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The space tether-net system for on-orbit capture is proposed in this paper. In order to research the dynamic behaviors during
system deployment, both free and nonfree deployment dynamics in circular orbit are developed; the systemmotion with respect to
Local Vertical and Local Horizontal frame is also researched with analysis and simulation. The results show that in the case of free
deployment, the capture net follows curve trajectories due to the relative orbit dynamic perturbation, and the initial deployment
velocities are planned by state transformation equations for static and floating target captures; in the case of non-free deployment,
the system undergoes an altitude libration along the Local Vertical, and the analytical solutions that describe the attitude libration
are obtained by using variable separation and integration. Finally, the dynamics of postdeployment system is also provedmarginally
stable if the critical initial conditions are satisfied.

1. Introduction

In the last two decades, space robotic systems for on-orbit
capture have received significant attention. Some of these
space robotic systems are used for orbital debris capture
and removal. Among the proposed robotic systems, the
capture tools are usually designed with rigid facilities, such
as robotic manipulators and latch structures [1–3]. Although
the rigid capture tools have been successfully validated in
some space robotic missions, the safety challenges still exist
when they are used for noncooperative target capture [4–6].
In order to deal with noncooperative space target capture,
the flexible tether-net system (TNS) is proposed in this
paper. Compared with rigid capture robotic system, TNSs
have more potential advantages including enhanced error
tolerance, increased capturing range, and reliable safety. In
ESA (Europe Space Agency), TNS has been proposed as the
on-orbit capture robotic system named “ROGER” [7–9], and
this system will be used to capture and re-orbit the non-
functional geostationary satellites in the future.

Tremendous challenges ranging from dynamics to con-
trol are involved when TNS is used for on-orbit capture,
and one predominant challenge is to obtain an insight into
the deployment dynamics of the system, which is critical
to ensure accurate and safety captures [10–12]. Generally

speaking, TNS can be deployed with connecting tether
slack or tightened, and naturally the deployment dynamics,
comprehensively governing the relative motion between the
capture net and target, can be treated as a combination of
relative dynamics and attitude dynamics.The relative dynam-
ics, expediently presented by second-order linear equations,
describes the target motion with respect to Local Verti-
cal Local Horizontal frame. The attitude dynamics mainly
illustrates the in-plan and out-of-plan librations during
deployment and station keeping. Tethered satellite system
(TSS) has attracted considerable attention in the past decades;
numerous researches have researched the different aspects
of TSS dynamics, especially motion analysis for deployment,
station keeping, and retrieval. Typical TSS is comprised
of two satellites connected with tether moving in central
gravitational field. Kane made very basic dynamic research
and analysis of TSS [13]. With mass less tether assumption,
Yu et al. have studied the two-dimensional dynamics of TSS
[14]. Fujii and Ichiki studied the nonlinear dynamic behaviors
of tethered subsatellite in the station keeping phase [15].
Takeichi et al. obtained the periodic solutions for TSS in
an elliptical orbit [16]. Furthermore, many researchers have
developed control strategies for TTS deployment and station
keeping. Details of other achievements can be obtained from
the cited references [17–23].
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Other conceptual applications of tethered space system,
such as orbital transportation and momentum-exchange
[24], have been researched recently. Rather than the ordinary
TSS, this type of tethered system is generally librating or
spinning with prescribed rotation in orbital frame, and the
tools on the tether tip capture the payload only when it
rendezvouses with target; therefore, series of papers have
focused on the libration and spinning control problem in
order to enable precise rendezvous and captures. Tether-
mediated orbital rendezvous was firstly mentioned by Carroll
[25]; after that Stuart [26] designed a single tether system
to perform the in-plan capture. The predictive controller
was developed for the libration regulation and damping.
Blanksby and Trivailo [27] developed tether crawler system
for the orbital transportation, and a corresponding controller
based on length modulation was used. Williams developed
nonlinear optimal controller and receding horizon controller
for the elastic tether system. Besides circular orbit, Williams
[10, 11, 20] also studied the capture of in-cooperative payload
in elliptic orbits. Although series of control strategies have
been proved effective, though numerical simulations, spin-
ning tethered system is still far from practical employment.
Actually all of the control strategies are developed with vari-
ous simplifications, which means that when those controllers
are used, spinning tethered system will be affected by the
nonlinearity and coupling, time-delay, and environmental
disturbance, and therefore it is extremely difficult for the
controllers to precisely offer a position and velocity match
between tether tip and target, which is evenworse for the long
tether system.

However, the TNS proposed in this paper is significantly
different from the typical space tethers in the following
aspects; firstly, the capturing net of TNS can be deployed
with the connecting tether slack, while this is not allowed for
typical space tethered system; secondly, the TNS is proposed
to deploy rapidly in the orbit, which means that the marginal
dynamics stability for typical space tethered can hardly be
sustained in the case of TNS deployment; thirdly it is assumed
that the tether length of TNS is several hundredmeters, so the
whole capture operation probably only takes several seconds
and the long-term disturbance, for example, J2 gravitational
perturbation and atmospheric drag force, can be almost
neglected; finally, the dynamic parameters of TNS will be
changed instantly after the target is captured. Due to the
above reasons, it is necessary to establish theTNSdeployment
dynamics according to the system characteristics if successful
captures are expected.

This paper will focus the research on the deployment
dynamics of TNS system; the whole paper is organized as
follows: in Sections 2 and 3, the free deployment dynamics
is developed with respect to Local Vertical Local Horizontal
frame; then the relative motion between the capture net
and target is formulated with state transformation equations;
deployment velocity planning method for static and floating
target capture is also obtained based on state transformation
equations. In Sections 4 and 5, the non-free deployment
dynamics is developed with Lagrange theorem; after that the
in-plan motion is decoupled from the out-of-plan motion,
and the analytical solution for in-plan libration is obtained
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Figure 1: Reference frame for freedeployment dynamics modeling.

with variable separation. At last the dynamics behaviors of
post-deployment system are also studied.

2. Free Deployment Dynamics

Free deployment means connecting tether retains slack when
capturing net is released towards the target. In this case, there
is no external force acting on the capturing net other than
gravitational force, and then the dynamic coupling between
the capturing net and platform can be almost ignored. Now
we consider that the space tether net system is in a circular
orbit, and the target spacecraft is flying in a near circular
orbit with small eccentricity; the platform, capturing net, and
target are treated as a mass point, so we can assume that the
target spacecraft is close enough to the tether net systemwhen
the capturing net is released.

As Figure 1 shows, two reference frames, Earth Inertial
(EI) frame and Local Vertical Local Horizontal frame, are
defined, respectively, for developing the deployment dynam-
ics. The Earth Inertial frame is a nonrotating frame with its
origin point located at the mass centre of the earth; its 𝑥-
axis and 𝑧-axis are aligned with the equinox and spin axis of
the earth, respectively. The Local Vertical Local Horizontal
(LVLH) frame, also named orbital frame, is a rotating frame.
Its origin point is located at the mass centre of the tether net
system. The 𝑥-axis is aligned with vector from the Earth’s
centre of mass to the spacecraft centre of mass, and 𝑧-axis
is aligned with the orbital velocity vector of the tether net
system.

Based on Newton’s law, the dynamics of mass point in the
EI frame can be expressed as follows:

R̈
𝑖
=

𝜇R
𝑖

𝑅
3

𝑖

+ f
𝑑𝑖
+ 𝑢
𝑑
, (1)

where R
𝑖
denotes position vectors of capturing net and target

spacecraft with respect to the Earth Inertial frame, 𝜇 is the
Earth gravitational coefficientwith constant value, f

𝑑𝑖
denotes
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perturbations such as sun pressure and earth oblateness, and
𝑢
𝑑
represents control force acting on the centre of mass.

Since the capture operation is performed within a short-time
interval, the long-term external perturbations can be ignored
reasonably, and then both the system and target spacecraft
can be considered moving in Keplerian orbits. The main goal
of the free deployment dynamics is to interpret the relative
motion between the capture net and target; therefore, based
on (1), we can obtain the relative model by the following
vector propagation:

�̈�
𝑒

𝑖
=

𝜇R
𝑖

𝑅
3

𝑖

−

𝜇R
𝑗

𝑅
3

𝑗

. (2)

In the above equation, 𝜌𝑒
𝑖
denotes the position vectors

of the target or capturing net in the orbital frame and
the superscript 𝑒 denotes the relative acceleration and the
position represented in EI frame. The relative dynamics is
formulated by a second-order nonlinear equation. However,
(2) cannot be used in practice since the position vectors
R
𝑖
can not be acquired directly with the on-board relative

sensors. Therefore, according to the vector transformation
principle between rotating and inertial frame, the dynamic
equations can be formulated with vectors expressed in LVLH
frame alternatively, and then we have

�̈�
𝑜

𝑖
= �̈�
𝑒

𝑖
− 2𝜔 × �̇�

𝑜

𝑖
− 𝜔 × (𝜔 × 𝜌

𝑜

𝑖
) − �̇� × 𝜌

𝑜

𝑖
, (3)

where𝜔 is the orbital angular velocity of tether net systemand
the superscript 𝑒denotes the vectors expressed in EI frame.
Now define the vector 𝜌𝑜

𝑡
= [𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
]
𝑇 and accordingly,

when expressed in LVLH frame we have R = [0, 0, 𝑟]
𝑇, R
𝑡
=

[𝑥
𝑖
, 𝑦
𝑖
, 𝑟+𝑧
𝑖
]
𝑇, where 𝑟 is semimajor axis of tether net system,

substituting R and R
𝑡
into (2), then expanding the right side

of the formulation with Taylor series; through second-order
approximation, �̈�𝑒

𝑖
can be rewritten as follows:

�̈�
𝑒

𝑖
= 𝜔
𝑇
𝜔(R − (1 +

3𝑦
𝑡

𝑟

) ⋅ R
𝑡
) . (4)

Substitute (4) into (3), then we can get target or capture
netmotion equations in LVLH frame by using (3); the relative
acceleration between the capturing net and target expressed
in LVLH frame can be represented as follows:

�̈�
𝑜

𝑛𝑡
= �̈�
𝑒

𝑛𝑡
− 2𝜔 × �̇�

𝑜

𝑛𝑡
− 𝜔 × (𝜔 × 𝜌

𝑜

𝑛𝑡
) , (5)

where𝜌𝑜
𝑛𝑡
represents the relative vector between capturing net

and target, and superscript 𝑜 denotes the vector described in
LVLH frame. Furthermore, substituting (4) into (5), finally
(5) can be simplified as follows:

�̈�
𝑜

𝑛𝑡
= 2�̃��̇�

𝑜

𝑛𝑡
− 𝐾𝜔
𝑇
𝜔𝜌
𝑜

𝑛𝑡
. (6)

Equation (6) is a second-order linear equation, where
𝐾 is the coefficient matrix depending on-orbital angular
velocity, and �̃� denotes the skew matrix of orbital angular
velocity, and this equation mathematically illustrates the
relative motion between the capturing net and target after the
system deployment.

3. Free Deployment Simulation and Analysis

3.1. Free Deployment Planning. The relative motion of cap-
turing net after deployment is described with (6). Obviously
the capturing net and target should locate at the same
position on specific time if successful capture is expected,
which means 𝜌𝑜

𝑛𝑡
= 0 after the specific time interval.

Since most targets are floating unpredictably in orbital frame
due to external perturbations, when tracking the target,
synchronous regulation of deployment velocity is required
consequently to ensure precise captures. Based on (6), the
analytical solution of deployment dynamics can be rewritten
with state transformation equations as follows:

(

𝜌 (𝑡)

�̇� (𝑡)
) = [

Φ
11
(𝑡, 𝑡
0
) Φ
12
(𝑡, 𝑡
0
)

Φ
21
(𝑡, 𝑡
0
) Φ
22
(𝑡, 𝑡
0
)
] (

𝜌 (𝑡
0
)

�̇� (𝑡
0
)
) + 𝐵𝑢 (𝑡) . (7)

Here, for short, we use 𝜌 to denote 𝜌𝑜
𝑛𝑡
, 𝑡
0
and 𝑡 denote

the deployment time and capture time, obviously 𝜌 can be
acquired with the relative sensors fixed on TNS, 𝐵 is input
matrix with constant element, 𝑢(𝑡) is thruster force acting
on the target during the deployment, the time expenditure,
𝑇 = 𝑡 − 𝑡

0
, describes the time interval from the deployment

beginning to the end, and it can be preset approximately
according to deployment velocity and initial relative distance,
Φ
𝑖𝑗
(𝑡, 𝑡
0
) ∈ 𝑅
3×3 is submatrix of state transformation matrix,

and 𝜌(𝑡) = 0
1×3

when the target is captured, by defining
𝜃 = 𝜔(𝑡 − 𝑡

0
), 𝑆
𝜃

= sin 𝜃, 𝐶
𝜃

= cos 𝜃, then substituting
these nomenclature into (7), and then the submatrix can be
expressed, respectively, as follows:

Φ
11
(𝑡, 𝑡
0
) =

[

[

1 0 6 (𝜃 − 𝑆
𝜃
)

0 𝐶
𝜃

0

0 0 4 − 3𝐶
𝜃

]

]

,

Φ
12
(𝑡, 𝑡
0
) =

[

[
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[

[
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4𝑆
𝜃
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𝜔

0

2 (1 − 𝐶
𝜃
)
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0

𝑆
𝜃

𝜔

0

−
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𝜃
)
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]

]

]

]

]

]

,

Φ
21
(𝑡, 𝑡
0
) =

[

[

0 0 6𝜔 (1 − 𝐶
𝜃
)

0 −𝜔𝑆
𝜃

0

0 0 3𝜔𝐶
𝜃

]

]

,

Φ
22
(𝑡, 𝑡
0
) =

[

[

4𝐶
𝜃
− 3 0 2𝑆

𝜃

0 𝐶
𝜃

0

−2𝑆
𝜃

0 𝐶
𝜃

]

]

.

(8)

Now supposing no relative maneuver was performed
when the capturing net is approaching to the target, which
is 𝑢(𝑡) = 0, then substituting the submatrix into (7), the
vectors �̇�(𝑡

0
) and �̇�(𝑡) can be calculated as follows when the

transformation matrixΦ
12
(𝑡, 𝑡
0
) is nonsingular:

�̇� (𝑡
0
) = −Φ

−1

12
(𝑡, 𝑡
0
)Φ
11
(𝑡, 𝑡
0
) 𝜌 (𝑡
0
) ,

�̇� (𝑡)=[Φ21 (𝑡, 𝑡0)−Φ22 (𝑡, 𝑡0)Φ
−1

12
(𝑡, 𝑡
0
)Φ
11
(𝑡, 𝑡
0
)] 𝜌 (𝑡

0
) .

(9)
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Figure 2: Capture simulation for static targets and floating targets.

Equation (9) implies that if the time expenditure 𝑇 is
given, both the initial and the final relative velocities are
determined by the initial relative position; moreover, after
�̇�(𝑡
0
) is obtained, we can get the deployment velocity of the

capture net as follows:

�̇�
𝑛
(𝑡
0
) = �̇�
𝑡
(𝑡
0
) − �̇� (𝑡

0
) , (10)

where �̇�
𝑛
(𝑡
0
) is the initial deployment velocity, which is

necessary for precise capture and �̇�
𝑡
(𝑡
0
) is the target initial

velocity relative to the LVLH frame, and it can be acquired by
the relative sensors on the platform.

3.2. Free Deployment Simulations. Series of capture sim-
ulations have been carried out to demonstrate the inter-
relationship among the deployment velocities, time expendi-
ture, and initial states of target. Typically the targets have been
classified into two groups: the first group consists of static
targets located at V-bar of LVLH frame, while the second
group consists of free floating targets. All the captures take
place in the circular orbit of 600 km high altitude, and the
capture simulations are completed with the connecting tether
slacked. All the initial deployment velocities can be obtained
by using (9) and (10).

As shown in Table 1, the static target captures are simu-
lated with time expenditures of 20 and 40 seconds, respec-
tively, and corresponding targets locate in V-bar with zero
initial velocity but different relative distances ranging from
100m to 300m; it should be noted that in the case the targets
experience self-station keeping with respect to the original
point of the orbital frame, which can be proved with (9). The
same with static target captures, the floating target captures
are also simulated with 20 and 40 seconds time expenditures,
whereas their initial position is supposed on R-bar and V-
bar with nonzero initial velocities. From the results we can
see that for the static target captures, the 𝑧-components
of release velocity are increased with the rising of capture
distance, while the 𝑦-component velocities remain zero.
For the floating target captures, an 𝑦-components velocity

Table 1: Parameters of free deployment capture simulations.

Target
type

Time
expenditure

(s)

Targets states
(m, m/s)

Release velocity
(m/s)

Static
20 [100, 0, 0], [0, 0, 0] [4.99, 0, −0.09]

[200, 0, 0], [0, 0, 0] [9.98, 0, −0.19]

40 [150, 0, 0], [0, 0, 0] [3.75, 0, −0.14]
[300, 0, 0], [0, 0, 0] [7.49, 0, −0.29]

Floating
20 [100, 0, 0], [0, 0.1, 0.1] [4.99, 0.10, −0.09]

[0, 0, 200], [0, 0.1, 0] [0.20, 0.10, 10.02]
40 [100, 0, 0], [0, 0.1, 0.1] [2.49, 0.10, 0.01]

equivalent to its initial component is needed for precise
captures, which implies the fact that the 𝑦-directionalmotion
is decoupled form the 𝑥 and 𝑧 directional motions.

Figure 2 describes the motion trajectories of the capture
net and floating targets in orbital frame; for the static target
capture, the curvilinear trajectory is restricted in the orbital
plan, while for the floating target capture, the curvilinear
trajectory undergoes synchronous oscillation out of orbital
plan.

4. Nonfree Deployment Dynamics

4.1. Reference Frames. A distinct characteristic of nonfree
deployment is that the connecting tether keeps tightened
when the capture net is deployed; the drag force acting
on the capturing net differentiates its capture dynamics
significantly from the Free-Deployment ones, and therefore
the dynamics we developed in Section 2 can not be used
here. The purpose of this section is to establish the nonfree
deployment dynamics with a consideration of length alter-
ation during the systemdeployment, and the in-plan and out-
of-plan liberations, which significantly impact themotions of
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Figure 3: Reference frame for freedeployment dynamics modeling.

capturing net relative to the targets, will be researched based
on the dynamics model.

In general, the dynamics of tether net system is very
complicated due to its flexibility and external perturbations.
In order to simplify the researches, the only external force
acting on the tether system is the Newtonian gravity force of
the Earth. Other external perturbations, such as Sun pressure,
aerodynamic drag force, and gravity from the sun and other
planets, are considered negligible. Moreover, the system is
assumed to be moving in a circular orbit, and the target also
locates in the coplanar orbit. Both the capture net and the
target are treated as particles of masses.

The reference frames used to develop the system dynam-
ics are Earth Inertial frame (EI), Local Vertical Local Hor-
izontal Frame(LVLH), and Body-Fixed frame(BF). The EI
frame and LVLH are defined as in Section 2. All the reference
frames can be demonstrated in Figure 3.TheBF frame, whose
elements are principal axes of inertia, can be defined as
follows: the basic vector 𝑧

𝑏
is directed from the platform to

the capture net, and the second basic vector 𝑦
𝑏
is obtained as

follows:

𝑦
𝑏
=

𝑧
𝑏
× 𝑦
𝑏





𝑧
𝑏
× 𝑦
𝑏






. (11)

Then the final basic vector 𝑥
𝑏
can be achieved with right-

hand principle. The original point of the BF frame is fixed
on the mass centre of the system. The definition of BF frame
can be illustrated as in Figure 3. As described in Figure 3, 𝛼
and𝛽 represent the in-plan and out-of-plane libration angular,
respectively.

4.2. SystemEnergy Function. Lagrange principles enable us to
derive the dynamics of the system mathematically. However,
kinetic and potential energy of the tether-net systemmust be
obtained before the use of Lagrange principle. The proposed
tether net system involves two types of energy components:

kinetic energy and potential energy. When the capture net
is released in the orbit, the system total kinetic energy can
be calculated through scalar summation of three terms as
follows:

𝑇 = 𝑇
𝑜
+ 𝑇
𝑑
+ 𝑇
𝑟
, (12)

where 𝑇
𝑜
and 𝑇

𝑑
represent the kinetic energy terms due

to orbital velocity and deployment rate, respectively, while
𝑇
𝑟
represents the term associated with the system altitude

motions relative to EI frame. All kinetic energy terms can be
calculated as follows, respectively:

𝑇
𝑜
=

1

2

𝑀[
̇

𝑓

2

𝑟
2
+ ̇𝑟
2
] ,

𝑇
𝑑
=

1

2

[(𝑚𝑙
2

1
+ [𝑀 − 𝜌 (𝑙

∗
− 𝑙)] 𝑙

2

2
) +

1

3

𝜌 (𝑙
3

1
+ 𝑙
3

2
)]

× [
̇

𝛽

2

+ (
̇

𝑓 + �̇�)

2

cos2𝛽] ,

𝑇
𝑟
=

̇
𝑙

2

2𝑀

2
{[(𝑚 + 𝜌𝑙

1
) [(𝑀 + 𝜌𝑙

∗
) −

1

2

𝜌𝑙]

2

+ (𝑀 + 𝜌 (𝑙
∗
− 𝑙)) (

1

2

𝜌𝑙 + 𝑚)

2

]} .

(13)

In the above equations, 𝑀 is total mass of the system,
while𝑚 and𝑀 are the mass of capture net and platform and
𝑟 and 𝑓 denote the semimajor axis and true anomaly of the
orbit, for the circular orbit remains constant value. 𝑙∗ and 𝑙

denote the total length and the deployed length of the tether,
𝜌 represents the line density of the tether and 𝑙

1
and 𝑙
2
denote

the vector of endpoint with respect to original point of LVLH
frame.
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In general, the potential energy in gravitational field is
defined as follows:

𝑉 = −∫

𝑚

𝜇

𝑑𝑚

𝑟

. (14)

Obviously the total potential energies are associated
with total mass of the system. Therefore, with particle mass
assumptions, the total potential energies can be calculated
separately:

𝑉 = 𝑉
1
+ 𝑉
2
+ 𝑉
𝑒
, (15)

where 𝑉
1
and 𝑉

2
are the components associated with mass

of particles, while 𝑉
𝑒
is the elastic potential energy due to

the tether deformation. According to the potential energies
definition, we have

𝑉
1
= −𝜇

𝑚





r + l
1






− 𝜇

𝑀 + 𝜌 (𝑙
∗
− 𝑙)





r + l
2






. (16)

Here ‖ ⋅ ‖ denotes the vector mold. According to the
relationship of vectors in Figure 2, we have





r + 𝑙
1






−1
= (𝑟
2
+ 𝑙
2

1
+ 2𝑟𝑙
1
cos𝛽 cos𝛼)

−1/2

,





r + 𝑙
2






−1
= (𝑟
2
+ 𝑙
2

2
− 2𝑟𝑙
2
cos𝛽 cos𝛼)

−1/2

.

(17)

By using Taylor expansion and ignoring the high-order
terms of (17), the formulation of the vector mold can be
simplified as





r + 𝜌
1






−1

=

1

𝑟

[1 −

𝑙
1

𝑟

cos𝛼 cos𝛽 +

𝑙
2

1

2𝑟
2
(3cos2 𝛼 cos2 𝛽 − 1)] ,

(18)





r + 𝜌
2






−1

=

1

𝑟

[1 +

𝑙
2

𝑟

cos𝛼 cos𝛽 +

𝑙
2

2

2𝑟
2
(3cos2 𝛼 cos2 𝛽 − 1)] .

(19)

Furthermore, substituting (18) and (19) into (16), the
potential energy associated with the particle mass can be
obtained as follows:

𝑉
1
=−

𝜇𝑚

𝑟

[1−

𝑙
1

𝑟

cos𝛼 cos𝛽+
𝑙
2

1

2𝑟
2
(3cos2 𝛼 cos2 𝛽 −1)]

−

𝜇 [𝑀 + 𝜌 (𝑙
∗
− 𝑙)]

𝑟

[1 +

𝑙
2

𝑟

cos𝛼 cos𝛽

+

𝑙
2

2

2𝑟
2
(3cos2𝛼 cos2𝛽 − 1)] .

(20)

With Taylor expansion and high-order terms neglected,
the potential energy term induced by connecting tether can
also be obtained with the following format:

𝑉
2
= −

𝜇𝜌

𝑟

[1 −

𝑙
2

1

2𝑟

cos𝛼 cos𝛽 +

𝑙
3

1

6𝑟
2
(3 co s2𝛼 cos2𝛽 − 1)]

−

𝜇𝜌

𝑟

[1 +

𝑙
2

2

2𝑟

cos𝛼 cos𝛽 +

𝑙
3

2

6𝑟
2
(3cos2𝛼 cos2𝛽 − 1)] .

(21)

Otherwise, when the connecting tether is treated as
spring with nonviscous assumption, the elastic potential
energy will be involved as

𝑉
𝑒
=

1

2

𝐸𝐴𝑙𝜉
2
, (22)

where 𝐸 is the elastic ratio, 𝐴 is the cross-sectional area, 𝑙 is
the length of deployed tether without deformation, and 𝜉 is
the strain coefficient.

4.3. Equations of Motion. Through the definition of the
Lagrange principle, we can get

𝐿 = 𝑇 − 𝑉, (23)

where 𝐿 denotes Lagrange function. By substituting the
kinetic and potential energies into (23), we have

𝐿 =

1

2

3

∑

𝑖=1

𝑚
𝑖
[

̇
𝑓

2

𝑟
2
+ ̇𝑟
2
] +

1

2

[ (𝑚𝑙
2

1
+ [𝑀 − 𝜌 (𝑙

∗
− 𝑙)] 𝑙

2

2
)

+

1

3

𝜌 (𝑙
3

1
+ 𝑙
3

2
)]

× [
̇

𝛽

2

+ (
̇

𝑓 + �̇�)

2

cos2𝛽] +
̇
𝑙

2

2𝑀

2

× {(𝑚 + 𝜌𝑙
1
) [𝑀 + 𝜌𝑙

∗
−

1

2

𝜌𝑙]

2

+ [𝑀 + 𝜌 (𝑙
∗
− 𝑙)] (

1

2

𝜌𝑙 + 𝑚)

2

}

+

𝜇𝑚

𝑟

[1−

𝑙
1

𝑟

cos𝛼 cos𝛽 +

𝑙
2

1

2𝑟
2
(3cos2 𝛼 cos2 𝛽 − 1)]

+

𝜇 [𝑀 − 𝜌 (𝑙
∗
− 𝑙)]

𝑟

[1 +

𝑙
2

𝑟

cos𝛼 cos𝛽

+

𝑙
2

2

2𝑟
2
(3cos2 𝛼 cos2 𝛽−1)]

+

𝜇𝜌

𝑟

[1−

𝑙
2

1

2𝑟

cos𝛼 cos𝛽 +

𝑙
3

1

6𝑟
2
(3cos2 𝛼 cos2 𝛽 −1)]

+

𝜇𝜌

𝑟

[1+

𝑙
2

2

2𝑟

cos𝛼 cos𝛽 +

𝑙
3

2

6𝑟
2
(3cos2 𝛼 cos2 𝛽 −1)]

−

1

2

𝐸𝐴𝑙𝜉
2
.

(24)
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By ignoring the tether mass and elastic potential energy
term, the motion equations of the system can be derived with
Lagrange formulation:

𝑑

𝑑𝑡

(

𝜕𝐿

𝜕�̇�
𝑗

) −

𝜕𝐿

𝜕𝑞
𝑗

= 𝑄
𝑗
, (25)

where 𝑞
𝑗
is the generalized coordinate and 𝑄

𝑗
is the general-

ized force according to the generalized coordinate. Substitut-
ing (24) into (25), then, respectively, defining the generalized
force 𝑇(𝑡), 𝜏(𝑡), 𝛾(𝑡), eventually we can get the governing
nonlinear, coupled ordinary differential equations of motion
as follows:

̈
𝑙 − [

̇
𝛽

2

+ (
̇

𝑓 + �̇�)

2

cos2 𝛽] 𝑙 −
𝜇

𝑟
3

× (3cos2 𝛼 cos2 𝛽 − 1) 𝑙 =

𝑇 (𝑡)

𝑀

,

(26)

�̈� − 2 tan𝛽 (
̇

𝑓 + �̇�)
̇

𝛽 +

2
̇
𝑙

𝑙

(
̇

𝑓 + �̇�)

+

3𝜇

𝑟
3
cos𝛼 sin𝛼 =

𝜏 (𝑡)

𝑀𝑙
2cos2𝛽

,

(27)

̈
𝛽 + 2

̇
𝛽

̇
𝑙

𝑙

+ (
̇

𝑓 + �̇�)

2

cos𝛽 sin𝛽

−

3𝜇

𝑟
3
cos2 𝛼 cos𝛽 sin𝛽 =

𝛾 (𝑡)

𝑀𝑙
2
.

(28)

In the above equations, we have𝑇(𝑡) < 0 since the tether is
tightened all the time, and ̇

𝑓 is constant in any circular orbit.

4.4. In-Plan and Out-of-Plan Dynamic Decoupling. Equa-
tions (26)–(28) indicate that both in-plan and out-of-plan
motions are coupled with the tether deployment, which
means that when released towards the target, the initial
velocity vectors will be changed gradually under the attitude
perturbation; thus the shape of tether-net system will present
a libration, and the capture net will follow a curve trajectory
when approaching to the target.

Now let 𝜏(𝑡) = 0, 𝛾(𝑡) = 0, that is, no external torques
acting on the system, and then transform (27) as

�̈�−2(
̇

𝛽 tan𝛽 −

̇
𝑙

𝑙

) �̇�+

3𝜇

𝑟
3
cos𝛼 sin𝛼=2 ̇

𝛽 tan𝛽 ̇
𝑓 −

2
̇
𝑙

𝑙

̇
𝑓.

(29)

Assuming the system works with zero initial condition
while the deployment rate ̇

𝑙 is nonzero, then the right side
of (29) can be treated as a combination of two coupling
torques, which associated with out-of-planmotion and tether
deployment, respectively, acting along in-plan direction;
naturally the coupling torques generate in-plan motion even
if the initial state is zero.

However, for (28), there are no coupling torques associ-
ated with in-plan libration or tether deployment rate on the

right side, so the system will remain stationary along the out-
of-plan direction:

̈
𝛽 + 2

̇
𝑙

𝑙

̇
𝛽 + ((

̇
𝑓 + �̇�)

2

−

3𝜇

𝑟
3
cos2𝛼) cos𝛽 sin𝛽 = 0. (30)

Based on the above analysis, the in-plan dynamics can be
decoupled from the out-of-plan dynamics and then the in-
plan deployment dynamics can be described as

̈
𝑙 − [(

̇
𝑓 + �̇�)

2

+

𝜇

𝑟
3
(3cos2 𝛼 − 1)] 𝑙 =

𝑇 (𝑡)

𝑀

�̈� +

2
̇
𝑙

𝑙

�̇� +

3𝜇

𝑟
3
cos𝛼 sin𝛼 =

−2
̇
𝑙

𝑙

̇
𝑓

when ̇
𝛽 = 𝛽 = 0.

(31)

5. Nonfree Deployment and
Postdeployment Simulations

5.1. In-Plan Deployment Motions. Now consider an in-plan
deployment taking place in circular orbit; then the deploy-
ment motion can be researched based on (31). Supposing that
the deployment rate is remained constant, then according to
(31), the generalized force acting on the connecting tether can
be calculated as follows:

𝑇 (𝑡) = −𝑀[(𝜔 + �̇�)
2
+ 𝜔
2
(3cos2𝛼 − 1)] (

̇
𝑙
𝑐
𝑡 + 𝑙
0
) , (32)

where ̇
𝑙
𝑐
denotes the constant deployment rate and 𝜔 denotes

orbit angular velocity, and it can be achieved by

𝜔 = √

𝜇

𝑟
3
=

̇
𝑓. (33)

In order to research the in-plan motions during the
deployment, series of numerical simulations were carried out
with different initial deployment rate. The in-plan motions,
including the libration amplitude and velocities, are demon-
strated in Figure 4; Figure 5 shows the shape of tether net
system when deployed with initial velocities of 10m/s and
8m/s, Figure 6 illustrates the control force acted on tether
when deployed with different initial velocities. From the
results we can see that the in-plan angle will gradually
increase with time elapse. In general, the capture operation
could be accomplished within 20 seconds, so throughout the
whole deployment, the in-plan angle amplitude will remain
less than 1.5∘, and the amplitude of in-plan angular velocities
will increase rapidly after the capture net is released, but it will
be kept on a relative stable level after 5 seconds.

Substituting (33) into (31), the in-plan libration dynamic
can be expressed as

�̈� +

2
̇
𝑙
𝑐

𝑙

�̇� =

−2
̇
𝑙
𝑐

𝑙

𝜔 − 3𝜔
2 cos𝛼 sin𝛼. (34)

In the above equation, 𝜔 ≪ 1 (for example, when
the space tether net system works in a circular orbit
of 600 km altitude high, 𝜔 ≈ 0.001 rad/s) and 𝛼 ≪

1 (according to simulation result in Figure 4), and then
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Figure 4: The in-plan motion during nonfree deployment.
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Figure 5: The shape of the system during deployment.

the term 3𝜔
2 cos𝛼 sin𝛼 can be ignored and and the in-plan

libration dynamics can be simplified as follows:

�̈� +

2
̇
𝑙
𝑐

𝑙

�̇� =

−2
̇
𝑙
𝑐

𝑙

𝜔. (35)

Then by using variable separation, (35) can be rewritten as

𝑑�̇�

𝜔 + �̇�

= −

2
̇
𝑙
𝑐
𝑑𝑡

𝑙
0
+

̇
𝑙
𝑐
𝑡

. (36)

Integrating both sides of (36), then we can get the analytic
solution of in-plan motion as follows:

�̇� =

𝑙
2

0

(𝑙
0
+

̇
𝑙
𝑐
𝑡)

2
(𝜔 + �̇�

0
) − 𝜔, (37)

𝛼 = 𝑙
2

0
(𝜔 + �̇�

0
) (

1

𝑙
0
+

̇
𝑙
𝑐
𝑡

−

1

𝑙
0

)

1

̇
𝑙
𝑐

− 𝜔𝑡 + 𝛼
0
. (38)



Mathematical Problems in Engineering 9
G

en
er

al
iz

ed
 fo

rc
e (

N
)

Control force on tether

0 5 10 15 20
Time (s)

2 m/s
5 m/s

8 m/s
10 m/s

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Figure 6: The in-plan motion during nonfree deployment.

These analytical results based on (37) and also agree with
the interpretations of simulation results in Figures (4) and (5)
showing the system configurations during the deployment.
Figure (6) shows the tension force acting on the capture net
during the constant velocity deployment. From the figure we
can see obviously that tension force is less than zero all the
time, which means that the connecting tether is tightened for
the whole deployment.

5.2. Motion for Postdeployment System. After the capture
is completed, the length of connecting tether will not be
changed with respect to time; therefore, with the deployment
rate which is equal to zero, the dynamics of the postdeploy-
ment system can be rewritten as

�̈� + 3𝜔
2 cos𝛼 sin𝛼 = 0. (39)

Then transform the dynamics formula as

𝑑�̇�

𝑑𝛼

𝑑𝛼

𝑑𝑡

+ 3𝜔
2 cos𝛼 sin𝛼 = 0. (40)

By using Jacobi Integrator, we have

�̇�
2
−

3

2

𝜔
2 cos 2𝛼 = 𝐸

0
, (41)

where 𝐸 is the energy constant associated with initial state; it
can be calculated as follows:

𝐸
0
= �̇�
2

0
−

3

2

𝜔
2 cos 2𝛼

0
. (42)

The Poincáre map in Figure 7 was used to research the
stability of second-order dynamic system. Here the Poincáre
map consisting of discrete plots has been obtained with
different initial conditions; it is easy to understand the in-plan
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Figure 7: Poincáre map of tether-net deployment.

motions over long periods of time. As the map shows, there
are four equilibrium points for the postdeployment system,
including 𝛼 = 0, 𝜋/2, 𝜋, 3𝜋/2, but only 𝛼 = 0, 𝜋 are marginal
stable equilibrium points, while 𝛼 = 𝜋/2, 3𝜋/2 are unstable
ones. That is when the states of the post-deployment system
are in the range of the closed curves, the systemwill undergo a
periodic librations with respect to the local vertical; however,
when the system states is out of the closed curves, the system
will experience long-term in-plan tumbling after capture.
Furthermore, based on (41), the max periodic libration can
be calculated by supposing �̇� = 0, and then we have

𝛼max =
1

2

arccos(
−2𝐸
0

3𝜔
2
) . (43)

Obviously the following constraint must hold if the max
libration exists:

−𝐸
∗
= −

3

2

𝜔
2
< 𝐸
0
<

3

2

𝜔
2
= 𝐸
∗
. (44)

Assuming the initial libration angular is zero, then the
max initial angular velocity permitted for periodical libra-
tions can be calculated as





�̇�max





= √3𝜔. (45)

That is in the case the initial libration angular is zero, the
postcapture systemwill experience periodical librations if the
condition �̇�

0
∈ (−√3𝜔,√3𝜔) holds, while the system will

tumble if �̇�
0
is out of this range. In order to express the in-plan

libration motion with respect to time, rewrite (39) by using
variable separation, and then we have

∫

𝛼

0

𝑑𝛼

√𝑘 + cos 2𝛼
= 𝑛𝑡. (46)
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Figure 8: The in-plan motion and tether force for different 𝑘.

Equation (46) is the time-dependent formula to describe
the in-plan libration of postcapture tether-net system, where
𝑛 is constant parameter and can be obtained as follows:

𝑛 = √
2

3𝜔

. (47)

𝑘 is a parameter depending on initial conditions, and it
can be calculated as

𝑘 =

𝐸
0

𝐸
∗
. (48)

The post-deployment dynamics developed in this section
has been numerically simulated to compute the in-plan
motions and drag force of connecting tether with different
initial conditions. In the simulations the tether length of post-
deployment system is assumed to be 200m and the total mass
of target satellite and capturing net is assumed to be 500 kg.
Moreover, different 𝑘 is selected to illustrate the impact of
𝐸
0
on the system dynamics. Without losing generalization,

the parameter 𝑘 is computed with different values 0.33, 1.0,
and 1.33. Figure 8 shows numerical results of the simulations;

from the result we can see obviously when 𝑘 < 1, the post-
deployment system undergoes periodical librations relative
to the Local Vertical, and in this case, the drag force on the
connecting tether is always negative, which means that the
post-deployment system is tightened for the whole libration.
However, when 𝑘 = 1, the periodical libration amplitude
is increased to 𝜋/2 relative the Local Vertical, and positive
drag force occurs during the periodical libration, means in
this case that the connecting tether will become slack when
𝑘 = 1. Finally when 𝑘 > 1, the post-deployment system will
tumble and the drag force will periodicaly be positive and
slack. Naturally we can draw a conclusion that the constraint
of 𝑘 > 1 must hold when the post-deployment system is
expected to be tightened and under control; otherwise the
post capture system will become slack during the in-plan
motion.

6. Conclusions

A space tether-net system is proposed for on-orbit capture
in this paper. In order to research the deployment dynamics
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behaviors of the system, both free and non-free deployment
dynamics in circular orbit are developed by using Lagrange
principles. Under the disturbance of gravitational force, the
capture net will follow curve trajectories for free deployment,
and the initial deployment velocities should be planned if
precise capture is expected. For non-free deployment, the
system will experience in-plan libration depending on the
deployment rate, and the in-plan libration can be described
with analytic solution with respect to time. Furthermore, the
motion of post-deployment system is also proved marginally
stable if the parameter 𝑘 < 1; otherwise the post-deployment
systemwill tumble relative to Local Vertical and become slack
during the in-plan libration.
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