝐽 (𝑠) 𝑑𝑠 + 𝜂∫

𝑡

𝑡𝑘

𝑒
𝜂(𝑡−𝑠)

𝐽 (𝑠) 𝑑𝑠

+ 𝜂𝜇∫

𝑡𝑘

𝑡𝑘−1

𝑒
𝜂(𝑡−𝑠)

𝜔
⊺
(𝑠)𝐻

𝑖
𝜔 (𝑠) 𝑑𝑠

+ 𝜂∫

𝑡

𝑡𝑘

𝑒
𝜂(𝑡−𝑠)

𝐽 (𝑠) 𝑑𝑠



Mathematical Problems in Engineering 9

≤ ⋅ ⋅ ⋅ ≤ 𝜇
𝑁𝜎(0,𝑡)

𝑒
𝜂𝑡
𝑉
𝜎(0)

(𝑥
0
, 0)

+ 𝜂𝜇
𝑁𝜎(0,𝑡)

∫

𝑡1

0

𝑒
𝜂(𝑡−𝑠)

𝐽 (𝑠) 𝑑𝑠

+ 𝜂𝜇
𝑁𝜎(𝑡1 ,𝑡)

∫

𝑡2

𝑡1

𝑒
𝜂(𝑡−𝑠)

𝐽 (𝑠) 𝑑𝑠

+ ⋅ ⋅ ⋅ + 𝜂∫

𝑡

𝑡𝑘

𝑒
𝜂(𝑡−𝑠)

𝐽 (𝑠) 𝑑𝑠

≤ 𝜇
𝑁𝜎(0,𝑇)

𝑒
𝜂𝑇
𝑉
𝜎(0)

(𝑥
0
, 0)

+ 𝜂∫

𝑇

0

𝑒
𝜂(𝑇−𝑠)

𝜇
𝑁𝜎(𝑠,𝑇)

𝐽 (𝑠) 𝑑𝑠.

(53)

Under zero initial condition, we have

∫

𝑇

0

𝑒
−𝜂𝑠

𝜇
𝑁𝜎(𝑠,𝑇)

𝐽 (𝑠) 𝑑𝑠 < 0, (54)

which implies that

∫

𝑇

0

𝑒
−𝛼𝑠

𝜇
𝑁𝜎(𝑠,𝑇)

𝑧
⊺
(𝑠) 𝑧 (𝑠) 𝑑𝑠

< ∫

𝑇

0

𝜇
𝑁𝜎(𝑠,𝑇)

𝛾
2
𝜔
⊺
(𝑠) 𝜔 (𝑠) 𝑑𝑠.

(55)

Multiplying both sides of (55) by 𝜇−𝑁𝜎(0,𝑇) yields

∫

𝑇

0

𝑒
−𝛼𝑠

𝜇
−𝑁𝜎(0,𝑠)

𝑧
⊺
(𝑠) 𝑧 (𝑠) 𝑑𝑠

< ∫

𝑇

0

𝜇
−𝑁𝜎(0,𝑠)

𝛾
2
𝜔
⊺
(𝑠) 𝜔 (𝑠) 𝑑𝑠.

(56)

It is easy to deduce from (47) that

𝑁
𝜎
(0, 𝑠) ≤

𝑠

𝜏
𝑎

≤

ln (𝜆
1
𝑐
2
/ (Λ𝑐

1
+ 𝑑𝛾

2
(1/𝜂) (1 − 𝑒

𝜂𝑇
))) − 𝜂𝑠

ln 𝜇
.

(57)

Since 𝜇 ≥ 1, we have

∫

𝑇

0

𝜇
ln((𝜂𝑠−ln(𝜆1𝑐2/(Λ𝑐1+𝑑𝛾2(1/𝜂)(1−𝑒𝜂𝑇))))/ ln 𝜇)

× 𝑧
⊺
(𝑠) 𝑧 (𝑠) 𝑑𝑠

≤ ∫

𝑇

0

𝜇
−𝑁𝜎(0,𝑠)

𝑒
−𝜂𝑠

𝑧
⊺
(𝑠) 𝑧 (𝑠) 𝑑𝑠

≤ ∫

𝑇

0

𝜇
−𝑁𝜎(0,𝑠)

𝑒
−𝜂𝑠

𝛾
2
𝜔
⊺
(𝑠) 𝜔 (𝑠) 𝑑𝑠

≤ 𝑒
−𝜂𝑇

∫

𝑇

0

𝛾
2
𝜔
⊺
(𝑠) 𝜔 (𝑠) 𝑑𝑠.

(58)

Therefore, we can obtain

∫

𝑇

0

[𝜂𝑠 − ln 𝜆
1
𝑐
2

Λ𝑐
1
+ 𝑑𝛾

2
(1/𝜂) (1 − 𝑒

𝜂𝑇
)
] 𝑧

⊺
(𝑠) 𝑧 (𝑠) 𝑑𝑠

≤ 𝛾
2
𝑒
−𝜂𝑇

∫

𝑇

0

𝜔
⊺
(𝑠) 𝜔 (𝑠) 𝑑𝑠.

(59)

According to Definition 2, we know that Theorem 11
holds. This completes the proof.

Remark 12. It can be seen that Theorem 11 presents a more
general result than [33–42] which contain the decay 𝜂; such
a condition is derived by advantage of the simultaneous
usage of the Lyapunov functional and the state variable
transformation.

Remark 13. In many real applications, the minimum value of
𝛾
2

min is of interest. In Theorem 11, with a fixed 𝜇 and 𝜂, 𝛾min
can be obtained through following procedure:

min 𝛾
2

s.t. LMIs ((37)–(39)).
(60)

5. Illustrative Example

Example 1. Consider the system (1) with the following data:

𝐴
1
= [

[

−1.7 1.7 0

1.3 −1 0.7

0.7 1 −0.6

]

]

, 𝐴
2
= [

[

1 −1 0

0.7 0 −0.6

1.7 0 −1.7

]

]

,

𝐵
1
= [

[

1.5 −1.7 0.1

−1.3 1 −0.3

−0.7 1 0.6

]

]

, 𝐵
2
= [

[

−1 0 0.1

1.3 −0.1 0.6

1.5 0.1 1.8

]

]

,

𝐺
1
= 𝐺

2
= [

[

1 0 0

0 1 0

0 0 1

]

]

, 𝑥 (𝑡) = [

[

0.7

0

0

]

]

,

𝜔 (𝑡) = [

[

0.03 sin (𝑡)
0.02 cos (2𝑡)

0.015 (sin (𝑡 + 1) + cos (𝑡 − 2))

]

]

, 𝑡 ∈ [−𝜏, 0] .

(61)

The values of 𝑐
1
, 𝑐
2
, 𝑇, 𝑑 and matrix 𝑅 are given as follows:

𝑐
1
= 0.5, 𝑇 = 10, 𝑅 = 𝐼,

𝑑 = 0.01, 𝛿 = 0.042, 𝜂 = 0.075.

(62)

Through Theorem 7, when 𝑐
2

= 50, we can see that
the admissible maximum ℎ computed by [36] is 0.2, and
the maximal value of 𝜏 in this paper is 0.262. It is obvious
that our method shows less conservatism result than that
in [36]. Moreover, when 𝜏 = 0.2, the optimal bound with
minimum value of 𝑐

2min relies on the parameter 𝜂. One can
obtain clearly thatTheorem 7 in our paper can indeed provide
much smaller admissible 𝑐

2min than the stability criteria in
[36] which shows the less conservative result in this paper.
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6. Conclusions

In this paper, we have examined the problems of delay-
dependent finite-time and 𝐿

2
-gain analysis for switched

systems with time-varying delay by allowing new Lyapunov-
Krasovskii functional and average dwell time. A numerical
example has also been given to demonstrate the effectiveness
of the proposed approach. It is possible to extend the
main results obtained in this paper to real systems which
contain some practical constrains, for example, the failures
of controllers. Details will be reported in our follow-up work
in the future.
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