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Theproblemof coordinated control formultiplemarine vessels in the presence of external disturbances is considered in this paper. A
robust coordinated control algorithm is proposed formultiplemarine vessels.The proposed robust coordinated control algorithm is
divided into two parts.The first part develops an extended state observer to estimate the disturbances of marine vessels.The second
part presents a robust coordinated control algorithm based on the output of the extended state observer. Furthermore, the robust
coordinated control algorithm is designed using the dynamic surface control method. In light of the leader-follower strategy, the
trajectory for each vessel is defined according to the desired trajectory of the assigned leader and the relative distance with respect
to the leader. The effectiveness of the proposed coordination algorithm is demonstrated by the simulation results.

1. Introduction

In recent years, coordinated control of multiple vehicles has
received increasing attention as an emerging technology [1].
Multiple vehicles can performmany complex tasks effectively
with less time and lower cost than a single vehicle. And
multiple vehicles can accomplish some tasks which cannot
be executable by a single one. In order to perform these
complicated practical tasks, it is necessary for these vehicles
to move collectively as a whole formation. In practice, many
relevant applications of coordinated control can be found
on the land, in the sea, and in the air [2]. For instance,
in the operations of underway replenishment by a fleet of
surface vessels, it is required that the replenished vehicle
should maintain a fixed relative position with respect to
the replenishing one, in order to ensure the replenishment
operation performed safely and effectively.

The problem of coordinated formation control has
been reported in a large number of recent publications.
Basic approaches of the coordinated control include leader-
follower approach [3–5], behavioral approach [6, 7], and
virtual structures approach [8, 9]. In the leader-follower
approach, some agents are considered as the leaders, and the

rest ones are considered as the followers. The followers will
track the leaders, and the leaders will track the predefined
desired trajectories. This method is easy to be manipulated
and implemented. However, the main criticism of the leader-
follower approach is that it depends heavily on the leader
to achieve the goal of the formation task which may be
undesirable [3–5]. In the behavioral approach, the colli-
sion avoidance/obstacle avoidance and the target tracking
are prescribed for each agent, and the whole formation is
achieved by calculating the weight of the relative importance
of each behavior.However, it is difficult to analyze the stability
of the group behavior using such approach [6, 7]. In the
virtual-structure approach, each member in the formation
is considered as a particle embedded in a rigid geometric
structure, but the relative applications are limited when the
formation structure is time-varying or needs to be frequently
reconfigured [8, 9].

Some advanced approaches including graph theory [10],
passivity-based control [11, 12], and hybrid control [13]
are also used for coordinated control of multiple marine
vessels. Most results about the coordinated control problem
addressed in the earlier papers are on the assumption that
marine vessels are free from environmental disturbances.
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However, coordinated control for multiple surface vessels
encountering exogenous disturbances adds a new level of
complexity to the problem. Other advanced methods are
proposed to solve the robust coordinated formation control
problem, for example, the Lagrangian approach [14], the
nonlinear model predictive control [15], the adaptive control
[16], and the sliding mode control [17]. In addition, the
fault tolerant control and the fault diagnosis are studied in
references [18–20]. In particular, the problem of coordinated
path following multiple vessels has also been discussed
in the related literature studies [21, 22]. The robustness
to environmental disturbances is highly important when
performing practical marine and offshore tasks for surface
vessels, which is also the concerned issue in this paper. The
core of the extended state observer is that the disturbances
and the unknown dynamics can be considered as extend
state, and then the detailed values can be estimated by
designed observer. The correlative applications can be found
in literature studies [23–26]. The stability of the extended
state observer is analyzed in [27–29].The robust coordination
control algorithm formultiple surface vessels based on extend
state observer and robust control technology is studied in
this paper. The designed controller is useful for the practical
marine operations.

In this paper, we consider the problem of coordinated
formation control of multiple surface vessels in the pres-
ence of exogenous disturbances. The coordinated formation
controller is proposed by combining the extended state
observer and dynamic surface control using the leader-
follower strategy. The extended state observer is developed
to estimate the external disturbances of the surface vessels.
The coordinated control algorithm is accomplished based on
the output of the extended state observer. Furthermore, the
trajectory of each vessel is defined using the desired trajectory
of the assigned leader and the relative distance with respect
to the leader. This paper is organized as follows. In Section 2,
the vessel model is established. Section 3 contains a detailed
algorithm of the coordination formation control for multiple
vessels. Simulation is carried out in Section 4, and we draw
conclusions in Section 5.

2. Preliminaries

The vessel model can be divided into two parts: the kine-
matics and nonlinear dynamics. Generally, only the motion
in the horizontal plane is considered for the surface vessel.
The elements corresponding to heave, roll, and pitch are
neglected. The dynamic model for the ith surface vessel can
be represented by the following 3 degrees of freedom (DOF)
[30]:
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𝑇 is the vector of forces and torques input from
the thruster system. 𝜏

𝑑𝑖
is the vector of external environment

forces and torques input which is generated by wind, wave,
and current.

In order to design the backstepping sliding mode con-
troller, we transform the vessel model as follows:
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Taking (4) and (6) into the vessel dynamic model (2) yields
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The above equation can be written as
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3. Coordinated Formation Controller Design

In this section, the controller is designed from two inspects.
One is the extended state observer design for each vessel, and
the other is the coordinated controller for multiple vessels
based on the output of the extended state observer.
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3.1. Extended State Observer Design. In this section, we
design the extended state observer for each vessel to estimate
the disturbances.
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Here K
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extended state observer. Then the disturbances are observed
and compensated by the designed controller.

The extended state observer is designed as

z
1i = 𝜂

𝑖
− 𝜂

𝑖
,

̇

�̂�

𝑖
= k̂
𝑛𝑖

+ 𝛽

1
fal
1
(z
1𝑖
, 𝛼, 𝛿) ,

̇k̂
𝑛𝑖

=

̂K
𝑖
+ 𝛽

2
fal
2
(z
1𝑖
, 𝛼, 𝛿) + u

𝑖
,

̇

̂K
𝑖
= 𝛽

3
fal
3
(z
1𝑖
, 𝛼, 𝛿) ,

(13)

where

fal (z
1𝑖
, 𝛼, 𝛿) =

{

{

{









z
1𝑖









𝛼 sign (z
1𝑖
) ,









z
1𝑖









> 𝛿,

z
1𝑖

𝛿

𝛼−1
,









z
1𝑖









≤ 𝛿.

(14)

And 𝛿 > 0, 0 < 𝛼 < 1.
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ż
3𝑖

=

̇K
𝑖
− 𝛽

3
fal
3
(z
1𝑖
, 𝛼, 𝛿) . (17)

The following assumptions are presumed.

(1) The possibly unknown function K
𝑖
is continuously

differentiable with respect to their variables. | ̇K
𝑖
| ≤ 𝑀

for all 𝑡 > 0, where𝑀 is a positive constant.

Virtual leader

l1
l2

l3

N

E

Figure 1: The formation of these vessels.
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3.2. Coordinated Controller Design

3.2.1. Formation Setup. This paper considers a fleet of n
vessels to perform the desired coordination formation task.
Each vessel in the formation is identified by the index
set 𝐼 = [1, 2, . . . , 𝑛]. The desired formation is established
using the leader-follower strategy as shown in Figure 1.
Furthermore, the leader is a virtual vessel. If we assume
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Theorem 1. Consider the vessel with the nonlinear model as
in (1), (2), and (8), with the control law (27), and then one
can guarantee that the vessels approach the desired trajectory
ultimately while holding the desired formation structure.
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With (19) and (21), we obtain
̇S
1𝑖

= S
2𝑖
+ S
3𝑖
− Λ
1𝑖
S
1𝑖
. (31)

Define the Lyapunov function as
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Differentiating the above equation yields
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If we define the maximum of 𝑔(𝛽
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Figure 2: The movement of the vessel in the plane.
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Figure 3: The practical value and estimated value of the positions.

If we choose 𝛼

0
> 𝜀/2𝑝, then ̇

𝑉

𝑖
< 0. We can guarantee that

S
2𝑖

→ 0. This implies k̂
𝑛𝑖

→ k
𝑛𝑖
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𝑑𝑖
, in turn, S

1𝑖
→ 0

and 𝜂

𝑖
→ 𝜂

𝑖
→ 𝜂

𝑑𝑖
.

4. Simulation Results

In this section, experimental simulations are carried out
to evaluate the effectiveness of the proposed coordinated
formation control algorithm. The detailed parameters of the
vessel are presented in the literature [11]. At the beginning, the
proposed extended state observer of one vessel is evaluated
by the simulation. Similarly, the performance of the extended
state observer of other vessels is achieved. Compare with
the existing literature studies, we let the initial position of
the vessel is 𝜂 = [0, 0, 0]

𝑇. The vessel moves in a beeline
northward. assume that the vessels encounter the wind, wave,
and current. The wind is assumed to be fixed direction and
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Figure 4: The practical value and estimated value of the velocities.
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Figure 5: The estimated value of the disturbances.

fixed velocity, and then the disturbance of wind is a constant;
the wave and current are assumed to be the sine wave with a
fixed frequency at one time.The external disturbances can be
chosen as

𝜏

𝑑
= 10

6
∗ [0.05 sin (𝜋𝑡/100) + 0.02,

0.03 sin (𝜋𝑡/100) ,

0.01 sin(𝜋𝑡/100) + 0.01]

𝑇
(𝑁) .

(35)

In the simulation, we assume that the external disturbances
are unknown.The proposed observer parameters are selected
as 𝛽
1
= 30, 𝛽

2
= 15, 𝛽

3
= 5, 𝛼 = 0.25, and 𝛿 = 0.1.

The simulation results are shown in Figures 2 to 5.
Figure 2 shows themovements for the vessel in the plane.The
practical value and estimated value of the north position, east
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Figure 7: Heading change of the vessels.

position, and heading change curve of the vessel are shown
in Figure 3. Figure 4 shows the practical value and estimated
value of the surge velocity, sway velocity, and angular velocity
of the vessel.The estimated value of the external disturbances
are shown in Figure 5. In the simulation experiment, there
is no measurement noise in the kinematics and nonlinear
dynamics. So the practical value and estimated value of the
position and velocity are consensus in a way.What’smore, the
external disturbances can be estimated through introducing
the extended state.

Then we evaluate the effectiveness of the proposed robust
coordinated formation control algorithm. Three surface
vessels are considered to perform the coordinated track-
ing task. The initial positions of the three vessels are
𝜂

1
= [65 782 − 𝜋/3]

𝑇, 𝜂
2

= [80 831 − 7𝜋/30]

𝑇, and
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Figure 8: Surge velocity change of the vessels.
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Figure 9: Sway velocity change of the vessels.

𝜂

3
= [75 743 − 𝜋/4]

𝑇, respectively. In order to evaluate
the performance of the coordinated tracking, the desired
formation pattern of the coordinated formation controller is
described by l

1
= [0 0 0]

𝑇, l
2
= [0 −100 0]

𝑇, and
l
3
= [0 100 0]

𝑇. The desired trajectory for the assigned
leader is chosen as 𝜂

𝑑
(𝑡) = [𝑛

𝑑
𝑒

𝑑
𝜓

𝑑
]

𝑇, and the detailed
forms are 𝑛

𝑑
= 𝑡, 𝑒

𝑑
= 1000 sin(𝑡/600), 𝜓

𝑑
= arctan( ̇𝑒

𝑑
/ ̇𝑛

𝑑
).

The proposed controller parameters are selected as Λ
1

=

diag(0.05, 0.05, 0.05), T = diag(0.1, 0.1, 0.1), and K
𝐷

= 10

4
∗

diag(6.5, 6.5, 6.5).
The simulation results are shown in Figures 6 to 10.

Figure 6 shows the movements for these vessels in the plane.
The heading change curve of each vessel is shown in Figure 7.
Figures 8, 9, and 10 show the surge velocity, the sway
velocity, and the angular velocity of each vessel during the
coordinated control process, respectively. We can see that
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these vessels realized the coordinated tracking task from
Figures 6 and 7. From Figures 8, 9, and 10, the velocities
of these vessels achieve consensus as a whole, and the
velocities cannot achieve consensus absolutely when the
vessels move to the inflexion of the curves. With the analysis
of the simulation results, we can conclude that these vessels
can accomplish coordinated trajectory tracking task while
keeping the desired formation. It means that the proposed
coordination control algorithm is effective.

5. Conclusion

This paper has proposed a new robust coordinated formation
control algorithm for multiple surface vessels in the pres-
ence of external environmental disturbances. The proposed
coordinated formation controller for these vessels is designed
by combining the extended state observer and the dynamic
surface control together. The extended state observer is
designed to estimate the external disturbances of the surface
vessels. The coordinated formation is realized based on the
leader-follower strategy. The desired trajectory of each vessel
is defined using the desired trajectory of the assigned leader
and relative distance with respect to the leader.The controller
is designed based on the output of the extended state observer
and using the dynamic surface controlmethod.The proposed
coordinated controller is robust to the external disturbances.
Finally, the effectiveness of the proposed robust coordination
control algorithm is demonstrated by the simulation results.
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