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This paper presents a modeling method based on a fuzzy-logic algorithm to establish aerodynamic models by using the datasets
from flight data recorder (FDR). The fuzzy-logic aerodynamic models are utilized to estimate more accurately the nonlinear
unsteady aerodynamics for a transport aircraft, including the effects of atmospheric turbulence. The main objective in this paper
is to present the model development and the resulting models with continuous differentiability. The uncertainty and correlation of
the data points are estimated and improved bymonitoring amultivariable correlation coefficient in themodeling process.The latter
is increased by applying a least square method to a set of data points to train a set of modeling coefficients. A commercial transport
aircraft encountered severe atmospheric turbulence twice at transonic flight in descending phase is the study case in the present
paper. The robustness and nonlinear interpolation capability of the fuzzy-logic algorithm are demonstrated in predicting the
degradation in performance and stability characteristics of this transport in severe atmospheric turbulence with sudden plunging
motion.

1. Introduction

During the operation of aircraft, it is very difficult to avoid
the influence of adverse weather conditions. The effects of
adverse atmospheric conditions usually are related to the
dynamic aerodynamic effects that result from instantaneous
changes of aircraft flight attitude.This situation, which cannot
be easily flight-tested in the aircraft certification process, is
the so-called abnormal flight condition [1]. Such abnormal
flight condition is very likely to cause the deployed aircraft
out of control. In recent years, the transport aircraft response
to the hazardous weathers due to atmospheric disturbance
has been of great concern. The windshear, down burst, and
atmospheric turbulence of hazardous weathers often lead to
a high level of dynamic aerodynamic effects.These hazardous
weathers usually have the characteristics of strong crosswind
or vertical gust. It is not possible with the current technology
to simulate the atmospheric turbulence effects by conven-
tional flight simulators or wind tunnel on the aerodynamics,
stability, and flying quality of aircraft [2]. In addition, the
aerodynamic derivative estimation from flight test data is

always based on the concept of a small disturbance theory
around an equilibrium state without having the influences of
dynamic aerodynamic effects.

To provide the mitigation concepts and promote the
understanding of aerodynamic responses of the transport air-
craft under adverse weather conditions, a research project to
evaluate the effects of weather hazards on performance and
stability characteristics for transport aircraft is undertaken.
To effectively analyze the performance degradation and vari-
ations in static and dynamic stability of transport aircraft
encountering hazardous weather, the nonlinear and dynamic
(i.e., time-dependent) aerodynamic models based on flight
data would be needed.

Traditional approaches of flight data analysis, such as the
maximum likelihood method (MMLE) [3], the least-square
or the regression method [4], apply the identification meth-
ods to data over an interval of time or other state variables
to identify models with a quasisteady assumption over the
interval. However, these conventionalmethods have not been
shown to be capable of handling nonlinear and unsteady
(i.e., dynamic) aerodynamic environments possibly exhibited
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in abnormal flight condition, in particular in hazardous
weather, such as in-flight icing, windshear, and atmospheric
turbulence.

In setting up the nonlinear and unsteady aerodynamic
models to predict the required continuous derivatives of the
function in aerodynamics for the analyses of stability and
controllability, the traditional methods of using the tabulated
data and the performance figures are very difficult to correlate
complex functional relations among numerous parameters.

In earlier development of the fuzzy-logic algorithm,
Zadeh [5] used the fuzzy sets to simulate physical param-
eters with membership functions. The disadvantage in this
approach is that the predicted curves in the functional
approximation tend to be piecewise continuous.Therefore, it
was not suitablewhen derivatives of the functionwere needed
in some applications of aviation technology. In 1985, Takagi
and Sugeno [6] used the internal functions, instead of the
fuzzy sets, in developing the fuzzy-logic algorithm.

It is well known that fuzzymodels proposed byTakagi and
Sugeno can be effectively represent unsteady and nonlinear
system. Many important results in the applied areas, such as
sensor fault detection [7], stabilization systems with time-
varying delay [8], discrete-time state-delay systems [9], non-
linear itô stochastic systems with time-varying delay [10],
a flexible air-breathing hypersonic vehicle [11], and fuzzy
stochastic systems with time-varying delay [12] have great
efforts in modern science and engineering, especially for
some systems without having sufficient information as input
databases for modeling [13, 14].

In this approach, the main features are the internal func-
tions,membership functions, and the output cells.The output
curves in the prediction are smooth. Tan and Xie [15, 16]
applied the theory to simulatemicroelectronic processes with
good accuracy. The present paper is based on the modeling
technique suggested by Tan and Xie. This technique was first
applied to aviation technology in 1997 and later to flight
data [17–24]. A new study to examine the effects of severe
atmospheric turbulence on aircraft performance and stability
in descending flight is presented in this paper.

Atmospheric turbulence has long been a difficult issue for
the aviation community because it is not only the leading
cause of serious injury in nonfatal accidents, but also most
likely to cause the aircraft loss of control. Both the Federal
AviationAdministration andNational Aeronautics and Space
Administration have research programs to deal with this
problem. One of the objectives in NASA’s Aviation Safety
Program is to study the turbulence hazards through research,
flight experiments, and data analysis. The hazard levels are
quantified in terms of the peak values of the root mean
square (RMS) of the normal loadswithmoving 5-sec intervals
[25, 26]. The estimation was based on the assumption of von
Karman’s power spectral density [27]. When von Karman’s
power spectral density is assumed, the Gaussian distribution
is utilized to exhibit continuous turbulence. However, when
localized severe turbulence or gust is included, the results will
fall way off the correlation curve for the peak RMS normal
loads to peak loads. Experience indicates that one main type
of motion to cause flight injuries in atmospheric turbulence

is the sudden plunging motion with the abrupt change in
altitude.

A commercial transport aircraft encountered severe
atmospheric turbulence twice in the descending phase. As a
result, several passengers and cabin crews sustained injuries,
because of which this event was classified as the aviation acci-
dent. Since one main type of motion to cause flight injuries
is the sudden plunging motion with the abrupt change in
altitude at transonic flight, so the main objective of this paper
is to present the model development and the capability of
resulting models to examine the static and dynamic stability
characteristics in severe atmospheric turbulence with sudden
plunging motion.

2. Theoretical Development

Since the nonlinear unsteady aerodynamic models are estab-
lished by using flight data, modeling technique is important
and need to be carefully considered. Factors that affect the
modeling procedures include the mathematical tool to set
up system model and the method to identify parameters of
model structure. Modeling procedures start from separating
the input data into many groups, and nonlinear relations are
set up between each input-output data space. In order to
obtain all the corresponding output, the present paper uses
internal functions instead of fuzzy sets [5, 28, 29] to generate
the output of the model.

The general idea of the present FLM technique is to set
up the relations between its input and output variables of the
whole system.The internal functions,membership functions,
and outputs are three basic elements for the FLM approach.
Two main tasks are involved in the FLM process. One is
the identification of the coefficients of the internal functions,
which is called parameter identification. The other one is
structure identification to identify the optimal structure of
fuzzy cells of the model. Details of the FLM technique are
described in the followings.

2.1. Internal Functions. The fuzzy-logic model uses many
internal functions to cover the defined ranges of the influ-
encing parameters. Although the form of internal functions
is very simple, it can represent a highly nonlinear relationship
between the input and output for the whole system. These
internal functions are assumed to be linear functions of input
variables [15, 16] as follows:
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where 𝑝
𝑖

𝑟
, 𝑟 = 0, 1, 2, . . . , 𝑘, are the coefficients of internal

functions 𝑦
𝑖
, and 𝑘 is number of input variables.

The recorded data in QAR, such as flight altitude (ℎ),
calibrated airspeed (CAS), and angle of attack (𝛼), is chosen
as the input variables for a specific fuzzymodel. In the present
paper, 𝑦

𝑖
is denoted as an estimated aerodynamic coefficient

of force or moment, and 𝑥
𝑟
are the variables of the input data.

Thenumbers of the internal functions (i.e., cell’s numbers) are
quantified by the membership functions.
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2.2.Membership Functions. Thevalues of each fuzzy variable,
such as the angle of attack, are divided into several ranges,
each of which represents a membership function with 𝐴(𝑥

𝑟
)

as its membership grade. One membership function from
each variable constitutes a fuzzy cell. For the 𝑖th cell, the cor-
responding membership grades are represented by 𝐴

𝑖

𝑟
(𝑥
𝑟
),

𝑟 = 1, 2, . . . , 𝑘. In other words, the membership functions
allow the membership grades of the internal functions for a
given set of input variables to be calculated. For a given system
with input variables 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑟
, . . . , 𝑥

𝑘
, the recorded values

of each input variables are normalized by using (𝑥
𝑟
−

𝑥
𝑟,min)/(𝑥𝑟,max − 𝑥

𝑟,min) to transform them into the ranges
of [0, 1].Themembership grading also ranges from 0 to 1; “0”
meaning no effect from the corresponding internal function,
and “1” meaning a full effect. Generally, overlapped straight
lines, triangles, or trapezoids are frequently the shapes used
to represent the functions. Because overlapped triangular
membership function is simple and involves less computing
time, it represents the grades of membership functions in the
present FLM technique.

The total number of fuzzy cells is 𝑛 = 𝑁
1
× 𝑁
2
× ⋅ ⋅ ⋅ ×

𝑁
𝑟
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. For a variable 𝑥

𝑟
, the number of membership

function is 𝑁
𝑟
. Each fuzzy cell is in a different combination

fromothers formed by taking onemembership function from
each input variable.

In the present application, triangular membership func-
tions are used throughout. Let 𝑁 be the number of mem-
bership functions and 𝑗 the index for the𝑗th membership
functions. Then the membership grades can be described as
follows:

(1) 𝑁 = 2:
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(2) 𝑁 ≥ 3:
for 𝑗 = 3 to 𝑁 − 𝑚, where 𝑚 is equal to the greater
number of 0 and integer of (𝑁 − 2)/2:
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where 𝑑
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2
= 1.0/(𝑚+1).

The membership functions of triangular shapes are illus-
trated in Figure 1. In Figure 1, although the membership
functions are continuous functions, there are discontinuities
in slopes at some points. However, differentiation of mem-
bership functions is not performed in estimating derivatives.
In the present application, aerodynamic derivatives are all
estimated with a central difference scheme, which will be
presented later.

2.3. Fuzzy Rule Inference. A fuzzy cell is formed by taking one
membership function from each variable. The total number
of cells is the number of possible combinations by taking one
membership function from each input variable. For every
cell, it has a fuzzy rule to guide the input and output relations.
The rule of the 𝑖th cell [15, 16] is stated as
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(5)

where 𝑖 = 1, 2, . . . , 𝑛 is the index of the cells, 𝑛 is the total
number of cells of the model; 𝑃𝑖(𝑥
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for 𝑥
𝑘
. Each function covers a certain range of input variables.

2.4. Defuzzification. In each fuzzy cell, the contribution to
the outcome (i.e., the cell output) is based on the internal
function, (5). The final prediction of the outcome is the
weighted average of all cell outputs after the process of rea-
soning algorithm (i.e., fuzzy rule inference). Because of this
weighting among many factors over large ranges of possi-
bilities, the word “fuzzy” is derived to describe the method.
However, its prediction after defuzzification is in a deter-
ministic value (a “crisp” one). The output estimated by the
fuzzy-logic algorithm corresponding to the 𝑗th input (𝑥
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In (6) product [𝐴
𝑖
(𝑥
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)] is the

weighted value of the 𝑖th cell and the index 𝑗 of the data
set, where 𝑗 = 1, 2, . . . , 𝑚, and 𝑚 is the total number of the
data record and the “product” stands product operator of its
elements in this paper.

2.5. Parameter Identification. Given a set of membership
functions for each input variable, the unknown coefficients of
the internal functions are determined by using the gradient-
descent method.The gradient descent is also known as steep-
est descent. The accuracy of the established aerodynamic
model through the fuzzy-logic algorithm is estimated by
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Figure 1: Triangular membership functions.

the sum of squared errors (SSEs) and the multiple correlation
coefficients (𝑅2):

SSE =

𝑚

∑
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In (7) and (8), where 𝑦
𝑗
, the output of the fuzzy-logic model

at point 𝑗, is estimated by (6); 𝑦
𝑗
is the data point used for

the model training at point 𝑗; 𝑦 is the mean of the sample

data, and 𝑚 is the total number of data points. The model
training is to determine the unknown coefficients of the
internal functions, 𝑝𝑖

𝑟
, by maximizing the value of 𝑅2. These

coefficients are determined by the following iterative formula
to minimize the sum of squared error (see (7)):
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, (9)

where 𝛼
𝑟
is the convergence factor or the step size in the

gradient method; subscript index 𝑡 denotes the iteration
sequence.
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After simplification, (9) becomes the following.
For 𝑟 = 0,
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and for 𝑟 = 1, 2, . . . , 𝑘,
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The present FLM technique was utilized to conduct
NASA research projects [17, 18]. The unsteady aerodynamic
models for F-16XL were based on dynamic wind-tunnel
data in [17], and those were from flight test data in [18].
The longitudinal and lateral-directional derivatives would be
useful in aircraft stability analysis and control system design.
Although the data source or application was not the same,
the iteration during the search sequence stops of modeling
should be the same with a principle for judgment.

The iteration during the search sequence stops when one
of the following three criteria is satisfied:

(1) Cost = SSE
𝑡
< 𝜀
1
,

(2) RER =
SSE
𝑡
− SSE

𝑡−1

SSE
𝑡

< 𝜀
2
,

(3) 𝑡 = 𝑡max.

(11)

In the previos criteria, Cost = SSE
𝐼
is the sum of squared

errors (SSE) in current iteration to be denoted by “Cost” and
RER = (cost current − cost previous)/cost current to be
denoted by “RER” (i.e., the relative error) for simplicity in
descriptions; 𝜀

1
and 𝜀
2
are the required precision criteria; and

𝑡max is a specified maximum iteration numbers.
Given membership functions and the training data, this

parameter identification procedure can be applied to establish
a fuzzy-logic model. Although the procedure is well under-
stood, to obtain a good model with the appropriate mem-
bership functions is quite challenging and requires numerical
experimentation.

2.6. Model Structure Identification. In the fuzzy-logic model,
the model structure is indicated by the number of member-
ship functions for each variable. For a fuzzy-logic model with
multiple variables, the structure is the combination of the
numbers and forms of the membership functions assigned

to all input variables. Since the sequence defines the one-to-
one relationship between the numbers and the forms for each
variable, the structure can be uniquely described by numbers
of the membership functions.

The model structure is determined by maximizing the
correlation coefficient, (8). A search forward algorithm has
been employed for the identification. At each search stage,
there may be many fuzzy-logic models with different struc-
ture combinations. The search stage numbers are denoted by
𝑁
𝑠
. Out of all the possible intermediate fuzzy-logic models at

each search stage, for an efficient search, only some structures
are developed and evaluated. Two selection criteria, to be
given below, are used to choose these structures. With the
incremental sequence and the selection criteria, the search
forward algorithm is summarized as follows.

(1) Specify the input variables 𝑥
𝑟
, 𝑟 = 1, 2, . . . , 𝑘 and the

output variable 𝑦.
(2) Assume an initial structure also called parent struc-

ture as (𝑁
10
, 𝑁
20
, . . . , 𝑁

𝑟0
, . . . , 𝑁

𝑘0
).

(3) Begin at the search stage number 𝑁
𝑠
= 1, form all

possible structures starting from the parent structure
by adding one more membership function a time
only to one input variable. Those all possible struc-
tures are called child structures as (𝑁

10
+ 1,𝑁

20
, . . . ,

𝑁
𝑟0
, . . . , 𝑁

𝑘0
), (𝑁

10
, 𝑁
20

+ 1, . . . , 𝑁
𝑟0
, . . . , 𝑁

𝑘0
), . . . ,

(𝑁
10
, 𝑁
20
, . . . , 𝑁

𝑟0
, . . . , 𝑁

𝑘0
+ 1). Perform the identi-

fication of internal coefficients in (1) for each child
structure and then calculate the 𝑅2 by using (8).

(4) Select the top 5 child structures among all calculated
values of 𝑅2 as new parent structures for next search
step𝑁

𝑠
= 𝑁
𝑠
+ 1.

(5) Go back to step (2) starting from the new parent
structures and repeat the same procedures in steps (2)
and (3) until the best structure is identified.

(6) Pick out the maximum value of 𝑅2 among the child
structures in each searching stage as 𝑅2max. The struc-
ture with the largest𝑅2max corresponding to all picking
values is the optimal structure within a sensible𝑁

𝑠
.

The previous process is illustrated in Figure 2. The struc-
ture identification is tied up with parameter identification.
In the structure identification, parameter identification to
determine the 𝑝-parameters according to (9) is also needed.
The value of 𝑁

𝑟
is gradually changed in each iteration until

the composite of 𝑁
𝑟
(i.e., optimal model structure) being

fund, while the searching stage reaches 𝑅2max, for the model
structure identification; and the composite of𝑁

𝑟
is fixed, the

number of iteration is unfixed until both the values of 𝑅2
and RER reach the requirements in the final the parameter
identification.

3. Application to Aircraft
Aerodynamic Modeling

3.1. Flight Data. In the present paper, a commercial transport
aircraft encountered sever atmospheric turbulence twice dur-
ing descending phase. The first and the second atmospheric
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Figure 2: Identification process for the best structure.

turbulence encounters were at altitude about 10342m and
9046m, respectively. The dataset used for the modeling are
extracted from the FDR during turbulence encounter lasting
for 260 seconds.

The main aircraft geometric and inertial characteristics
for this aircraft are taken to be

𝑊(take-off) = 1,767,740N (397271 lb) ,

𝑆 = 361.3m2 (3890ft2) , 𝑐 = 6.005m (19.7ft) ,

𝑏 = 60.289m (197.8ft) ,

𝐼
𝑥𝑥

= 12,815,012 kg-m2 (9,452,600 slugs-ft2) ,

𝐼
𝑦𝑦

= 12,511,197 kg-m2 (9,228,500 slugs-ft2) ,

𝐼
𝑧𝑧

= 53,650,986 kg-m2 (39,574,000 slugs-ft2) ,

𝐼
𝑥𝑧

= 0.0 kg-m2.

(12)

The necessary data in the FDR to determine the aero-
dynamics for this aircraft is time (𝑡), CAS, pressure altitude
(ℎ), Euler angles (𝜙, 𝜃, and 𝜓), the longitudinal, lateral, and
vertical accelerations (𝑎

𝑥
, 𝑎
𝑦
, 𝑎
𝑧
), angle of attack (𝛼), aileron

deflection (𝛿
𝑎
), elevator 𝛿

𝑒
, rudder 𝛿

𝑟
, stabilizer 𝛿

𝑠
, engine

EPR, outside air temperature, wind speed (𝑉
𝑤
), wind direc-

tion, and fuel flow rate. Since only the normal acceleration
is recorded in 8-Hz resolution (i.e., 8 points per second),
all other parameters are interpolated with a monotone cubic
spline to the same sampling rate.

3.2. Compatibility Analysis. Typically, the longitudinal, lat-
eral, and vertical accelerations (𝑎

𝑥
, 𝑎
𝑦
, 𝑎
𝑧
) along the (𝑥, 𝑦, 𝑧)-

body axes of aircraft, angle of attack 𝛼, and the Euler angles
(𝜙, 𝜃, and 𝜓), as well as all control deflections are available
and recorded in the FDR of all transport aircraft. Since the
recorded flight data may contain errors (or called biases),

compatibility analysis is performed to remove them by sat-
isfying the following kinematic equations [19]:

̇𝜙 = 𝑝 + 𝑞 sin𝜙 tan 𝜃 + 𝑟 cos𝜙 tan 𝜃,

̇𝜃 = 𝑞 cos𝜙 − 𝑟 sin𝜙,

𝜓̇ = (𝑞 sin𝜙 + 𝑟 cos𝜙) sec 𝜃,

𝑉̇ = (𝑎
𝑥
− 𝑔 sin 𝜃) cos𝛼 cos𝛽 + (𝑎

𝑦
+ 𝑔 sin𝜙 cos 𝜃) sin𝛽

+ (𝑎
𝑧
+ 𝑔 cos𝜙 cos 𝜃) sin𝛼 cos𝛽,

𝛼̇ =
[(𝑎
𝑧
+ 𝑔 cos 𝜃 cos𝜙) cos𝛼 − (𝑎

𝑥
− 𝑔 sin 𝜃) sin𝛼]

(𝑉 cos𝛽)

+ 𝑞 − tan𝛽 (𝑝 cos𝛼 + 𝑟 sin𝛼) ,

̇𝛽 =

cos𝛽 (𝑎
𝑦
+ 𝑔 cos 𝜃 sin𝜙)
𝑉

+ 𝑝 sin𝛼 − 𝑟 cos𝛼

−
sin𝛽 [(𝑎

𝑧
+𝑔 cos 𝜃 cos𝜙) sin𝛼 − (𝑎

𝑥
− 𝑔 sin 𝜃) cos𝛼]

𝑉
,

(13)

where 𝑔 is the gravitational acceleration and 𝑉 is the flight
speed, 𝛽 is sideslip angle, 𝑝 is roll rate, 𝑞 is pitch rate, and 𝑟

is yaw rate in (13). Bias analysis is based on the least-square
concept. The biases are: 𝑏

𝑎
𝑥

, 𝑏
𝑎
𝑦

, 𝑏
𝑎
𝑧

, 𝑏
𝑝
, 𝑏
𝑞
, 𝑏
𝑟
, 𝑏
𝑉
, 𝑏
𝛼
, 𝑏
𝛽
, 𝑏
𝜃
,

𝑏
𝜙
, 𝑏
𝜓
, respectively, for 𝑎

𝑥
, 𝑎
𝑦
, 𝑎
𝑧
, and so forth, representing

random noise and systematic errors, and are estimated by
minimizing the sum of squares of differences between the
two sides of the kinematic equations through the following
algorithm:

󳨀̇⇀
𝑧 =

󳨀⇀
𝑓 (

󳨀⇀
𝑥) = ⃗𝑓 (

󳨀⇀
𝑥
𝑚
− Δ

󳨀⇀
𝑥) , (14)
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where

󳨀⇀
𝑧 = (𝑉, 𝛼, 𝛽, 𝜃, 𝜙, 𝜓)

𝑇

,

󳨀⇀
𝑥
𝑚
= (𝑎
𝑥
, 𝑎
𝑦
, 𝑎
𝑧
, 𝑝, 𝑞, 𝑟, 𝑉, 𝛼, 𝛽, 𝜃, 𝜙, 𝜓)

𝑇

,

Δ
󳨀⇀
𝑥 = (𝑏

𝑎
𝑥

, 𝑏
𝑎
𝑦

, 𝑏
𝑎
𝑧

, 𝑏
𝑝
, 𝑏
𝑞
, 𝑏
𝑟
, 𝑏
𝑉
, 𝑏
𝛼
, 𝑏
𝛽
, 𝑏
𝜃
, 𝑏
𝜙
, 𝑏
𝜓
)

𝑇

,

(15)

where super fix “ ” stands for the mean value and the
subscript “𝑚” indicates the measured or recorded values.The
cost function is defined as

𝐽 =
1

2
(
󳨀̇⇀
𝑧 −

󳨀⇀
𝑓)

𝑇

𝑄(
󳨀̇⇀
𝑧 −

󳨀⇀
𝑓) , (16)

where 𝑄 is a weighting diagonal matrix with elements being
1.0 except the one for the slowly varying flight speed being
10.0 and 󳨀̇⇀

𝑧 is calculated with a central difference scheme
with 󳨀⇀

𝑧
𝑚
, which is the measured value of 󳨀⇀𝑧 . The steepest

descent optimizationmethod is adopted tominimize the cost
function. As a result of the analysis, time derivatives, such as
𝛼̇, ̇𝜙, and ̇𝜃, are all estimated by using the central difference
method; variables not present in the FDR, such as 𝛽, 𝑝, 𝑞, 𝑟,
can be determined by cubic spline interpolation.

Note that since all flight variables recorded are based on
the body axes, it is more convenient to estimate the force
andmoment coefficients for aircraft on the same axes system.
Therefore the latter are obtained from the following flight
dynamic equations [30]:

𝑚𝑎
𝑥
= 𝐶
𝑥
𝑞𝑆 + 𝑇

𝑥
,

𝑚𝑎
𝑦
= 𝐶
𝑦
𝑞𝑆,

𝑚𝑎
𝑧
= 𝐶
𝑧
𝑞𝑆,

𝐶
𝑙
𝑞𝑆𝑏 = 𝐼

𝑥𝑥
𝑝̇ − 𝐼
𝑥𝑧

̇𝑟 + 𝑞𝑟 (𝐼
𝑧𝑧
− 𝐼
𝑦𝑦
) − 𝐼
𝑥𝑧
𝑝𝑞,

𝐶
𝑚
𝑞𝑆𝑐 = 𝐼

𝑦𝑦
̇𝑞 + 𝑟𝑝 (𝐼

𝑥𝑥
− 𝐼
𝑧𝑧
) + 𝐼
𝑥𝑧
(𝑝
2
− 𝑟
2
) − 𝑇
𝑚
,

𝐶
𝑛
𝑞𝑆𝑏 = −𝐼

𝑥𝑧
𝑝̇ + 𝐼
𝑧𝑧

̇𝑟 + 𝑝𝑞 (𝐼
𝑦𝑦

− 𝐼
𝑥𝑥
) + 𝐼
𝑥𝑧
𝑞𝑟,

(17)

where 𝑚 is the aircraft mass; 𝑞 is the dynamic pressure; 𝑆 is
the wing reference area; 𝐶

𝑥
, 𝐶
𝑧
, and 𝐶

𝑚
are the longitudinal

aerodynamic force and moment coefficients; 𝐶
𝑦
, 𝐶
𝑙
, and 𝐶

𝑛

are the lateral-directional aerodynamic force and moment
coefficients; and 𝐼

𝑥𝑥
, 𝐼
𝑦𝑦
, and 𝐼

𝑧𝑧
are the moments of inertia

about 𝑥-, 𝑦-, and 𝑧-axes, respectively.The products of inertia,
𝐼
𝑥𝑦
, 𝐼
𝑥𝑧
, and 𝐼

𝑦𝑧
, are assumed zero in the present case; but

they are included in the equations because nonzero values
may be available in other applications. The terms, 𝑇

𝑥
and 𝑇

𝑚
,

represent the thrust contributions to the force in the direction
of 𝑥-axes, and to the pitching moment, respectively.

3.3. EquivalentHarmonicMotion. Thereduced frequency is a
parameter to indicate the degree of unsteadiness in unsteady
aerodynamics and is estimated in this paper by fitting the
local trajectorywith a harmonicmotion. In the static case, the
reduced frequency approaches 0. Large values of the reduced

frequency imply the importance of unsteady aerodynamic
effect. For longitudinal aerodynamics, the equivalent har-
monicmotion is the one based on the angle of attack variation
(i.e., Theodorsen’s theory). For lateral-directional aerody-
namics, it is based on the time variation of roll angle [20].

For the longitudinal motion, the time history of the angle
of attack (𝛼) and time rate of angle of attack (d𝛼/d𝑡, or 𝛼̇) are
fitted with one of a harmonicmotion at any instant as follows:

𝛼 (𝑡) = 𝛼 + 𝑎 cos (𝜔
1
𝑡 + 𝜙) ,

𝛼̇ (𝑡) = −𝑎𝜔
1
sin (𝜔

1
𝑡 + 𝜙) ,

(18)

where those terms on the left hand side of (18) are given and
the unknowns are the local mean angle of attack (𝛼), the local
amplitude of the harmonic motion (𝑎), the phase lag (𝜙), and
the estimated harmonic frequency (𝜔

1
). These unknowns are

calculated through an optimization method by minimizing
the following cost function (least squares):

𝐽 =

𝑛

∑

𝑖=1

[𝛼
𝑖
− (𝛼 + 𝑎 cos (𝜔

1
𝑡
𝑖
+ 𝜙))]

2

+ [𝛼̇
𝑖
− (𝛼 + 𝑎𝜔

1
sin (𝜔

1
𝑡
𝑖
+ 𝜙))]

2

.

(19)

In (19), where 𝛼
𝑖
is the measured value at point 𝑖 and 𝑛 is

the number of the data points used in the optimization. For
the case in the present study, 𝑛 = 20 is found to be the
best value.The 20 points preceding and including the current
time are employed in (19). The least-square method is found
to converge well and gives reasonably accurate results. The
lateral-directional equivalent reduced frequency is computed
in the same manner.

The local equivalent reduced frequency in the longitudi-
nal motion is defined as

𝑘
1
=
𝜔
1
𝑐

𝑉
, (20)

where 𝑐 is the mean chord length of wing airfoil section; 𝜔
1
is

the estimated harmonic frequency with time history of angle
of attack.

The lateral-directional equivalent reduced frequency is
defined as

𝑘
2
=
𝜔
2
𝑏

2𝑉
, (21)

where 𝑏 is the wing span; 𝜔
2
is the estimated harmonic fre-

quency with time history of roll angle.

3.4. Fuzzy-Logic Aerodynamic Models. Modeling means to
establish the numerical relationship among certain variables
of interest. In the fuzzy-logicmodel,more complete necessary
influencing flight variables can be included to capture all pos-
sible effects on aircraft response to atmospheric disturbances
[19, 20]. For longitudinal aerodynamics, the models are
assumed to be of the form

𝐶
𝑥
, 𝐶
𝑧
, 𝐶
𝑚
= 𝑓 (𝛼, 𝛼̇, 𝑞, 𝑘

1
, 𝛽, 𝛿
𝑒
,𝑀, 𝑝, 𝛿

𝑠
, 𝑞) , (22)
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Figure 3: The time history of flight variables in severe atmospheric turbulence during the descending phase in transonic flight.

where the left hand side represents the coefficients of axial
force (𝐶

𝑥
), normal force (𝐶

𝑧
), and pitching moment (𝐶

𝑚
),

respectively. All variables on the right hand side of (22) have
been defined in the previous section. It should be noted that
the stabilizer angle (𝛿

𝑠
) is included here, because it varies,

though slowly, in flight to provide pitch trim (i.e., reducing
the total static pitching moment to 0.0). The roll rate is
included here because it is known that an aircraft under high
aerodynamic loads at transonic speeds may have its longi-
tudinal stability derivatives affected when additional distur-
bance due to roll rate is imposed.

For the lateral-directional aerodynamics,

𝐶
𝑦
, 𝐶
𝑙
, 𝐶
𝑛
= 𝑓 (𝛼, 𝛽, 𝜙, 𝑝, 𝑟, 𝑘

2
, 𝛿
𝑎
, 𝛿
𝑟
,𝑀, 𝛼̇, ̇𝛽) , (23)

where the left hand side represents the coefficients of side
force (𝐶

𝑦
), rolling moment (𝐶

𝑙
), and yawing moment (𝐶

𝑛
),

respectively.

4. Numerical Results and Discussions

The commercial transport aircraft encountered sever atmo-
spheric turbulences in revenue flights in descending phase.
To examine the static and dynamic stability characteristics, it
is imperative to understand the flight environment in detail.

4.1. Aerodynamic and Flight Environments. The correspond-
ing flight data for this aircraft in severe atmospheric turbu-
lence during descending flight is presented in Figure 3. The
dataset of time span from 𝑡 = 7480 ∼ 7739 sec used for the
modeling is extracted from the FDR.This aircraft encounters
severe atmospheric turbulence twice during this time span.
In Figure 3(a), the variations of normal acceleration (𝑎

𝑧
) show

the highest 𝑎
𝑧
being 2.05 g around 𝑡 = 7483 sec and the lowest

being −1.05 g around 𝑡 = 7484 sec in the first turbulence
encounter, the highest 𝑎

𝑧
being 1.91 g around 𝑡 = 7682 sec and

the lowest being −0.16 g around 𝑡 = 7684 sec in the second
one. Figure 3(b) shows that variation of 𝛼 is approximately
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Figure 4: The variations of dynamic characteristics and control variables in severe atmospheric turbulence during the descending phase in
transonic flight.

in phase with 𝑎
𝑧
during those two turbulence encounters;

𝛼 is highest about 4 deg. in the first turbulence encounter
and 5.5 deg. in the second one. The altitude (ℎ) with drop-off
heights in the first turbulence encounter with the time span
from 𝑡 = 7482 ∼ 7494 sec is presented in Figure 3(c) and
in the second turbulence encounter with the time span from
𝑡 = 7680 ∼ 7690 sec is presented in Figure 3(d). The aircraft
rapidly plunges downward during the turbulence encounter.
The largest drop-off height reaches 57.3m in the time span
between 𝑡 = 7484 ∼ 7486 sec, as shown in Figure 3(c).
The Mach number (𝑀) drops from 0.83 to 0.75 in the first
turbulence encounter and from0.80 to 0.70 in the secondone,
as shown in Figure 3(e).

The dynamic aerodynamic effects can be expected to be
very significant under the circumstances of instantaneous
changes of 𝛼, ℎ, and𝑀 in transonic flight. Since 𝛼 reaches the
value about 5.0 deg. at transonic flight, compressibility effect
is important. It should be noted that the turbulent vertical
wind field was not measured or estimated in the FDR; but it
is included in the total 𝛼.

4.2. Pilot’s Responses in Operations. Figure 4 presents the
variations of dynamic characteristics and control variables.
The variation ranges of 𝛼 are 4 deg. to−1.8 deg. in the first tur-
bulence encounter and 5.5 deg. to −2 deg. in the second one;
the time history of 𝛽 is about −2 deg. with the magnitude of

small fluctuation, as indicated in Figure 4(a).The time history
of pitch angle (𝜃) and roll angle (𝜙) is shown in Figure 4(b).
The pitch angle (𝜃) does not vary as much as the angle of
attack (𝛼), reaching only 2.5 deg. The variations of 𝜙 are
large, especially during the second turbulence encounter.The
magnitudes of pitch rate (𝑞) and roll rate (𝑝) are shown in
Figure 4(c); the variation of 𝑝 is larger than that of 𝑞.The yaw
rate is not shown because it is small throughout.

The flight data recorder indicated that the autopilot was
deactivated from 𝑡 = 7489 sec to 𝑡 = 7493 sec, for 4 seconds.
It is of interest to examine the pilot’s response in operations
after the autopilot being tripped off. The time history of 𝛿

𝑒

and 𝛿
𝑎
is shown in Figure 4(d).Themagnitude of 𝛿

𝑒
becomes

positive to keep pitch down in descending. The variation of
𝛿
𝑎
in the second turbulence encounter is larger than that of

the first one. While the roll angle (𝜙) is changing fast in the
negative direction right before 𝑡 = 7643 sec, 𝛿

𝑎
is increasingly

more positive, reaching +13 deg at 𝑡 = 7645 sec, as shown
in Figure 4(d). On the other hand, opposite changes occur
around 𝑡 = 7646 sec. The 𝛿

𝑟
is not shown because it is small

throughout.
Both the pitch and roll rates are significant in severe

atmospheric turbulence, especially the latter. The yaw rate
is not shown in Figure 4, because it is small throughout. In
normal flight conditions, pitch and roll rates are typically
small, in particular at transonic speeds, to avoid nonlinear
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Figure 5: The main aerodynamic coefficients predicted by the nonlinear and unsteady aerodynamic models.

aerodynamic effects. The autopilot was tripped off in severe
atmospheric turbulence.The pitch angle and roll angle are the
only cues to the pilots in making the control decision.

4.3. Analysis of Model Predictions. In the present study, the
accuracy of the established unsteady aerodynamic models
with six aerodynamic coefficients by using FLM technique is
estimated by the sum of squared errors (SSE) and the square
of multiple correlation coefficients (𝑅2). All the aerodynamic
derivatives in the study of stability and controllability are
calculated with these aerodynamic models of aerodynamic
coefficients.

Figure 5 presents the aerodynamic coefficients of normal
force 𝐶

𝑧
, pitching moment 𝐶

𝑚
, rolling moment 𝐶

𝑙
, and

yawing moment 𝐶
𝑛
predicted by the unsteady aerodynamic

models. The predicted data by the final models has a good
match with the flight data.

Thefinalmain aerodynamicmodels of aerodynamic coef-
ficients consist of many fuzzy rules for each coefficient as
described in Tables 1 and 2. In Tables 1 and 2, the numbers
below each input variable represents the number of mem-
bership function. The total number of fuzzy cells (𝑛) in each
model is the product of each number which presented in
column 3. The last column shows the final multiple cor-
relation coefficients (𝑅

2
). The accuracy of the established

aerodynamicmodel through the fuzzy-logic algorithm can be
judged by the multiple correlation coefficients (𝑅2).

Table 1: The final main aerodynamic models of longitudinal aero-
dynamics.

Coef. 𝛼 𝛼̇ 𝑞 𝑘
1

𝛽 𝛿
𝑒

𝑀 𝑝 𝑞 𝑛 𝑅
2

𝐶
𝑧

2 3 3 2 3 3 2 3 2 3888 0.9618
𝐶
𝑚

2 2 3 4 2 3 2 2 3 3456 0.9873

Table 2: The final main aerodynamic models of lateral-directional
aerodynamics.

Coef. 𝛼 𝛽 𝜙 𝑝 𝑟 𝑘
2

𝛿
𝑎

𝛿
𝑟

𝑀 𝛼̇ ̇𝛽 𝑛 𝑅
2

𝐶
𝑙

2 3 3 2 2 3 2 2 3 3 2 15552 0.9617
𝐶
𝑛

3 2 4 2 2 2 3 3 2 2 2 13824 0.9435

4.4. Analysis of Stability Characteristics. Since the sudden
plunging motion with the abrupt change in altitude affects
the flight safety the most in severe atmospheric turbulence,
so the time period of 7482 ∼ 7494 sec is emphasized in
examining the characteristics of stability. In order to examine
the variations in characteristics, the units of all aerodynamic
derivatives are converted to rad−1. It should be noted that
these derivatives are evaluated at the instantaneous condi-
tions, instead of about the trim conditions as have been
traditionally done.
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Figure 6: The time history of main longitudinal and lateral-directional static stability derivatives along the flight path.

The time history of main longitudinal and lateral-direc-
tional static stability derivatives along the flight path is pre-
sented in Figure 6. From the point of view in static stability,
initially, the configuration has longitudinal stability (𝐶

𝑧𝛼
> 0

and 𝐶
𝑚𝛼

< 0) in Figure 6(a), stable longitudinal damping
(𝐶
𝑚𝑞

< 0) in Figure 6(b), lateral stability (𝐶
𝑙𝛽
< 0) and direc-

tional stability (𝐶
𝑛𝛽

> 0) in Figure 6(c), roll damping (𝐶
𝑙𝑝
<

0), and directional damping (𝐶
𝑛𝑟

< 0) in Figure 6(d). During
the plunging motion, 𝐶

𝑚𝛼
> 0 and 𝐶

𝑚𝑞
> 0 in the period of

𝑡 = 7483.0 ∼ 7484.5 sec, and the static stability becomes
unstable with insufficient roll damping (𝐶

𝑙𝑝
≈ 0) and

directional damping (𝐶
𝑛𝑟

> 0). The aerodynamic instability
is most likely caused by the motion that produces a time-
dependent pressure distribution on the aircraft surface in-
volving compressibility effects.

Figure 7 presents the time history of main longitudinal
and lateral-directional oscillatory derivatives along the flight
path to associate with 𝛼̇ and ̇𝛽-derivatives. Note that in
Figure 7(a), the oscillatory derivatives are defined as

(𝐶
𝑚𝑞
)
osc

= 𝐶
𝑚𝑞

+ 𝐶
𝑚𝛼̇

,

(𝐶
𝑧𝑞
)
osc

= 𝐶
𝑧𝑞
+ 𝐶
𝑧𝛼̇
.

(24)

In Figure 7(c), the oscillatory derivatives are defined as

(𝐶
𝑙𝑝
)
osc

= 𝐶
𝑙𝑝
+ 𝐶
𝑙 ̇𝛽
sin𝛼,

(𝐶
𝑛𝑟
)osc = 𝐶

𝑛𝑟
− 𝐶
𝑛 ̇𝛽
cos𝛼.

(25)

The values of oscillatory derivatives are equivalent to the
combinations of steady damping and dynamic derivatives
in the previous equations (24)∼(25). The use of oscillatory
derivative instead of steady damping ones is more consistent
with the actual case of the aerodynamic damping in the
analysis of stability characteristics. To be stable, (𝐶

𝑧𝑞
)osc > 0,

(𝐶
𝑚𝑞
)osc < 0, (𝐶

𝑙𝑝
)osc < 0, and (𝐶

𝑛𝑟
)osc < 0. Physically, if it is

unstable, the motion will be divergent in oscillatory motions.
The values in the period of plunging motion have some dif-
ferences between oscillatory and steady damping derivatives
in Figures 7(a) and 7(c) due to the effects of the dynamic
derivatives (i.e., 𝛼̇- and ̇𝛽-derivatives).

Figures 7(b) and 7(d) show dynamic derivatives of stabil-
ity. To be stable, 𝐶

𝑧𝛼̇
> 0, 𝐶

𝑚𝛼̇
< 0, 𝐶

𝑙 ̇𝛽
< 0, and 𝐶

𝑛 ̇𝛽
> 0. The

magnitudes of 𝐶
𝑧𝛼̇

and 𝐶
𝑚𝛼̇

have significant variations and
𝐶
𝑧𝛼̇

< 0 in the period of 𝑡 = 7482.5 ∼ 7491 sec in
Figure 7(b). It should be noted that 𝐶

𝑧𝛼̇
represents the virtual

mass effect and is particularly large in transonic flow to
affect the plunging motion [31]. The (𝐶

𝑧𝑞
)osc and (𝐶

𝑚𝑞
)osc

are inadequate in oscillatory damping in the periods of 𝑡 =

7484 ∼ 7486 sec and 𝑡 = 7490 ∼ 7494 sec, as shown
in Figure 7(a). The effect of 𝛼̇-derivative on (𝐶

𝑚𝑞
)osc is to

improve the stability in pitch in the periods of 𝑡 = 7482.5 ∼

7484 sec and 7486 ∼ 7488.5 sec. The magnitudes of 𝐶
𝑙 ̇𝛽

in
Figure 7(d) and (𝐶

𝑙𝑝
)osc in Figure 7(c) are small; 𝐶

𝑙𝑝
is not

shown because it is small throughout. The values of 𝐶
𝑛 ̇𝛽

are
from positive at 𝑡 = 7483 sec to negative at 𝑡 = 7484 sec;
(𝐶
𝑛𝑟
)osc are from positive at 𝑡 = 7483.5 sec to negative at
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Figure 7: The time history of main longitudinal and lateral-directional oscillatory derivatives along the flight path.

𝑡 = 7485 sec. It implies that the effects of ̇𝛽-derivative are to
cause the directional stability more unstable.

In essence, the effects of 𝛼̇-derivative on (𝐶
𝑧𝑞
)osc and

̇𝛽-
derivative on (𝐶

𝑙𝑝
)osc are small. However, the effect of 𝛼̇-

derivative on (𝐶
𝑚𝑞
)osc is to improve the stability in pitch;

while the effects of ̇𝛽-derivative are to cause more directional
instability.These results indicate that the turbulent crosswind
has some adverse effects on directional stability and damping.
Although the dynamic derivatives tend to be small for the
present configuration, this is much helpful to understand the
unknown factors of instability characteristics.

5. Concluding Remarks

The main objective in this paper was to present the devel-
opment of nonlinear and unsteady aerodynamic models
based on FLM method and the resulting models having the
capability to create the required continuous derivatives for
the investigative analysis. The static and dynamic stability
characteristics in severe atmospheric turbulence with sudden
plunging motion in descending flight were examined by
using those continuous derivatives. The numerical results
and discussions of application to aerodynamicmodelingwere
concluded as follows.

(1) The uncertainty and correlation of the data points
were estimated and improved by monitoring a mul-
tivariable correlation coefficient in the modeling pro-
cess.

(2) The predicted results showed that the final models
could not only produce relatively accurate aerody-
namic coefficients but also generate smooth coeffi-
cient curves with the required independent variables
to provide reasonable local aerodynamic derivatives.

(3) The fuzzy logic-based aerodynamicmodelingmethod
was shown to be capable of handling nonlinear and
unsteady aerodynamic environments possible exhib-
ited in abnormal flight condition.

The analytical results could provide the mitigation
concepts and promote the understanding of aerodynamic
responses of the commercial transport aircraft in severe
atmospheric turbulence.

Nomenclature

𝐴(𝑥
𝑟
): Membership function for input variable 𝑥

𝑟

𝑎
𝑥
, 𝑎
𝑦
, 𝑎
𝑧
: Acceleration components along the (𝑥, 𝑦,
𝑧)-body axes of aircraft, respectively, 𝑔
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𝑏: Wing span, m
CAS: Calibrated airspeed, knows, m/sec
𝐶
𝑥
, 𝐶
𝑧
, 𝐶
𝑚
: Longitudinal aerodynamic force and
moment coefficients

𝐶
𝑦
, 𝐶
𝑙
, 𝐶
𝑛
: Lateral-directional aerodynamic force and

moment coefficients
𝑐: Mean aerodynamic chord, m
ℎ: Altitude, m
𝐼
𝑥𝑥
, 𝐼
𝑦𝑦
, 𝐼
𝑧𝑧
: Moments of inertia about the 𝑥-, 𝑦-, and 𝑧-
axes, respectively, kg⋅m2

𝐼
𝑥𝑦
, 𝐼
𝑥𝑧
, 𝐼
𝑦𝑧
: Products of inertia, kg⋅m2

𝑘
1
, 𝑘
2
: Longitudinal and lateral-directional

reduced frequencies, respectively
𝑀: Mach number
𝑚: Aircraft mass, kg
𝑝, 𝑞, 𝑟: Body-axis roll rate, pitch rate, and yaw rate,

respectively, deg/sec
𝑞: Dynamic pressure, kpa
𝑅
2: Square of multiple correlation coefficients

𝑆: Wing reference area, m2
𝑇
𝑥
: Thrust term along the 𝑥-body axes of air-

craft, N
𝑇
𝑚
: Thrust term in the pitching equation of

motion, N
𝑡: Time, sec
𝑊: Aircraft weight in flight, N
𝑉: True speed, TAS, m/sec
𝑉
𝑤
: Wind speed, m/sec

𝑦, 𝑦, 𝑦: Measured data, average measured data,
output of fuzzy-logic model

𝛼, 𝛼̇: Angle of attack, deg and time rate of angle
of attack, deg/sec., respectively

𝛽, ̇𝛽: Sideslip angle, deg and time rate of sideslip
angle, deg/sec., respectively

𝛿
𝑎
, 𝛿
𝑒
, 𝛿
𝑟
: Control deflection angles of aileron, eleva-

tor, and rudder, respectively, deg
𝛿
𝑠
: Stabilizer angle, deg

𝜙, 𝜃, 𝜓: Euler angles in roll, pitch, and yaw, respec-
tively, deg

𝜔
1
, 𝜔
2
: Estimated harmonic frequencies with time

histories of angle of attack and roll angle,
respectively, sec−1.
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