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This paper proposes a novel method of training the parameters of adaptive-network-based fuzzy inference system (ANFIS).
Different from the previous works which emphasized on gradient descent (GD) method, we present an approach to train the
parameters of ANFIS by using an improved version of quantum-behaved particle swarm optimization (QPSO). This novel variant
of QPSO employs an adaptive dynamical controlling method for the contraction-expansion (CE) coefficient which is the most
influential algorithmic parameter for the performance of the QPSO algorithm. The ANFIS trained by the proposed QPSO with
adaptive dynamical CE coefficient (QPSO-ADCEC) is applied to five example systems.The simulation results show that the ANFIS-
QPSO-ADCEC method performs much better than the original ANFIS, ANFIS-PSO, and ANFIS-QPSO methods.

1. Introduction

Fuzzy systems (FSs) have been successfully applied in many
areas, such as system modeling and controls. To ease the
design and improve system performance, many neural or
statistical learning approaches that automatically generate
fuzzy rules have been proposed [1]. A fuzzy inference system
employing fuzzy if-then rules can model the qualitative
aspects of human knowledge and reasoning processes with-
out using precise quantitative analyses. This fuzzy model-
ing or fuzzy identification, first explored systematically by
Sugeno and Kang [2], has found numerous practical applica-
tions in control [3, 4], prediction, and inference [5, 6]. How-
ever, there are some basic aspects of this approach which are
in need of better understanding. First, there are no standard
methods for transforming human knowledge or experience
into the rule base and data base of a fuzzy inference system.
Second, there is a need for effective methods for tuning the
membership functions (MF) so as to minimize the output
error measure or maximize performance index.

This paper concentrates on a so-called adaptive-network-
based fuzzy inference system (ANFIS), which can serve as a
basis for constructing a set of fuzzy if-then rules with appro-
priatemembership functions to generate the stipulated input-
output pairs [7]. The ANFIS model is a reprehensive of
adaptive fuzzy systems which are generated through training
processes and are known as evolving fuzzy systems. It has
been one of attractive researches focusing on fuzzy systems
in recent years.

TheTSK [2] is a fuzzy systemwith crisp functions and has
been found to be efficient in complex applications [4]. It has
been proved that, with proper number of rules, a TSK system
is able to approximate every plant. As such, TSK systems are
widely used in the ANFIS and play the advantage of good
applicability since they can be interpreted as local lineariza-
tion modeling and conventional linear techniques for state
estimation and control.

The ANFIS has both the advantages of neural networks
and fuzzy systems. However, training the parameters of the
ANFIS model is one of the main issues encountered when
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the model is applied to the real-world problems. Most of
the training methods for the ANFIS are based on gradient
descent (GD) approaches, where calculation of gradient in
each step is tractable since the chain rule used may cause
many local minima of the problem.The gradientmethods are
known to be local search approaches and their performances
generally depend on initial values of parameters so that it is
difficult for them to find the global optimal model parame-
ters. Since the design of FSs can be reduced to an optimization
problem, many researchers have proposed to design FSs by
employing metaheuristics such as genetic algorithms (GAs)
[8–10] and particle swarm optimization (PSO) [11–13]. How-
ever, GAs have always been complaint about their slow con-
vergence speed, while PSOmay encounter premature conver-
gence at the later stage of the search process and is sensitive
to neighborhood topology.

This paper explores the applicability of a variant of PSO,
quantum-behaved particle swarm optimization (QPSO), to
training of the ANFIS model. The QPSO algorithm was
inspired by quantummechanics [14–17]. Its iterative equation
is very different from that of PSO and can lead QPSO to
be globally convergent [18–20]. Besides, unlike PSO, QPSO
needs no velocity vectors for particles and has fewer parame-
ters to adjust, making it easier to implement.TheQPSO algo-
rithm has been shown to successfully solve a wide range of
continuous optimization problems. Many empirical studies
show that QPSO has stronger global search ability when
solving various continuous optimization problems [21–27].
In order to make a further improvement of the QPSO, in this
paper, we propose an adaptive dynamical control method for
the contraction-expansion (CE) coefficient of the algorithm,
which is the most influential algorithmic parameter that can
be tuned to adjust the balance between the local search
and global search of the particle. The improved QPSO
algorithm is applied toANFIS training and is tested on several
example systems, with performance comparison between the
improved QPSO, the original QPSO, and PSO algorithms.

The rest of the paper is organized as follows: in Section 2,
we present a review of fuzzy systems and the ANFIS model.
Section 3 presents the principle of QPSO. The improved
QPSO approach is proposed in Section 4. Application of the
QPSO and its improved version to ANFIS model training
is described in Section 5. Section 6 presents the simulation
results for five example systems using ANFIS model trained
by the optimization algorithms. Finally, the paper is con-
cluded in Section 7.

2. Fuzzy Systems and ANFIS Model

2.1. Fuzzy Systems. This subsection describes the fuzzy sys-
tems to be optimized through training processes in this study
and their mathematical expressions. The TSK fuzzy model
was originally proposed by Sugeno and Kang in an effort to
formalize a systematic approach to generating fuzzy rules
from an input-output data set [2]. The Takagi-Sugeno-Kang
(TSK) fuzzy system can be of zero order or first order.The 𝑖th
rule, which is denoted𝑅

𝑖
, in aTSK fuzzy system is represented

in the following form:

𝑅
𝑖
: if 𝑥
1
(𝑘) is 𝐴

𝑖1
and⋅ ⋅ ⋅ and 𝑥

𝑛
(𝑘) is 𝐴

𝑖𝑛
, then 𝑦(𝑘) is

𝑓
𝑖
, 𝑖 = 1, . . . , 𝑟,

where 𝑘 is the number of time step, 𝑥
1
(𝑘), . . . , 𝑥

𝑛
(𝑘) are input

variables, 𝑦(𝑘) is the output variable of the system, 𝐴
𝑖𝑗
is a

fuzzy set, and 𝑓
𝑖
is the consequent part function. The fuzzy

set 𝐴
𝑖𝑗
uses a bell-shaped membership function given by

𝜇 (𝑥) =
1

1 + ((𝑥
𝑗
− 𝑐
𝑖𝑗
) /𝑎
𝑖𝑗
)
2𝑏𝑖𝑗
, (1)

where 𝑎
𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
are the parameter set of the fuzzy set

𝐴
𝑖𝑗
. Each of these parameters has a physical meaning: 𝑐

𝑖

determines the center of the corresponding membership
function, 𝑎

𝑖
is the half width, and 𝑏

𝑖
(together with 𝑎

𝑖
) controls

the slopes at the crossover points. In the inference engine,
the fuzzy AND operation is implemented by the algebraic
product in fuzzy theory. Thus, given an input dataset 𝑥 =

(𝑥
1
, . . . , 𝑥

𝑛
), the firing strength 𝜇(𝑥) of rule 𝑖 is calculated by

𝜇 (𝑥) =

𝑛

∏

𝑗=1

𝑀
𝑖𝑗 (𝑥) =

𝑛

∏
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{

{

{
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𝑗
− 𝑐
𝑖𝑗
) /𝑎
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}

}

}

. (2)

For zero-order and first-order TSK-type fuzzy systems,
the consequent function 𝑓

𝑖
is set to a real value 𝑝

𝑖0
and a

linear function of input variables 𝑝
𝑖0
+ ∑
𝑛

𝑗=1
𝑝
𝑖𝑗
𝑥
𝑗
for each 𝑖,

respectively. If there are 𝑟 rules in a fuzzy system, the output
of the system, which is calculated by the weighted-average-
defuzzification method, is given by

𝑦 =
∑
𝑟

𝑖=1
𝜇
𝑖 (𝑥) 𝑓𝑖

∑
𝑟

𝑖=1
𝜇
𝑖(𝑥)𝑖

. (3)

In this work, the proposed improved QPSO algorithm
and other optimization algorithms will be used to optimize
free parameters 𝑎

𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
in each rule.

2.2. The Architecture of ANFIS. This subsection presents the
architecture of ANFIS network. A detailed coverage of ANFIS
can be found in [7]. The ANFIS network is a neurofuzzy
network that was proposed by Jang in 1993 [6]. Since the
ANFIS is an adaptive network, parts of its nodes are adaptive,
which means that their outputs depend on the parameters
belonging to these nodes. Two kinds of learning algorithms
have been proposed to tune these parameters to optimize
the approaching performance during the training period. For
simplicity, the above-mentioned system is supposed to have
two inputs and one output, and its rule base contains two
fuzzy if-then rules of TSK fuzzy model. A typical TSK fuzzy
model has the two rules that can be stated as

Rule 1: if 𝑥 is𝐴
1
and 𝑦 is 𝐵

1
, then 𝑓

1
= 𝑝
1
𝑥+𝑞
1
𝑦+ 𝑟
1
,

Rule 2: if 𝑥 is𝐴
2
and 𝑦 is 𝐵

2
, then 𝑓

2
= 𝑝
2
𝑥+𝑞
2
𝑦+𝑟
2
,

where 𝑥 and 𝑦 are the inputs of the ANFIS, 𝐴 and 𝐵 are the
fuzzy sets, and 𝑓

𝑖
(𝑖 = 1, 2) is a first-order polynomial and

represents the outputs of the first-order TSK fuzzy inference
system. In the above rules, 𝑝

𝑖
, 𝑞
𝑖
, and 𝑟

𝑖
(𝑖 = 1, 2) are the

parameters set, referred to as the consequent parameters.
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The architecture of ANFIS is shown in Figure 1, and the
node function in each layer is described below.

Layer 1. This layer is the layer of membership functions that
contains adaptive nodes with node functions described as

𝑂
1

𝑖
= 𝜇
𝐴𝑖 (𝑥) , 𝑂

1

𝑖
= 𝜇
𝐵(𝑖−2)

(𝑦) , (𝑖 = 1, 2) , (4)

where 𝑥 and 𝑦 are the input nodes, 𝐴 and 𝐵 are the linguistic
labels, 𝜇(𝑥) and 𝜇(𝑦) are the membership functions which
usually adopts a bell shape with themaximum andminimum
values equal to 1 and 0, respectively:

𝜇 (𝑥) =
1

1 + ((𝑥 − 𝑐
𝑖
) /𝑎
𝑖
)
2𝑏𝑖
, (5)

where 𝑎
𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
are the parameters set. When values

of these parameters change, the bell-shaped functions vary
accordingly, exhibiting various forms of membership func-
tions on linguistic labels𝐴 and 𝐵. In fact, any continuous and
piecewise differentiable functions, such as commonly used
trapezoidal or triangular-shaped membership functions, are
also qualified candidates for node functions in this layer.
Parameters in this layer are referred to as premise parameters.

Layer 2. Every node in this layer is a fixed node, marked by a
circle and labeled Π, with the node function to be multiplied
by input signals to serve as output. Consider

𝑂
2

𝑖
= 𝜔
𝑖
= 𝜇
𝐴𝑖 (𝑥) ⋅ 𝜇𝐵𝑖 (𝑦) , (𝑖 = 1, 2) . (6)

The output 𝜔
𝑖
represents the firing strength of a rule. The

output of each node represents the firing strength of a rule.
In fact, other T-norm operators that perform the generalized
AND can be used as the node function in this layer.

Layer 3. Every node in this layer is a fixed node, marked by a
circle and labeled𝑁, with the node function to normalize the
firing strength by calculating the ratio of the 𝑖th node firing
strength to the sum of all rules’ firing strength. Moreover,

𝑂
3

𝑖
= 𝜛
𝑖
=
𝜔
𝑖

∑𝜔
𝑖

=
𝜔
1

𝜔
1
+ 𝜔
2

, (𝑖 = 1, 2) . (7)

For convenience, the outputs of this layer are referred to as
normalized firing strengths.

Layer 4. Every node in this layer is an adaptive node, marked
by a square, with node function given by

𝑂
4

𝑖
= 𝜛
𝑖
⋅ 𝑓
𝑖
= 𝜛
𝑖
(𝑝
𝑖
𝑥 + 𝑞
𝑖
𝑦 + 𝑟
𝑖
) , (𝑖 = 1, 2) , (8)
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Figure 1: The architecture of ANFIS network.

where𝜛 is the output of layer 3 and {𝑝
𝑖
, 𝑞
𝑖
, 𝑟
𝑖
} is the parameter

set.The parameters in this layer are referred to as consequent
parameters.

Layer 5. Every node in this layer is a fixed node, and the
overall output can be expressed as linear combination of the
consequent parameters. Consider

𝑂
5

𝑖
= 𝑓out = ∑

𝑖

𝜛
𝑖
⋅ 𝑓
𝑖
= 𝜛
1
𝑓
1
+ 𝜛
2
𝑓
2

=
𝜔
1

𝜔
1
+ 𝜔
2

𝑓
1
=

𝜔
2

𝜔
1
+ 𝜔
2

𝑓
2

= (𝜛
1
𝑥) 𝑝
1
+ (𝜛
1
𝑦) 𝑞
1
+ (𝜛
1
) 𝑟
1
+ (𝜛
2
𝑥) 𝑝
2

+ (𝜛
2
𝑦) 𝑞
2
+ (𝜛
2
) 𝑟
2
.

(9)

2.3. Hybrid Learning Algorithm for ANFIS Model. It can be
seen that there are two modifiable parameter sets, {𝑎

𝑖
, 𝑏
𝑖
, 𝑐
𝑖
}

labeled as premise parameters and {𝑝
𝑖
, 𝑞
𝑖
, 𝑟
𝑖
} labeled as

consequent parameters.The aim of the training procedure for
this architecture is to tune the above two parameter sets to
make the ANFIS output fit the training data. Each epoch of
this hybrid learning procedure is composed of two passes: a
forward pass and a backward pass. In the forward pass, the
premise parameters are fixed, and the least squares estimation
(LSE) is applied to identify consequent parameters.When the
optimal parameters are found, the backward pass starts with
the consequent parameters fixed, the error rate of output node
back propagates from output end toward the input end, and
the premise parameters are updated by the gradient descent
(GD) method.

These methods update premise parameters by using GD
or Kalman filtering and appear to be prone to trap into the
local optima. In this paper, we propose a QPSO with adap-
tive dynamical contraction-expansion coefficient (QPSO-
ADCEC) and employ this algorithm to train the parameters
of ANFIS for the purpose of obtaining the global optimal
solution.

3. Quantum-Behaved Particle
Swarm Optimization

In the PSO with𝑀 individuals, each individual is treated as
a volume-less particle in the 𝐷-dimensional space, with the
current position vector and velocity vector of particle 𝑖 at the
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𝑛th iteration represented as 𝑋
𝑖,𝑛
= (𝑋
1

𝑖,𝑛
, 𝑋
2

𝑖,𝑛
, . . . , 𝑋

𝐷

𝑖,𝑛
) and

𝑉
𝑖,𝑛
= (𝑉
1

𝑖,𝑛
, 𝑉
2

𝑖,𝑛
, . . . , 𝑉

𝐷

𝑖,𝑛
) [28, 29]. The particle moves accord-

ing to the following equations:

𝑉
𝑗

𝑖,𝑛+1
= 𝑤𝑉

𝑗

𝑖,𝑛
+ 𝑐
1
𝑟
𝑗

𝑖,𝑛
(𝑃
𝑗

𝑖,𝑛
− 𝑋
𝑗

𝑖,𝑛
) + 𝑐
2
𝑅
𝑗

𝑖,𝑛
(𝐺
𝑗

𝑖,𝑛
− 𝑋
𝑗

𝑖,𝑛
) ,

(10)

𝑋
𝑗

𝑖,𝑛+1
= 𝑋
𝑗

𝑖,𝑛
+ 𝑉
𝑗

𝑖,𝑛+1
, (11)

for 𝑖 = 1, 2, . . . . ,𝑀 and 𝑗 = 1, 2, . . . , 𝐷, where 𝑐
1
and 𝑐
2
are

known as acceleration coefficients.The parameter𝑤 is known
as the inertia weight which can be adjusted to balance the
explorative search and the exploitive search of the particle.
Vector 𝑃

𝑖,𝑛
= (𝑃
1

𝑖,𝑛
, 𝑃
2

𝑖,𝑛
⋅ ⋅ ⋅ 𝑃
𝐷

𝑖,𝑛
) is the best previous position

(the position giving the best objective function value or
fitness value) of particle 𝑖 and called personal best (𝑝𝑏𝑒𝑠𝑡)
position, and vector 𝐺

𝑛
= (𝐺
1

𝑛
, 𝐺
2

𝑛
⋅ ⋅ ⋅ 𝐺
𝐷

𝑛
) is the position of

the best particle among all the particles in the population and
called global best (𝑔𝑏𝑒𝑠𝑡) position.Without loss of generality,
we consider the following maximization problem:

Minimize 𝑓 (𝑋)

s.t. 𝑋 ∈ 𝑆 ⊆ 𝑅
𝐷
,

(12)

where𝑓(𝑋) is an objective function continuous almost every-
where and 𝑆 is the feasible space. Accordingly, 𝑃

𝑖,𝑛
can be

updated by

𝑃
𝑖,𝑛
= {

𝑋
𝑖,𝑛

if𝑓 (𝑋
𝑖,𝑛
) < 𝑓 (𝑃

𝑖,𝑛−1
) ,

𝑃
𝑖,𝑛−1

if𝑓 (𝑋
𝑖,𝑛
) ≥ 𝑓 (𝑃

𝑖,𝑛−1
) ,

(13)

and 𝐺
𝑛

can be found by 𝐺
𝑛

= 𝑃
𝑔,𝑛
, where 𝑔 =

argmax
1≤𝑖≤𝑀

[𝑓(𝑝
𝑖,𝑛
)]. The parameters 𝑟𝑗

𝑖,𝑛
and 𝑅

𝑗

𝑖,𝑛
are

sequences of two different sequences of random numbers
distributed uniformly within (0, 1), which is denoted by
𝑟
𝑗

𝑖,𝑛
, 𝑅
𝑗

𝑖,𝑛
∼ 𝑈(0, 1). Generally, the value of 𝑉𝑗

𝑖,𝑛
is restricted

in the interval [−𝑉max, 𝑉max].
Trajectory analysis in [30] showed that convergence of the

PSO algorithm may be achieved if each particle converges
to its local attractor, 𝑝

𝑖,𝑛
= (𝑝
1

𝑖,𝑛
, 𝑝
2

𝑖,𝑛
⋅ ⋅ ⋅ 𝑝
𝐷

𝑖,𝑛
), defined at the

coordinates

𝑝
𝑗

𝑖,𝑛
=
𝑐
1
𝑟
𝑗

𝑖,𝑛
𝑝
𝑗

𝑖,𝑛
+ 𝑐
2
𝑅
𝑗

𝑖,𝑛
𝐺
𝑗

𝑛

𝑐
1
𝑟
𝑗

𝑖,𝑛
𝑐
2
𝑅
𝑗

𝑖,𝑛

1 ≤ 𝑗 ≤ 𝐷 (14)

or

𝑝
𝑗

𝑖,𝑛
= 𝜑
𝑗

𝑖,𝑛
⋅ 𝑝
𝑗

𝑖,𝑛
+ (1 − 𝜑

𝑗

𝑖,𝑛
) ⋅ 𝐺
𝑗

𝑛
, (15)

where 𝜑𝑗
𝑖,𝑛
= 𝑐
1
𝑟
𝑗

𝑖,𝑛
/(𝑐
1
𝑟
𝑗

𝑖,𝑛
+ 𝑐
2
𝑅
𝑗

𝑖,𝑛
) with regard to the random

numbers 𝑟𝑗
𝑖,𝑛

and 𝑅𝑗
𝑖,𝑛

in (10). In PSO, the acceleration coeffi-
cients 𝑐

1
and 𝑐
2
are generally set to be equal; that is, 𝑐

1
= 𝑐
2
,

and thus 𝜑𝑗
𝑖,𝑛

is a sequence of uniformly distributed random
numbers over (0, 1). As a result, (15) can be restated as

𝑝
𝑗

𝑖,𝑛
= 𝜑
𝑗

𝑖,𝑛
⋅ 𝑃
𝑗

𝑖,𝑛
+ (1 − 𝜑

𝑗

𝑖,𝑛
) ⋅ 𝐺
𝑗

𝑛
,

𝜙
𝑗

𝑖,𝑛
∼ 𝑈 (0, 1) .

(16)

In QPSO, each single particle is treated as a spin-less
one moving in quantum space. Thus state of the particle is
characterized by wave function 𝜓, where |𝜓|2 is the probabil-
ity density function of its position. Inspired by convergence
analysis of the particle in PSO [30], it is assume that, at the
𝑛th iteration, particle 𝑖 flies in the 𝐷-dimensional space with
𝛿 potential well centered at 𝑝𝑗

𝑖,𝑛
on the 𝑗th dimension (1 ≤

𝑗 ≤ 𝐷). Let𝑌𝑗
𝑖,𝑛+1

= |𝑋
𝑗

𝑖,𝑛
−𝑝
𝑗

𝑖,𝑛
|; we can obtain the normalized

wave function at iteration 𝑛 + 1

𝜓 (𝑌
𝑗

𝑖,𝑛+1
) =

1

√𝐿
𝑗

𝑖,𝑛

exp(−
𝑌
𝑗

𝑖,𝑛+1

𝐿
𝑗

𝑖,𝑛

) , (17)

which satisfies the bound condition that 𝜓(𝑌𝑗
𝑖,𝑛+1

) → 0 as
𝑌
𝑗

𝑖,𝑛+1
→ ∞. 𝐿𝑗

𝑖,𝑛
is the characteristic length of the wave

function. By the statistical interpretation of wave function,
the probability density function is given by

𝑄(𝑌
𝑗

𝑖,𝑛+1
) =


𝜓 (𝑌
𝑗

𝑖,𝑛
)


2

=
1

𝐿
𝑗

𝑖,𝑛

exp(−
2𝑌
𝑗

𝑖,𝑛+1

𝐿
𝑗

𝑖,𝑛

) , (18)

and thus the probability distribution function is

𝐹 (𝑌
𝑗

𝑖,𝑛+1
) = 1 − exp(−

2𝑌
𝑗

𝑖,𝑛+1

𝐿
𝑗

𝑖,𝑛

) . (19)

Using Monte Carlo method, we can measure the𝑗th compo-
nent of position of particle 𝑖 at the (𝑛 + 1)th iteration by

𝑋
𝑗

𝑖,𝑛+1
= 𝑝
𝑗

𝑖,𝑛+1
±
𝐿
𝑗

𝑖,𝑛

2
ln( 1

𝑢
𝑗

𝑖,𝑛+1

) , 𝑢
𝑗

𝑖,𝑛+1
∼ 𝑈 (0, 1) , (20)

where 𝑢𝑗
𝑖,𝑛+1

is a sequence of random numbers uniformly dis-
tributed over (0, 1). The value of 𝐿𝑗

𝑖,𝑛
is determined by

𝐿
𝑗

𝑖,𝑛
= 2𝛼 ⋅


𝑋
𝑗

𝑖,𝑛
− 𝐶
𝑗

𝑖,𝑛


, (21)

where 𝐶
𝑛
= (𝐶

1

𝑛
, 𝐶
2

𝑛
, . . . , 𝐶

𝐷

𝑛
) is called mean best (𝑚𝑏𝑒𝑠𝑡)

position defined by the average of the 𝑝𝑏𝑒𝑠𝑡 positions of all
particles; namely,

𝐶
𝑗

𝑛
= (

1

𝑀
)

𝑀

∑

𝑖=1

𝑝
𝑗

𝑖,𝑛
(1 ≤ 𝑗 ≤ 𝐷) . (22)

Thus the position of the particle updates according to the
following equation:

𝑋
𝑗

𝑖,𝑛+1
= 𝑝
𝑗

𝑖,𝑛
± 𝛼 ⋅


𝑋
𝑗

𝑖,𝑛
− 𝐶
𝑗

𝑖,𝑛


⋅ ln( 1

𝑢
𝑗

𝑖,𝑛+1

) . (23)

The parameter 𝛼 in (21) and (23) is called contraction-
expansion (CE) coefficient, which can be adjusted to balance
the local search and the global search of the algorithm during
the optimization process. The current position of the particle
in QPSO is thus updated according to (16) and (23).
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The QPSO algorithm starts with the initialization of the
particle’s current positions and their 𝑝𝑏𝑒𝑠𝑡 positions (setting
𝑃
𝑖,0
= 𝑋
𝑖,0
), followed by the iteration of updating the particle

swarm. At each iteration, the 𝑚𝑏𝑒𝑠𝑡 position of the particle
swarm is computed and the current position of each particle
is updated according to (16) and (23). Before each particle
updates its current position, its fitness value is evaluated, and
then its 𝑝𝑏𝑒𝑠𝑡 position and the current 𝑔𝑏𝑒𝑠𝑡 position are
updated. In (23), the probability of using either operation
“+” or operation “−” is equal to 0.5. The search procedure
continues until the termination condition is met.

We outline the procedure of the QPSO algorithm as
follows.

3.1. Procedure of the QPSO

Step 1. Initialize the population; that is, initialize the current
position and personal best position of each particle.

Step 2. Execute the following steps.

Step 3. Compute mean best position 𝐶
𝑛
according to (22).

Step 4. Properly select the value of 𝛼.

Step 5. For each particle in the population, execute from
Step 6 to Step 8.

Step 6. Evaluate the objective function value of the current
position of the particle, that is, 𝑓(𝑋

𝑖,𝑛
).

Step 7. Update 𝑃
𝑖,𝑛
and 𝐺

𝑛
according to (13).

Step 8. Update each component of the particle’s position
according to (16) and (23).

Step 9. While the termination condition is not met, return to
Step 2.

Step 10. Output the results.

4. The QPSO with Adaptively Dynamical CE
Coefficient (QPSO-ADCEC)

TheCE coefficient is themost influential algorithmic parame-
ter for the search performance of the QPSO. In [19], the influ-
ence of the CE coefficient on particles’ dynamical behaviour
and the algorithmic performance were theoretically and
empirically analyzed, and two control methods for the CE
coefficient, linearly decreasing and fixed value methods, were
investigated in depth on a suite of well-known benchmark
functions. Here, we propose a novel control method for
the parameter and thus propose a modified QPSO. The
motivation of this proposal is to control the CE coefficient
in an adaptive and dynamical way according to evolution
process and the diversity of the particle swarm during the
search process.

From experience it is well known that the convergence of
theQPSOdepends on the evolution speed of the fitness values

of the particles. Therefore in order to handle complex and
nonlinear optimization process, it would be helpful to include
such factor into the CE coefficient design. In this paper, we
propose a novel dynamically varying CE coefficient for the
QPSO involving two factors, namely, the evolution speed
factor and the aggregation degree factor.The evolution speed
factor of the 𝑖th particle at the 𝑛th iteration is given by

ℎ
𝑖,𝑛
=

min (𝑓 (𝑃
𝑖,𝑛−1

) , 𝑓 (𝑃
𝑖,𝑛
))

max (𝑓 (𝑃
𝑖,𝑛−1

) , 𝑓 (𝑃
𝑖,𝑛
))
, (24)

where 𝑓(𝑃
𝑖,𝑛
) is the fitness value of the personal best position

of particle 𝑖 at iteration 𝑛 and 𝑛 is the current iteration
number. Note that the evolutionary speed factor lies in (0, 1].
This parameter reflects the run time history of the algorithm
and the evolution speed of the particle. For the minimization
problem described in (12), if the given optimization is a
minimization one, 𝑓(𝑃

𝑖,𝑛
) ≤ 𝑓(𝑃

𝑖,𝑛−1
) for each 𝑛 > 0. Thus

ℎ
𝑖,𝑛

can be simply expressed as ℎ
𝑖,𝑛
= 𝑓(𝑃

𝑖,𝑛
)/𝑓(𝑃

𝑖,𝑛−1
). The

smaller the value of ℎ
𝑖,𝑛
, the faster the decrease of 𝑓(𝑃

𝑖,𝑛
)

and the faster the evolution speed of particle 𝑖. After certain
number of iterations, the value of ℎ

𝑖,𝑛
attains its maximum

value indicating that 𝑓(𝑃
𝑖,𝑛
) is not improved any more, and

the algorithm stagnates or finds the optimum solution. The
aggregation degree factor 𝑠 of particle 𝑖 at the 𝑛th iteration is
defined by

𝑠
𝑖,𝑛
=

min (𝑓 (𝐵
𝑛
) , 𝑓
𝑛
)

max (𝑓 (𝐵
𝑛
) , 𝑓
𝑛
)

, (25)

where 𝑓
𝑛
is the average fitness value of all the particles at the

𝑛th iteration, that is;

𝑓
𝑛
=
1

𝑀

𝑀

∑

𝑖=1

𝑓 (𝑋
𝑖,𝑛
) , (26)

where 𝑀 is the swarm size. 𝑓(𝐵
𝑛
) represents the optimal

value that the swarm found in the 𝑛th iteration. Note that
𝑓(𝐵
𝑛
) cannot be replaced by 𝑓(𝐺

𝑛
) since 𝑓(𝐺

𝑛
) denotes the

optimal value that the entire swarm has found up to the 𝑛th
iteration. It is obvious that the value of 𝑠

𝑖,𝑛
falls in (0, 1]. The

aggregation can reflect not only the aggregation degree but
also the diversity of the swarm in terms of the fitness values
of the current position of the particles.The larger the value of
𝑠
𝑖,𝑛
, the less the difference between 𝑓(𝐵

𝑛
) and 𝑓

𝑛
, and thus

the more the aggregation or the smaller the swarm diversity.
In the case when all the 𝑠

𝑖,𝑛
are equal to 1, all the particles

have the same identity with each other in terms of the fitness
values of their current positions. The new CE coefficient for
each particle can be written as

𝛼
𝑖,𝑛
= 𝛼initial − (1 − ℎ𝑖,𝑛) 𝜒 + 𝑠𝑖,𝑛𝜆, (27)

where 𝛼initial is the initial value of the CE coefficient and 𝜒
and 𝜆 typically lie in the range [0, 1]. It is obvious that the
value of inertia weight lies in between (1 − 𝜒) and (1 + 𝜆).
With this adaptively dynamical CE coefficient, the modified
QPSO algorithm, called QPSO with adaptively dynamical
CE coefficient (QPSO-ADCEC), can have strong ability to
jump out of local search than the original QPSOwith linearly
decreasing or fixed CE coefficient.
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5. Learning ANFIS Network by QPSO-ADCEC

This section presents how to employ the QPSO-ADCEC
algorithm for learning theANFIS parameters.TheANFIS has
two types of parameters which need to be trained, that is, the
premise parameters {𝑎

𝑖
, 𝑏
𝑖
, 𝑐
𝑖
} and the consequent parameters

{𝑝
𝑖
, 𝑞
𝑖
, 𝑟
𝑖
}. The premise parameters are estimated by the

QPSO-ADCEC algorithm, and the consequent parameters
are identified by the least squares estimation (LSE). Thus, the
position of each particle in the QPSO-ADCEC represents a
set of premise parameters.The fitness is defined as root mean
squared error (RMSE) between actual output and desired
output, which can be expressed by

fitness = √
∑
𝑛

𝑖=1
(𝑓 (𝑖) − 𝑓0 (𝑖))

2

𝑛
.

(28)

The ANFIS coupling with the QPSO-ADCEC algorithm is
outlined as below.

Step 1. Initialize the swarm of particles such that the position
of each particle are uniformly distributed within the search
scope, and set the iteration number 𝑛 = 0.

Step 2. Set the position of each particle 𝑋
𝑖,𝑛

as the premise
parameters {𝑎

𝑖
, 𝑏
𝑖
, 𝑐
𝑖
}, and identify consequent parameters

{𝑝
𝑖
, 𝑞
𝑖
, 𝑟
𝑖
}with LSE.Then calculate fitness value of each parti-

cle, and set each particle’s personal best position as𝑃
𝑖,0
= 𝑋
𝑖,0
.

Step 3. Find out the mean value of all particles’ personal best
position 𝐶

𝑛
by using (22).

Step 4. For each particle in the population, execute from
Step 5 to Step 8.

Step 5. Calculate each particle’s fitness value, fitness(𝑋
𝑖,𝑛
),

and then compare it with the fitness of its personal best posi-
tion, fitness(𝑃

𝑖,𝑛−1
). If fitness(𝑋

𝑖,𝑛
) < fitness(𝑃

𝑖,𝑛−1
), then𝑃

𝑖,𝑛
<

𝑋
𝑖,𝑛
, otherwise 𝑃

𝑖,𝑛
< 𝑃
𝑖,𝑛−1

.

Step 6. Compare the fitness value of each particle’s personal
best position fitness(𝑃

𝑖,𝑛
)with that of the global best position,

fitness(𝐺
𝑛−1
). If fitness(𝑃

𝑖,𝑛
) < fitness(𝐺

𝑛−1
), then 𝐺

𝑛
= 𝑃
𝑖,𝑛
,

otherwise 𝐺
𝑛
= 𝐺
𝑛−1

.

Step 7. Calculate ℎ
𝑖,𝑛

and 𝑠
𝑖,𝑛

for each particle according to
(24) and (25). Then obtain the value of 𝛼

𝑖,𝑛
by using (27).

Step 8. Update the position of each particle𝑋
𝑖,𝑛
by using (16)

and (23), where 𝛼 is replaced by 𝛼
𝑖,𝑛
.

Step 9. If the termination condition is met, go to exit,
otherwise go to Step 2, and set 𝑛 = 𝑛 + 1.

6. Simulation Results

To investigate the efficiency of the proposed method, five
example systems were tested. The first two examples are the
problem of identification of nonlinear systems. For the third
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Figure 2: The actual output and desired output by ANFIS-QPSO-
ADCEC for Example 1.
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Figure 3: The actual output and desired output by ANFIS-QPSO-
ADCEC for Example 2.

example, ANFIS-QPSO-ADCEC was used as an identifier to
identify a nonlinear component discrete control system. In
the simulation study for the fourth example, we used the pro-
posedmethod to predict a chaotic time series.The fifth exam-
ple is to use the proposed ANFIS-QPSO-ADCEC method
to predict the carbon dioxide in Box-Jenkins Furnace. For
all the examples, besides the ANFIS-QPSO-ADCECmethod,
the ANFIS model trained with BP algorithm (ANFIS-BP),
ANFIS with PSO (ANFIS-PSO), and ANFIS with QPSO
(ANFIS-QPSO) were also tested and compared with the
proposed ANFIS-QPSO-ADCEC. For the PSO, the inertia
weight was set to be 0.73, and the acceleration coefficients
were set as 𝑐

1
= 𝑐
2
= 1.49. For the QPSO algorithm, the

CE coefficient was decreased linearly from 1.0 to 0.5 over
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Figure 4: The actual output and desired output by ANFIS-QPSO-
ADCEC for Example 3.

the course of search. For the QPSO-ADCEC, the initial CE
coefficient 𝛼initial = 0.5, the value of 𝜒 and 𝜆 were set to be
0.6 and 0.4, respectively. These parameters were shown to
result in good algorithmic performance in our preliminary
experiments. For each of the PSOvariants, the swarm sizewas
set to be 50, and themaximumnumber of iterationswas 2000.

Example 1 (nonlinear SISO System modeling [1]). In this
example, the nonlinear plant to be identified by first-order
TSK-type fuzzy system is described as

𝑦 = sin (𝜋𝑥) + 0.8 sin (3𝜋𝑥) + 0.2 sin (5𝜋𝑥) , (29)

where 𝑥 is the only input.The fuzzy system had five rules with
the membership function of each rule being Gaussian func-
tion. Each member function had two parameters and there
were 10 premise parameters, and 10 consequent parameters
in the fuzzy system. Thus the dimensionality of the position
of each particle is 10. We chose 100 input data which were
randomly generated between −1 and 1, 50 of which were
used as the training data and the remainder of which were
employed as testing data.

Table 1 lists the training error and test error of each
method, from which we can see that the training errors
(trnRMSE) and test errors (testRMSE) of the ANFIS net-
work trained by the QPSO-ADCEC, QPSO, and PSO are
smaller than those of the ANFIS trained by BP algorithm.
Among all the PSO variants, the QPSO-ADCEC was able to
train the ANFIS model with the smallest training and test
errors. Figure 2 visualizes results by using the ANFIS-QPSO-
ADCEC for identification of the system and shows that
the ANFIS model learned by the QPSO-ADCEC fits the
nonlinear system very well.

Table 1: Results for Example 1.

trnRMSE testRMSE
ANFIS-BP 1.665𝑒 − 02 1.675𝑒 − 02

ANFIS-PSO 9.796𝑒 − 03 9.905𝑒 − 03

ANFIS-QPSO 6.301𝑒 − 03 7.620𝑒 − 03

ANFIS-QPSO-ADCEC 1.486𝑒 − 03 2.398𝑒 − 03

Table 2: Results for Example 2.

trnRMSE testRMSE
ANFIS-BP 4.9757𝑒 − 03 5.0329𝑒 − 03

ANFIS-PSO 3.1639𝑒 − 03 3.8402𝑒 − 03

ANFIS-QPSO 2.9343𝑒 − 03 3.2390𝑒 − 03

ANFIS-QPSO-ADCEC 1.2611𝑒 − 03 1.8366𝑒 − 03

Example 2. NonlinearMISOSystemmodeling is described as

𝑦 = sin (𝜋𝑥
1
) + 0.8 sin (3𝜋𝑥

1
) + 0.2 sin (5𝜋𝑥

1
)

+ 0.6 sin (2𝜋𝑥
1
) + 0.6 sin (4𝜋𝑥

2
)

+ 0.1 sin (5𝜋𝑥
2
)

+ 0.2 sin (3𝜋𝑥
2
) + 0.3 sin (2𝜋𝑥

3
)

+ 0.5 sin (𝜋𝑥
3
) .

(30)

Equation (30) is three-input nonlinear function. Each vari-
able had two membership functions so that the fuzzy system
had eight fuzzy rules [1]. Each membership function was
Gaussian with 2 parameters, and the fuzzy system had 12
premise parameters and 32 consequent parameters.Thus, the
dimensionality of the position of each particle in QPSO-
ADCEC was 12. From the grid points of the range [−1, 1] ×
[−1, 1] × [−1, 1]within the input space of the above equation,
500 data pairs were obtained, where 250 data were used for
training and the remaining 250 data for testing.

The results for this example are presented in Table 2,
where it is shown by training and test errors that the proposed
ANFIS method outperformed the other methods on this
example system and ANFIS-BP performed worst among all
the methods. Figure 3 also shows that the ANFIS model
learned by the QPSO-ADCEC fitted the system fairly well.

Example 3 (online identification in control systems [31]).
HereweuseANFIS-QPSO-ADCECand the othermethods to
identify a nonlinear component in a control system.The plant
under consideration is governed by the following difference
equation:

𝑦 (𝑘 + 1) = 0.3𝑦 (𝑘) + 0.6𝑦 (𝑘 − 1) + 𝑢 (𝑘) . (31)

We chose 𝑦(𝑘) and 𝑢(𝑘) as the inputs and 𝑦(𝑘 + 1) as the
output. The input to the plant and the model was a sinusoid
𝑢(𝑘) = sin(2𝜋𝑘/250), and the adaptation started at 𝑘 = 1

and stopped at 𝑘 = 250. As shown in Figure 4, the output of
the model follows the output of the plant almost immediately
even after the adaptation stopped at 𝑘 = 250, and the 𝑢(𝑘)
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Figure 5: (a)The actual output and desired output; (b) errors between actual output and desired output by using the ANFIS-QPSO-ADCEC
for Example 4.
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Figure 6:The actual output and desired output by using the ANFIS-
QPSO-ADCEC for Example 5.

is changed to 𝑢(𝑘) = 0.5 sin(2𝜋𝑘/250) + 0.5 sin(2𝜋𝑘/25) after
it stopped 𝑘 = 500. Figure 4 also illustrates the results using
the ANFIS-QPSO-ADCEC for identification. The training
error and test error provided in Table 3 show the superiority
of the ANFIS-QPSO-ADCEC to its competitors.

Example 4 (prediction of future values of a chaotic time
series [31]). The simulation results for Examples 1 to 3 show
that the ANFIS-QPSO-ADCEC can be used to model highly
nonlinear functions effectively. In this example, we are to
demonstrate how the proposed ANFIS-QPSO-ADCEC can
be employed to predict future values of a chaotic time series.
The time series used in our simulation is generated by the
chaoticMackey-Glass differential delay equation [22] defined
by

𝑥 (𝑡) =
0.2𝑥 (𝑡 − 𝜏)

1 + 𝑥10 (𝑡 − 𝜏)
− 0.1𝑥 (𝑡) . (32)

Table 3: Results for Example 3.

trnRMSE testRMSE
ANFIS-BP 1.2242𝑒 − 02 1.3041𝑒 − 02

ANFIS-PSO 5.0413𝑒 − 03 1.0454𝑒 − 03

ANFIS-QPSO 3.3281𝑒 − 03 3.3476𝑒 − 03

ANFIS-QPSO-ADCEC 2.1054𝑒 − 03 2.3770𝑒 − 03

The prediction of future values of this time series is a
benchmark problem which has been considered by a num-
ber of connectionist researchers (Lapedes and Farber [32],
Moody [33], Jones et al. [34], Crowder [35], and Sanger [36]).

The initial conditions for 𝑥(0) and 𝜏 are 1.2 and 17, respec-
tively. We use four past data for this prediction, and the fuzzy
system is generated as

[𝑥 (𝑡 − 18) , 𝑥 (𝑡 − 12) , 𝑥 (𝑡 − 6) , 𝑥 (𝑡) : 𝑥 (𝑡 + 6)] . (33)

When 𝑡 was varying from 118 to 1117, we generated 1000 data
pairs for our data and applied the first 500 data pairs for
training and the rest 500 data pairs for prediction. Table 4
provides the training error and test error of each method,
showing again that the proposed QPSO-ADCEC algorithm
performed the best in training the ANFIS model for this
example. Figure 5 shows the errors between actual output and
desired output by using ANFIS-QPSO-ADCEC.

Example 5 (prediction of carbon dioxide in Box-Jenkins
Furnace [33]). Box-Jenkins Furnace data set contains 296
pairs of input and output data, where the input 𝑥(𝑡) is the flow
ofmethane and the output𝑦(𝑡) is the concentration of carbon
dioxide dismissed from the furnace. In our experiment, we
chose 𝑥(𝑡), 𝑥(𝑡 − 1), 𝑥(𝑡 − 2), 𝑦(𝑡 − 1), and 𝑦(𝑡 − 2) to be
the input data and 𝑦(𝑡) to be the output of the system [37],
thus obtain 294 pairs of input and output data. The first 244
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Table 4: Results for Example 4.
trnRMSE testRMSE

ANFIS-BP 2.550𝑒 − 03 2.502𝑒 − 03

ANFIS-PSO 2.073𝑒 − 03 2.043𝑒 − 03

ANFIS-QPSO 1.870𝑒 − 03 1.777𝑒 − 03

ANFIS-QPSO-ADCEC 1.3902𝑒 − 03 1.3811𝑒 − 03

Table 5: Results for Example 5.
trnRMSE testRMSE

ANFIS-BP 8.705𝑒 − 02 1.047𝑒 + 00

ANFIS-PSO 7.348𝑒 − 02 1.394𝑒 − 01

ANFIS-QPSO 3.984𝑒 − 02 8.567𝑒 − 02

ANFIS-QPSO-ADCEC 1.155𝑒 − 02 5.820𝑒 − 02

pairs were used to training the ANFIS model and the last 50
pairs were employed to test the trained system.

Table 5 presents the training error and test error of each
method, showing that the QPSO-ADCEC algorithm per-
formed the best in training the ANFIS model and the trained
system had the least test error. Figure 6 plotted the desired
output and the actual output of the ANFIS model trained
by the QPSO-ADCEC. It can be observed that the obtained
system fitted the data very well.

7. Conclusion

In this paper, we proposed a novel variant of the QPSO algo-
rithm for training the parameters of ANFIS. This improved
QPSO, called QPSO-ADCEC, employs an adaptive dynami-
cal varying CE coefficient whichmakes the QPSO have better
global search ability. The proposed QPSO-ADCEC is applied
to estimation of the premise parameters of the ANFIS model,
and the LSE approach is used for optimizing the consequent
parameters of the fuzzy system.

The effectiveness of the proposed ANFIS-QPSO-ADCEC
method was verified by applying it to identification of non-
linear systems and predication of a chaotic system.The simu-
lation results show that the proposed ANFIS-QPSO-ADCEC
method had better performance than the ANFIS-PSO,
ANFIS-QPSO, and the ANFIS trained with the gradient
decent method due to the stronger global search ability of the
QPSO-ADCEC algorithm.
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