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Methods of multivariate statistics, stochastic processes, and simulation methods are used to identify and assess the risk measures.
This paper presents the use of generalized linear models and Markov models to study risks to ships along the approach channel.
These models combined with simulation testing are used to determine the time required for continuous monitoring of endangered
objects or period at which the level of risk should be verified.

1. Introduction

Logisticmodels are arguably one of themost widely used data
analysis techniques.They are themost studied discriminative
models [1–3]. Logit models appear in a variety of forms
in applications in biostatistics, epidemiology, economics,
marketing research, and sociology. They are used to model
the relationship between covariates and various types of
discrete outcomes from the ubiquitous binary logit model for
a two-level response to the conditional logit andmultinomial
(generalized) logitmodels concerning polytomous responses.
Nested logit models allow for modeling the sequence of the
decision process faced by the grouping alternatives at each
stage into nests [4].

Logistic regression was applied to estimate the likelihood
of mortality and severe injury in pedestrian casualties by
considering the associations of such factors as demographic
characteristics, injury characteristics, crash time, location,
road environment, traffic control, and traffic conditions
[5, 6]. Logit models were used for analyzing traffic crash
severities aim at identifying and quantifying the effects of
the factors which affect different crash injury severities [7, 8].
Ordered logit model were used in past studies about the great
variability in conflict judgments by Air Traffic Controllers
[9]. Polynomial and logistic regression and maritime trans-
portation simulation were basis to developed an oil outflow
model for collision and grounding accidents of tankers [10].
Navigation safety assessment can be carried out with the

use of risk metrics analysis, multivariate statistical methods,
stochastic models, and simulation methods, [11–15].

In this paper we present the possibility of using the
category of ordered logitmodels to examine threats to vessels.
Stochastic models were also proposed to allow, among other
things, classification of ships with reference to the degree of
risk of collision. Safe navigation requires knowledge of the
whole picture of navigational, hydrometeorological situations
and ship’s maneuverability. An important factor affecting the
safety of the vessel is the proper execution of maneuvers,
[15]. Weather conditions affect safe performance of ship’s
maneuvers during entering the port and berthing, especially
the vessels with a big surface exposed towind.Wind direction
and force are very important factors.

2. Safety of Navigation in the
Approach Channels

Safety of navigation is a state of a system related to performing
certain maneuvers without collisions, accidents in restricted
waters. Among all the hazards we can distinguish [12]

(i) collision with another vessel or seamark in the fair-
way,

(ii) running aground or hitting the bottom.
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Probability of activating any of these risks can be repre-
sented by the following formula:

Pr = 𝑓 (𝐴
𝑖
, 𝑆
𝑖
, 𝐻
𝑖
,𝑀
𝑖
, 𝐼
𝑖
, 𝑅
𝑖
) , (1)

(see [12]) where 𝑖 is the index of hazard type, 𝐴
𝑖
are sea area

parameters, 𝑆
𝑖
are vessel’s parameters, 𝐻

𝑖
are hydrometeo-

rological parameters, 𝑀
𝑖
are parameters of the performed

maneuver, 𝐼
𝑖
are parameters of traffic density, and 𝑅

𝑖
are

parameters of traffic control system.
It is a dependent function; the variables 𝐴

𝑖
, 𝑆
𝑖
, 𝐻
𝑖
,

𝑀
𝑖
, 𝐼
𝑖
, 𝑅
𝑖
, which reflect a number of factors, describe certain

states of the system the vessel—water area—the environment.
Hydrometeorological conditions have a significant

impact on the safety of navigation in restricted areas. You
can, amongst other weather factors, include wind, waves,
and currents.

Nature of the fluctuations in water level depends on what
the cause is. They can be characterized as follows [16, 17]:

(i) short-term fluctuations in water level caused by

(a) tides,
(b) positive or negative surges,

(ii) seasonal changes in water levels caused by long-term
hydrometeorological changes in the sea area (region).

Water levels lowered or raised by wind are taken into con-
sideration by adopting characteristic water level when deter-
mining fairways. Basing on these assumptions, procedures
meeting the conditions of safe navigation are established to
use a given sea area.Wind affects safe navigation in restricted
waters and is always described by means of wind direction
and force.

Sea currents influence the safety of the ship’s maneuver
as they act on the part of the hull which is below water. There
are three important types of currents and streams in restricted
waters [12]:

(i) tidal streams,
(ii) sea currents,
(iii) wind current.

Wind sea is an important factor in determining the safety
of maneuvering in restricted waters. Parameters of waves
affecting the size of the safe maneuvering area for a vessel are
the following:

(i) height, length, and period of the waves,
(ii) directions of waves flow in relation to the available

navigable water,
(iii) distributions of direction and wave height in available

navigable waters.

In order to determine the effect of variables 𝐴
𝑖
, 𝑆
𝑖
, 𝑁
𝑖
,

𝐻
𝑖
, 𝑀
𝑖
, 𝐼
𝑖
, and 𝑅

𝑖
on the safety of navigation, it is nec-

essary to adopt quantitative indicators. They are different
for different types of sea areas on which navigation takes

place (or maneuver is performed). The limit values of these
indicators are the basis for assessing the safety of navigation.

There are two types of evaluation criteria of safety of
navigation in restricted waters:

(i) basic criteria for assessing the safety of navigation
determined by a single parameter,

(ii) complex evaluation criteria of safety of navigation
which take into account the effects of an accident and
which are a function of a number of variables.

Navigational risk is a complex criterion of assessing safety
of navigation, [13, 14, 18]. In this work a deviation from the
approach channel is assumed to be the hazard which could
result in hitting the bottom or in collision. The level of risk
depends on the distance from the centerline of the fairway.

Let us assume that the classification of vessel’s states in
terms of the degree of risk will be carried out basing on the
value of a random variable 𝑌 using vector of limits. Elements
of limits (thresholds) 𝛿𝑇 = [𝛿

0
, 𝛿
1
, . . . , 𝛿

𝑟−1
] vectors are

monotonic, nondecreasing sequence 𝛿
0
≤ 𝛿
1
≤ 𝛿
2
, . . . , 𝛿

𝑟−2
≤

𝛿
𝑟−1

.
The different levels of risks and therefore states of the

system are determined by

𝑦 ≤ 𝛿
0
, then 𝑧 = 0,

𝛿
𝑘−1

< 𝑦 ≤ 𝛿
𝑘
, then 𝑧 = 𝑘 for 𝑘 = 1, . . . , 𝑟 − 1,

𝑦 > 𝛿
𝑟−1

then 𝑧 = 𝑟.

(2)

3. Logit and Probit Models of Ordered States

Generalized linear models extend classical linear models.
Logistic regression is an alternative to ordinary linear
regression especially when we have discrete variables which
describe categories in a given classification or states which
may hold [19]. Sequential logit and probit models are often
sequences of binary outcome models [20].

Let us assume that for a vessel at the time 𝑡 value of a
variable 𝑦

𝑖
(𝑡) deciding about assessing the degree of the 𝑖th

threat to be defined for the moment 𝑡 + 𝑑𝑡 depends linearly
on the vector of features x

𝑖
(𝑡) [16],

𝑦
𝑖 (
𝑡 + 𝑑𝑡) = x𝑇

𝑖
(𝑡)𝛽 + 𝜀

𝑖 (
𝑡) , (3)

where 𝛽 is a vector of unknown structural parameters of the
model (3), 𝜀 has a distribution independent of 𝑖, and 𝑡 of the
expected zero value and of a constant variance and is defined
with distribution function of the logistic distribution. Write
the model as

𝑌 = {

1 if 𝑦∗
𝑖
≥ 0

0 if 𝑦∗
𝑖
< 0.

(4)

Let us divide the features vector into two “subvectors”

x𝑇
𝑖𝑡
= [x1𝑖 (𝑡) , x

2𝑖 (
𝑡)] , (5)

where x
1𝑖
(𝑡) is a vector of features defining the level of threat

for a vessel 𝑖 at a given moment 𝑡 and x
2𝑖
(𝑡) is a vector of

quantifiable characteristics.
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In this situation, it describes only the value of the unob-
servable variable 𝑦∗, that if the random variable/component
has a continuous distribution, (3), it can be written as

𝑃 {𝑦
𝑖
= 1} = 1 − 𝐹

𝜀
(−x󸀠
𝑖
𝛽) , (6)

where 𝐹
𝜀
is the cumulative distribution function of the

random variable.
An important issue is the way in which the various

explanatory variables affect the dependent/explained variable
and the extreme results in case of no unit variance of variable
𝜀.

Let us consider a situation in which the ship enters the
approach channel and we do not have any information about
this channel.What is the probability that “the vessel makes an
error” (navigational error)?
Option 1. Let us assume that the vessel is typical and for which
the value of an individual effect (resulting from a vessel type-
operating characteristics (5)) is zero.

Then

𝑃 (𝑦
𝑖𝑡
= 1) = Φ (x󸀠

𝑖𝑡
𝛽 + 𝛼
𝑖
) , (7)

for a standard distribution 𝜀, or generally

𝑃 (𝑦
𝑖𝑡
= 1) = Φ(

x󸀠
𝑖𝑡
𝛽 + 𝛼
𝑖

𝛿
𝜀

) . (8)

Option 2. In normal and independent distribution 𝜀 and 𝛼

their sum V
𝑖𝑡
= 𝛼
𝑖
+𝜀
𝑖𝑡
is normally distributedwith parameters

(0; 𝛿

2

𝜀
+ 𝛿

2

𝛼
). This implies that we can write

𝑃 (𝑦
𝑖𝑡
= 1) = 𝑃 (𝑦

∗

𝑖𝑡
≥ 0) = 1 − Φ(

x󸀠
𝑖𝑡
𝛽

√𝛿

2

𝜀
+ 𝛿

2

𝛼

). (9)

Of course, the parameter values and the variances are
unknown, so you can take advantage of their assessment.

Let us consider a vessel about which we know how far it
deviated from the centerline of the fairway in the approach
channel in the past and what corrective maneuvers were
performed. What is the probability that the vessel will make
navigational error in the next period of time (𝑇)?

Knowing the vessel’s history and being able to determine
the current level of risk, we get information enabling to
identify the individual effects. Let us write the probability in
the form of conditional probability (3):

𝑃 (𝑦
𝑖𝑡
= 1 | 𝑦

𝑖1
, . . . , 𝑦

𝑖,𝑡−1
, x
𝑖𝑡
,𝛽)

=

𝑃 (𝑦
𝑖𝑡
= 1, 𝑌

𝑖1
= 𝑦
𝑖1
, . . . , 𝑌

𝑖,𝑡−1
= 𝑦
𝑖,𝑡−1

| x
𝑖𝑡
,𝛽)

𝑃 (𝑌
𝑖1
= 𝑦
𝑖1
, . . . , 𝑌

𝑖,𝑡−1
= 𝑦
𝑖,𝑡−1

| x
𝑖𝑡
,𝛽)

.

(10)

We use the probability 𝑃 calculated in accordance with
Options 1 or 2, respectively, and thenwe take a threshold value
(𝑝
𝑝
). If 𝑃 > 𝑝

𝑝
we forecast an error and otherwise lack of an

error in the next period of time, [16].

Let us consider probit model with delayed response
variable as explanatory variable [4]:

𝑦
𝑖𝑡
= x󸀠
𝑖𝑡
𝛽 + 𝛾𝑦

𝑖,𝑡−1
+ 𝛼
𝑖
+ 𝜀
𝑖𝑡
,

𝑦
𝑖𝑡
= {

1 if 𝑦
𝑖𝑡
≥ 0

0 if 𝑦
𝑖𝑡
< 0.

(11)

Since the probabilities in the subsequent periods for
the same vessel are not independent, the model cannot be
estimated with the presented method. However, conditional
probabilities are independent with respect to the current
value of the explanatory variable and to the individual effects.

To solve the initial conditions problem we can use the
Heckman solution, [21], noting the model (11) in the form:

𝑦
𝑖𝑡
= x󸀠
𝑖𝑡
𝛽 + 𝛾𝑦

𝑖,𝑡−1
+ 𝛼
𝑖
+ 𝜀
𝑖𝑡

for 𝑡 ≥ 2,

𝑦
𝑖1
= z󸀠
𝑖𝑡
𝜆 + 𝜇𝛼

𝑖
+ 𝜀
𝑖1
,

𝑦
𝑖𝑡
= {

1 if 𝑦
𝑖𝑡
≥ 0

0 if 𝑦
𝑖𝑡
< 0.

(12)

In thismodel, for the first period an additional static equation
defining the value of 𝑦

𝑖1
was used. The explanatory variables

in the equation for the first period need not be the same as in
subsequent periods.

An assumption that the random variable has a logistic
distribution leads to a logit model in which the probability
of adopting the value 1 by the dependent variable with given
values of explanatory variables is given as

𝑃 (𝑦
𝑖
= 1) = 𝑃 (x󸀠

𝑖𝑡
𝛽 ≤ 𝜀
𝑖𝑡
) = 𝐹
𝐿
(x󸀠
𝑖𝑡
𝛽) = (1 + 𝑒

−x󸀠
𝑖𝑡
𝛽
)

−1

.

(13)

Elements of the vector of structural parameters of the
model and vector of limit values can be estimated by maxi-
mum probability method using numerical procedures. Let us
consider ordered model in which the observable dependent
variable can take of 𝑛 different values:

𝑦
𝑖𝑡
= x󸀠
𝑖𝑡
𝛽 + 𝛼
𝑖
+ 𝜀
𝑖𝑡
,

𝑦
𝑖𝑡
=

{
{
{
{
{

{
{
{
{
{

{

0 if 𝛿
0
≤ 𝑦
𝑖𝑡
< 𝛿
1

1 if 𝛿
1
≤ 𝑦
𝑖𝑡
< 𝛿
2

...
𝑛 if 𝛿

𝑛−1
≤ 𝑦
𝑖𝑡
< 𝛿
𝑛
.

(14)

The above model is not appropriate if the variable 𝑦
𝑖𝑡
has

values which cannot be arranged according to a particular
scale.

Probability of accepting by the variable values of𝑚 can be
written as

𝑃 (𝑦
𝑖𝑡
= 𝑚) = 𝑃 (x󸀠

𝑖𝑡
𝛽 + 𝛼
𝑖
+ 𝜀
𝑖𝑡
< 𝑘
𝑚+1

)

− 𝑃 (x󸀠
𝑖𝑡
𝛽 + 𝛼
𝑖
+ 𝜀
𝑖𝑡
< 𝑘
𝑚
)

(15)
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or by means of cumulative distribution of the random
variable in the form of

𝑃 (𝑦
𝑖𝑡
= 𝑚) = 𝐹

𝜀
(𝑘
𝑚+1

− x󸀠
𝑖𝑡
𝛽 − 𝛼
𝑖
) − 𝐹
𝜀
(𝑘
𝑚
− x󸀠
𝑖𝑡
𝛽 − 𝛼
𝑖
) ,

(16)

where 𝐹
𝜀
is the cumulative distribution function of the

random variable.
In this way we obtain an ordered probit, and the esti-

mation is based on maximizing the probability function.
Estimation of the model requires the scale, taking a specific
value of the variance of variable 𝜀 and finding the maximum
of the probability function.

4. Examples of Models Used for Examining
Risks in the Approach Channel

The methodology and logic of ordered logit model can be
presented using a following example. Let there be 𝑁 ships
in the channel, and assume that each ship’s navigator “degree
of risk acceptance” affects the probability of being in state 𝑧.
Sometimes the outcomes in a response variable are perceived
as a sequencewith stages (2), states 𝑧.The related probabilities
can be written as [20]

𝑃
0
= 𝐹(∑

𝑖

x
𝑖0
𝛽) ,

𝑃
1
= [1 − 𝐹(∑

𝑖

x
𝑖0
𝛽)]𝐹(∑

𝑖

x
𝑖1
𝛽) ,

...

𝑃
𝑟−1

=

𝑟−2

∏

𝑘=0

[1 − 𝐹(∑

𝑖

x
𝑖𝑘
𝛽)]𝐹(∑

𝑖

x
𝑖𝑟
𝛽) ,

𝑃
𝑟
=

𝑟−1

∏

𝑘=0

[1 − 𝐹(∑

𝑖

x
𝑖𝑘
𝛽)] .

(17)

In the logit model the 𝐹 is logistic cumulative distribution
function and subscripts 𝑖𝑘, for 𝑘 = 0, 1, . . . , 𝑟 indicate the sets
of x variables included in states 𝑧 = 0, 𝑧 = 1, . . . , 𝑧 = 𝑟,
respectively. The parameters 𝛽 can be estimated by dividing
the sample into groups according to levels of risk.

4.1. Prioritizing Vessels due to the Risk That They Generate.
Let us examine the case of two vessels along the approach
channel, and let us ask the question which of them generates
the greater threat?

Let us assume that the risk of the first ship is described
by the random variable 𝑋 and the other by random variable
𝑌. Without any information, we assume that both these vari-
ables have the same probability distribution with cumulative
distribution function 𝐹(𝑥) and independent (if ships are not
interacting). In addition, without changing the generality,

0
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Figure 1: Graph of the function 𝑔(𝑤).

we can assume that both variables are continuous type,𝑃(𝑋 =

𝑌) = 0.
Let us calculate the probability 𝑃(𝑋 > 𝑌)

𝑃 (𝑋 > 𝑌) = ∫

∞

−∞

𝑃 (𝑥 > 𝑌) 𝑑𝐹 (𝑥) =

𝐹

2
(𝑥)

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∞

−∞

= 0.5.

(18)

We obtained the result stating that without knowledge (for
any distribution 𝐹

𝑋
(𝑥)) the probability of analyzed events for

each vessel is the same and is 0.5.
Let us consider the following algorithm, Figure 2:

(i) let us assume a certain level of 𝑑,
(ii) assessing the ship for example, the first one, during

the remaining period of time, we check if𝑋 < 𝑑,
(iii) if so, we predict that𝑋 < 𝑌,
(iv) otherwise, we have𝑋 > 𝑌.

Let us calculate probability𝑃(𝑑) of a correct assessment using
the adopted assumptions about the type of random variables
and probability properties we obtain:

𝑃 (𝑑) = 𝑃 (𝑋 < 𝑑,𝑋 < 𝑌) + 𝑃 (𝑋 > 𝑑,𝑋 > 𝑌)

= ∫

𝑑

−∞

𝑃 (𝑥 < 𝑌) 𝑑𝐹 (𝑥) + ∫

∞

𝑑

𝑃 (𝑥 > 𝑌) 𝑑𝐹 (𝑥)

= −𝐹

2
(𝑑) + 𝐹 (𝑑) + 0.5.

(19)

Since 𝐹(𝑥) is the cumulative distribution then for each level 𝑑
value of 𝐹(𝑥) ∈ [0, 1], so let us examine the function 𝑔(𝑤) =

−𝑤

2
+ 𝑤 + 0.5, Figure 1. When calculating we have 𝑔

󸀠
(𝑤) =

−2𝑤 + 1 = 0 for 𝑤 = 0.5, 𝑔

󸀠󸀠
(𝑤) = −2.

This function has the following maximum value for 𝑤 =

0.5. This means that an optimal level 𝑑opt is the median of the
distribution 𝐹(𝑥), 𝐹(𝑑opt) = 0.5. Then 𝑃(𝑑) = 0.75.

4.2. Generalized LinearModel (GLM) of Leaving the Approach
Channel. In the present example we will consider the fol-
lowing distance ranges 𝛿

0
= 30, 𝛿

1
= 50, 𝛿

2
= 90, 𝛿

3
=

120, 𝛿
4

= 150, and 𝛿
5

= 150. Range below 30 therefore
corresponds to the level of threat 𝑧 = 0.

The vessel’s domain is defined by a rectangle of a length
and width corresponding to the length and breadth of the
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Start

Calculate X

Input d

Stop

Yes No

X < d

X < Y Y < X

Figure 2: The block diagram for the presented algorithm.

vessel, where 𝛾-heading, 𝑑-maximum distance of the domain
point from the centerline of the approach channel, Figure 3.

The center of the domain, which is described around the
ship, coincides with the geometric center of the vessel. A
𝑑[𝑚] was assumed as the maximum distance which is the
maximumdistancemeasured from the domain vertices to the
fairway centerline.

Simulation studies were carried out in the laborato-
ries of Gdynia Maritime University, using navigational-
maneuvering simulator.This simulator in a very realistic way
that represents sea areas and behaviour of vessels which are
almost identical with real vessels. It is possible because these
models use six degrees of freedom. The model of the vessel
used was the model of a loaded LNG carrier of the following
characteristics: 𝐿 = 315m, 𝐵 = 50m, and 𝑇 = 12m.The ship
was on an even keel. Simulation of the ship’s behaviour was
carried out in the fairway and was influenced by interfering
factors such as wind and swell—constant NE wind, period:
9 s., height of the swell: 1.5m.

The value of 6 and 8 knots was taken as the nominal
speed of the vessel.Thewinddirection adopted in simulations

d

𝛾

Figure 3: Determination of the maximum distanced for the ship
along the approach channel, [15].

changed every 45 degrees starting from the𝑁.The simulation
scenario of the behaviour of the model under way along
the approach channel assumes that the initial position of
the vessel is in the centerline of the existing fairway in
its northern most part and that the line of symmetry of
the model and the course over ground overlaps with the
centerline of the fairway. The parameters of the generated
waves were determined, and the simulation results were
obtained for winds (no squalls) of speed up to 15,0m.

For the assumed parameters of the fairway the distanced
is given by

𝑑 =

󵄨
󵄨
󵄨
󵄨

tan (99.8 (𝜋/180)) 𝑥LONG − 𝑦LAT + 3254.384

󵄨
󵄨
󵄨
󵄨

⋅ 1852

√tan (99.8 (𝜋/180))

2
+ 1

+ sin(𝛾

𝜋

180

+ 𝑎 tan(𝛾

𝜋

180

+

50

315

)) ⋅

315

2

,

(20)

where 𝑦LAT and 𝑥LONG Cartesian coordinates converted from
geographic ones, [15].

In the simulation, in particular, the course of the function
of the distance from the model vessel to the centerline of
the fairway with given parameters of influencing factors
(hydrometeorological conditions) was examined.

Thanks to the research on the simulator some informa-
tion was received according to which the following variables
were determined:

(i) 𝑌
𝑖
taking value of 1 (𝑧 = 𝑖) if the vessel at the time 𝑡

was found in 𝑖 class of the distance from the centerline
of the fairway and 0 otherwise, 𝑖 = 0, 1, . . . , 5

(ii) 𝑋
1
vessel’s speed,

(iii) 𝑋
2
wind speed,

(iv) 𝑋
3
wind direction.
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Table 1: Models obtained for𝑋
1
,𝑋
2
, and𝑋

3
variables.

𝑧 Eta Chi-square test of compatibility
P value

0 1.9929765 − 0.1864415𝑋
1
− 0.188414𝑋

2
− 0.00511045𝑋

3 0.8604
1 2.633185 + 0.14835385𝑋

1
− 0.217938𝑋

2
− 0.001503915𝑋

3 0.03981
2 −6.14982 + 0.17340395𝑋

1
+ 0.236026𝑋

2
+ 0.00403941𝑋

3 0.1479
3 −3.884925 − 0.2309091𝑋

1
+ 0.239662𝑋

2
+ 0.001281675𝑋

3 0.11903
4 0.910562 − 0.7587995𝑋

1
+ 0.1048175𝑋

2
+ 0.001195145𝑋

3 0.46453
5 −4.06442 − 0.28746895𝑋

1
+ 0.2784895𝑋

2
+ 0.0005145𝑋

3 0.6430

0 1 2 3 4

𝜇0 𝜇1 𝜇2 𝜇3 𝜇r−1

𝜆0 𝜆1 𝜆2 𝜆3 𝜆r−1

· · · r r− 1

Figure 4: Graph of the system states.

For𝑋
1
, 𝑋
2
, and𝑋

3
variables logistic models were obtained

𝑌 =

exp (eta)
(1 + exp (eta))

, (21)

where eta is given in Table 1.
Test of compatibility 𝜒

2 determines whether logistic
function adequately fits the observed data. Since the value of
𝑝 is greater than or equal to 0.05, there is no reason to reject
the adequacy of the fitted model at least 95.0% of confidence
level.

4.3. Markov Model of Leaving the Approach Channel. Let us
consider birth-death process (BD) with finite space of states
{0, 1, 2, . . . , 𝑟}. Graph of state of this process is shown in
Figure 4.

Birth and death processes is a continuous-time Markov
chain for which transitions may take place only between
neighbouring states (i.e., 𝑖 to 𝑖 + 1 or 𝑖 − 1 only).

We use the following notation:

(i) 𝜆
𝑖
—birth rate, 𝑖 = 0, 1, 2, 3, . . . , 𝑟 − 1;

(ii) 𝜇
𝑖
—death rate, 𝑖 = 1, 2, 3, 4, . . . , 𝑟.

State transition probability:

(i) 𝑝
01

= 1

(ii) birth before death:

𝑝
𝑖,𝑖+1

=

𝜆
𝑖

𝜆
𝑖
+ 𝜇
𝑖

(22)

(iii) death before birth:

𝑝
𝑖,𝑖−1

=

𝜇
𝑖

𝜆
𝑖
+ 𝜇
𝑖

. (23)

Consider a system in which arrivals and departures occur
one at a time. Let 𝑋(𝑠) be the risk level of the system at
time 𝑠. We now consider fitting a BD model to data collected
over an interval [0, 𝑡]. Let 𝜆

𝑖
(𝑡) and 𝜇

𝑖
(𝑡) be direct estimates

of the birth rates and death rates based on sample averages
over the time interval [0, 𝑡]. Similarly, let 𝛾

𝑖
(𝑡) be estimates of

the stationary distribution based on sample averages over the
time interval [0, 𝑡].

Moreover let 𝐴
𝑖
(𝑡) be the number of up state changes

(from 𝑧 = 𝑖 to 𝑧 = 𝑖 + 1) during the interval [0, 𝑡] when
the system is in state 𝑖; let 𝐷

𝑖
(𝑡) be the number of down state

changes (from 𝑧 = 𝑖 to 𝑧 = 𝑖−1) during the interval [0, 𝑡]when
the system is in state 𝑖; and let 𝑇

𝑖
(𝑡) be the total time during

the interval [0, 𝑡] in which the system is in state 𝑖. Then, [22]
we have

𝜆
𝑖 (
𝑡) =

𝐴
𝑖 (
𝑡)

𝑇
𝑖 (
𝑡)

, 𝜇
𝑖 (
𝑡) =

𝐷
𝑖 (
𝑡)

𝑇
𝑖 (
𝑡)

, 𝛾
𝑖 (
𝑡) =

𝑇
𝑖 (
𝑡)

𝑡

,

𝑡 ≥ 0.

(24)

This estimation procedure need not produce an irreducible
BD process, because there can be initial and final tran-
sient states. However, under the simplifying assumption of
irreducibility, this estimated BD process has the unique
stationary probability distribution. For example if there are
some constants 𝑎

1
, 𝑎
2
, 𝑑
1
, and 𝑑

2
such that 𝜆

𝑖
(𝑡) > 0 for

𝑎
1

≤ 𝑖 ≤ 𝑎
2
with 𝜆

𝑖
(𝑡) = 0 otherwise and 𝜇

𝑖
(𝑡) > 0 for

𝑑
1
≤ 𝑖 ≤ 𝑑

2
. From [22], this estimated BD process has the

unique stationary probability distribution

𝛾

𝑒

𝑖
(𝑡) =

𝑠
𝑖 (
𝑡)

∑

𝑟

𝑗=1
𝑠
𝑗 (
𝑡)

, 0 ≤ 𝑖 ≤ 𝑟, (25)

where 𝑠
0
(𝑡) = 1 and 𝑠

𝑗
(𝑡) = ∏

𝑗−1

𝑖=0
𝜆
𝑖
/∏

𝑗

𝑖=1
𝜇
𝑖
, 0 ≤ 𝑗 ≤ 𝑟.
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4.4. Systemwith Blocking. Let 𝛼
𝑖
be the probability that a ship

will enter the higher class 𝑖 + 1 if it is already at class 𝑖.

𝜆
𝑖
= 𝛼
𝑖
𝜆, 𝑖 ≥ 0;

𝜇
𝑖
= 𝜇, 𝑖 ≥ 1.

(26)

Transition probability function is given by

𝑝
𝑖,𝑖+1

=

𝛼
𝑖
𝜆

𝛼
𝑖
𝜆 + 𝜇

, 𝑝
𝑖,𝑖−1

=

𝜇

𝛼
𝑖
𝜆 + 𝜇

. (27)

Transition time𝑇
𝑖
, the time required to go from state 𝑖 to state

𝑖 + 1 has the mean given by [13]

𝐸 [𝑇
0
] =

1

𝛼
0
𝜆

, 𝐸 [𝑇
𝑖
] =

1

𝛼
𝑖
𝜆

+

𝜇

𝛼
𝑖
𝜆

𝐸 [𝑇
𝑖−1

] ,

Var (𝑇
0
) =

1

𝛼
0
𝜆

2
,

Var (𝑇
𝑖
) =

1

𝛼
𝑖
𝜆 (𝛼
𝑖
𝜆 + 𝜇)

+

𝜇

𝛼
𝑖
𝜆

Var (𝑇
𝑖−1

)

+

𝜇

(𝛼
𝑖
𝜆 + 𝜇)

(𝐸 [𝑇
𝑖−1

] + 𝐸 [𝑇
𝑖
])

2
.

(28)

From (25) we have stationary probability distribution

𝛾

𝑒

𝑖
(𝑡) =

∏

𝑖−1

𝑘=0
𝛼
𝑘
(𝜆/𝜇)

i

∑

𝑟

𝑗=1
∏

𝑗−1

𝑖=0
𝛼
𝑖
(𝜆/𝜇)

j , 0 ≤ 𝑖 ≤ 𝑟. (29)

The properly selected sets of explanatory variables in the
model (3) allow you to define Markov chains with different
transition probability matrix. If we assume that the set of
variables was limited to two variables that as a result of
the estimation of the logit model, we obtain the assessment
of probabilities that can be interpreted as the transition
probability of a one threat category to another category. The
use of the full set of explanatory variables of the form (5) gives
us the transition probabilities for any ship 𝑖 and a time 𝑡.

5. Conclusion

The study proves suitability of logit models used to estimate
the hazards to navigation. They can be used in the devel-
opment of guidelines for traffic safety management system
and large ships manoeuvring in restricted waters, to ensure
obtaining the assumed level of safety.The approach proposed
in this work can be used in Markov models by using in
estimations the transition matrix of other variables than just
defining the transition between states. This will allow the use
of semi-Markov models to estimate safety of navigation.

Immediate work in simulation follows better evaluation
measures and improvement of duration modeling, model
system, andmodel confidence levels.The presented approach
has to be further developed by more comprehensive experi-
mental evaluations, examples of applications, and analytical
models relating selected simulation responses with model
parameters.

Discrete event models allow inclusion of individual
variables without creating compound states, which could
improve the precision of the model. Some interesting ques-
tions are still open. For example possible questions can relate
to correlation between random variables.
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