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The ever-increasing visitation in parks and protected areas continues to present a considerable challenge for worldwide land
managers with allowing recreational use while preserving natural conditions. In China, the fast expanding visitation in protected
areas is quickly damaging the natural resources and precious culture without effective visitor education, while regulation and site
management are also gaining very limited efficacy. We propose a differential equation to describe the ecological tourism system.
Shown by the theoretical proof and numerical simulation, the ecological tourism system is unstable without any perturbed factors,
especially visitor educational intervention, because the solution of the dynamic system explodes in a finite time given any initial
value. Supposing that the intrinsic increasing rate of stakeholders in the systems stochastically perturbed by the visitor educational
intervention, we discover that the stochastic dynamic model can effectively suppress the explosion of the solution. As such, we
demonstrate that the tourism system can develop steadily and safely even under a large amount of visitors in public vacation, when
employing continuous visitor education intervention programmes.

1. Introduction

Currently, the Chinese tourismmarket is the primary domes-
tic tourism market owning about 1.7 billion visitors per year
and the fourth inbound tourism market and the primary
outbound tourismmarket in the Asian-Pacific region owning
about 45.84 million visitors per year [1]. Many scholars
proclaim in surprise that the era of recreation is approaching
ordinary Chinese daily life. In the public holidays such as
golden week of Labor’s day and National day, it is crowd-
ed and chaotic in every popular scene site such as Huang-
shan Mountain, Huashan Mountain, and the Great Wall,
In these crowded parks or natural protected areas, the
negative impacts, such as litter, tree damage, noise, and the
rude behaviors of visitors, shock the environmentalists. In
the United States, scholars concluded that the undesirable
impacts on the tourism destination with fast expanding
visitation include resource degradation and social impacts
[2, 3]. The resource impacts associated with large amount

of visitors include the trampled vegetation and soil damage,
soil compaction and erosion, litter, humanwaste, and wildlife
disturbance. The social impacts include the diminished sat-
isfaction of visitors and recreation conflicts between visitors,
visitors and parkmanagers, visitors and neighbors of tourism
destinations, and the culture conflicts [4]. Ferreira and Rosso
[5] discovered that the Sao Paulo coast is highly depredated
by the increased tourist activity. Manning and Aderson
[6] also found that the dramatically grown visitors’ use of
Arches National Park has had several important impacts on
the park including trampling of fragile soils and vegetation
(impacts on soil and vegetation) and crowding on trails
and at attraction sites (crowding, impacts on trails and
attraction sites). Left unmanaged, these impacts can lead to
unacceptable changes in resource and social conditions such
as the loss of sensitive or rare plants and animals, or declines
in visitor satisfaction [7]. In China, many visitors feel awful
when they arrive the tourism destination because of crowded
people and the rude behaviors.
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Facing the increasingly serious negative tourism impacts,
many scholars propose different strategies to reduce the
impacts. Ferreira and Rosso [5] proposed that the manage-
ment strategies should include isolation of sensitive areas,
construction of boardwalks, visitor education, and monitor-
ing programmes to reduce the degradation of rocky shore
fauna on the Sao Paulo coast caused by the development of
tourism. In United States, many park managers commonly
employ regulations, site management, and visitor education
to address the resource and social impacts. The regulations
directly curtail tourism freedom and antagonize visitors by
their enforcement. But the enforcements of regulations are
often costly and lack efficacy. Peterson and Lime [8], Hendee
and Dawson [3], and Stankey and Schreyer [9] noted that site
management actions were less direct but they were also costly
and permanently altered the natural setting and the nature
of recreational experiences. The visitor education is a more
appropriate, light-handed and indirectmanagement response
to reduce resource and social impacts [4, 10]. Docutte and
Cole [11] presented that visitor education has been widely
touted as the most appropriate approach to managing recre-
ation in wilderness. Visitor education is also easier to win
the support of visitors [3]. Hence, in the United States, the
federal land management agencies employed a Leave No
Trace (LNT) programme for visitor education in order to
reduce the resource and social impacts. And many other
international organizations such as Members of the World
Tourism Organization developed a Global Code of Ethics for
Tourism in 1999 to help minimize the negative impact of
tourism on the environment and the cultural heritage (WTO,
2006). The Ecotourism society (1993) has also put forward
“Ecotourism Guidelines for Nature Operators” to guide
the visitor educational efforts to minimize the social and
environment impacts. Hendee and Dawson [3] concluded
that effective educational programmes can (1) reduce per
capita and cumulative resource and experiential impacts;
(2) aid in keeping resource and social conditions within
acceptable limits; (3) reduce the need for site management on
regulatory actions such as limits; (4) provide a key component
of sustainable tourism programmes.

There are a lot of references to study the visitor edu-
cational message content, message delivery approaches,
audience characteristics and theoretical grounding includ-
ing moral development theory and decisionmaking theory,
reasoned actions and planned behavior theory. However,
there is little research to study the relationship between the
stakeholders and the human ecological system of tourist des-
tinations. In fact, the stakeholders in ecotourism destinations
cannot survive without the support from one another, and
they must unite to a population in a certain space [12]. In
2012, Shou-wen started to analyze the dynamic property of
visitors and the ecological tourism system under the visitor
educational intervention. Shou-wen et al. [13] set up the
stochastic increasing model of stakeholders perturbed by
the continuous visitor education. In this paper, we make
efforts to the further study to better understand the rela-
tionship between the stakeholders and ecological tourism
system intervened by visitor educational programmes. Based
on stochastic differential equation theory [14], we explore

whether the ecological tourism system can develop sustain-
ably when perturbed by the continual visitor educational
intervention.

In order to clearly present the mathematical models in
the next three sections, we introduce the key definitions and
notations of variables in the following.

𝑥(𝑡): stakeholders in an ecological tourism system at time
𝑡.

𝑥
0
: the initial value of differential equation at time 𝑡

0
.

𝛼: the intrinsic increasing rate of stakeholders within the
ecological tourism system.

𝛽: the immigration rate of stakeholders from outside the
system.

𝛾: the emigration rate of stakeholders from the inner
system.

𝐾: the maximum carrying capacity of the ecological
tourism system.

𝜔(𝑡): the Brownian movement.

𝜀: the intensity of visitor education intervention.
𝜏
𝑒
: the explosion time of stochastic differential equation.

𝜏
𝑘
: the stopping time of stochastic differential equation.

𝑘
0
: a sufficiently large value.

𝑘: any nonnegative integer.
𝑉(𝑥): a 𝐶

2-function, 𝑉 : 𝑅
+

→ 𝑅
+.

𝑀: a sufficient large positive value.
𝑇: a sufficient large positive constant.

2. The Logical Differential Equation Model of
Ecological Tourism System

In the literature, the ecological tourism system is defined
as all the natural resources including air, rocks, mountains,
soils, trees, wildlife, and all the stakeholders in visitation
destination. And the stakeholders [12] in ecotourism include
the seven factors: (1) the tourism resource suppliers’ group
such as tourism resource managers or park managers; (2) the
visitation product sellers group including tourism company,
and tourismwebsite managers; (3) the group of relative prod-
ucts or services suppliers who are providing transportation
and hotels, catering, other tourism memories products; (4)
the group of local communities including the staff of tourism
companies and workers in other company and local people;
(5) the group of governments including super government
organizations and centeral and local governments; (6) the
special interest group including nongovernment organiza-
tions like environmental organizations, human rights and
labor rights organizations, or trust and environmental charity
institutes, academics, and social medias; and (7) the core
tourism products and services consumers like visitors.

We supposed that there are𝑥(𝑡) stakeholders in an ecolog-
ical tourism system at time 𝑡, considering that there are some
stakeholders entering the system from outside the ecological
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system and some others leave the system when they finish
their activities or business. We denote 𝛼 as the intrinsic
increasing rate of stakeholders within the ecological tourism
system, 𝛽 as the immigration rate of stakeholders from out-
side the system, and 𝛾 as the emigration rate of stakeholders
from the inner system. 𝐾 stands for the maximum carrying
capacity of the ecological tourism system. And then 1/𝐾

represents the recreation impact factors per capita. So 𝑥(𝑡)/𝐾

means the recreation impact factor at time 𝑡. So mapping the
logistical differential equation on the ecological system, we
have

𝑑𝑥

𝑑𝑡

= 𝑥 (𝛼 + 𝛽 − 𝛾 −

1

𝐾

𝑥) . (1)

It is the original differential equation to describe the relation-
ship between the stakeholders and the ecological system.

Theorem 1. For any given initial value 𝑥
0
, the solution of (1)

𝑥(𝑡) cannot avoid an explosion in a finite time.

Proof. Since the variable 𝑥(𝑡) denotes the population of
stakeholder, 𝑥(𝑡)must be a positive value at time 𝑡 ≥ 0.When
the parameters of (1) 𝛼, 𝛽, 𝛾 ∈ (0, 1), 𝐾 ∈ 𝑅

+, (1) only has a
local solution as follows

𝑥 (𝑡) =

𝛼 + 𝛽 − 𝛾

− (1/𝐾) + 𝑒
−(𝛼+𝛽−𝛾)𝑡

(𝛼 + 𝛽 − 𝛾 − (1/𝐾) 𝑥
0
) /𝑥
0

.

(2)

Given that 𝑥
0

> 0, it is not difficult to conclude that 𝑥(𝑡)

explodes to infinity when 𝑡 → T,

T = −

1

𝛼 + 𝛽 − 𝛾

log
− (1/𝐾) 𝑥

0

(𝛼 + 𝛽 − 𝛾 − (1/𝐾) 𝑥
0
)

. (3)

Hence, the solution of (1) 𝑥(𝑡) will explode to infinity in a
finite time.

In other words, the original differential equation model
just has the local solution. The simulation data in Table 1 and
Figure 1 show that the dynamic model (1) explodes in a finite
time for any initial value 𝑥

0
= 30, 40, 50, 70, 80, 100, when

𝛼 = 0.25, 𝛽 = 0.12, 𝛾 = 0.08. and 𝐾 = 1000. For instance,
according to simulation data in Table 1 and Figure 1, we can
easily find that the number of stakeholders 𝑥(10) = 1081

is a little larger than the maximum capacity of the system
𝐾 = 1000, but at time 𝑡 = 11, 𝑥(11) = 2990 is much larger
than 𝐾 = 1000, when the initial value of stakeholder 𝑥

0
=

40 without any control on the system. Hence, the system is
chaotic and unsustainable after 𝑡 = 10. Eventually, the system
is collapsed at time 𝑡 = 12, because 𝑥(12) = −5679 < 0.
When 𝑥

0
= 30, 40, 50, 70, 80, 100, the system is collapsed at

time 𝑡 = 14, 12, 10, 7, 6, 4, see Figure 1; therefore, it can be
concluded that the system is collapsed fasterwith larger initial
value 𝑥

0
.

Similarly, Figure 2 demonstrates that the explosion of the
dynamic model (1) cannot avoid any initial value 𝑥

0
= 30, 40,

45, 60, 70, 80, given that 𝛼 = 0.15, 𝛽 = 0.08, 𝛾 = 0.06, and
𝐾 = 1000. For instance, Table 2 shows that the number of
stakeholders 𝑥(16) = 1698 is much larger than the maximum

Table 1: The simulation of 𝑥(𝑡) given the different initial value 𝑥
0
.

𝑡

𝑥(𝑡)

𝛼 = 0.25, 𝛽 = 0.12, 𝛾 = 0.08, 𝐾 = 1000

𝑥
0
= 30 𝑥

0
= 40 𝑥

0
= 50 𝑥

0
= 70 𝑥

0
= 80 𝑥

0
= 100

1 53 79 112 215 301 688
2 63 95 138 280 415 1262
3 75 116 172 382 617 4545
4 91 143 219 555 1069 −3635
5 110 179 287 916 2907 −1422
6 135 229 392 2087 −5956 −931
7 169 302 575 −19651 −1638 −717
8 215 417 961 −1963 −1006 −598
9 281 622 2303 −1104 −755 −523
10 382 1081 −11137 −800 −621 −472
11 556 2990 −1841 −647 −538 −435
12 918 −5679 −1069 −555 −482 −408
13 2098 −1619 −785 −494 −443 −386
14 −18836 −1000 −638 −451 −413 −370
15 −1956 −752 −549 −420 −391 −357
16 −1102 −619 −490 −396 −373 −346
17 −800 −537 −448 −377 −359 −337
18 −646 −481 −417 −362 −348 −330
19 −554 −442 −394 −351 −339 −324
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Figure 1: The simulation of 𝑥(𝑡) given the different initial values of
𝑥
0
.

capacity of 𝐾 = 1000, given the initial value of stakeholder
𝑥
0

= 30 without any control on the system. Hence, the sys-
tem is chaotic and unsustainable after time 𝑡 = 16. Eventually,
the system will be collapsed at time 𝑡 = 18. When 𝑥

0
= 30,

40, 45, 60, 70, 80, the system is collapsed at time 𝑡 = 18, 13,

12, 10, 6, 3, see Figure 1. Therefore, it can be concluded that
the system is collapsed faster with larger initial value 𝑥

0
.
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Table 2: The simulation of 𝑥(𝑡) given the different initial value 𝑥
0

and 𝛼, 𝛽, and 𝛾.

𝑡

𝑥(𝑡)

𝛼 = 0.15, 𝛽 = 0.08, 𝛾 = 0.06, 𝐾 = 1000

𝑥
0
= 30 𝑥

0
= 40 𝑥

0
= 45 𝑥

0
= 60 𝑥

0
= 70 𝑥

0
= 80

1 58 98 127 166 311 828
2 65 112 148 198 404 1588
3 73 129 174 240 558 10110
4 83 151 208 299 856 −2574
5 94 179 254 385 1685 −1196
6 108 214 319 525 15181 −802
7 125 263 417 787 −2388 −615
8 145 332 581 1456 −1157 −507
9 171 437 908 6590 −786 −437
10 204 616 1878 −2942 −607 −387
11 249 989 102870 −1263 −502 −351
12 312 2224 −2126 −829 −433 −323
13 405 −15070 −1097 −630 −384 −301
14 559 −1851 −760 −516 −349 −283
15 860 −1025 −592 −443 −321 −268
16 1698 −727 −493 −392 −299 −256
17 16191 −574 −427 −354 −282 −246
18 −2366 −481 −380 −325 −268 −237
19 −1153 −418 −345 −303 −256 −230

Comparing with Figure 1, Figure 2 indicates that the system
is collapsed slower with smaller parameters 𝛼, 𝛽, and 𝛾.

The visitors 𝑥
0
are very large in some protected areas

especially on the public vacations in China. So the solution
of the differential dynamic equation will inevitably explode
without any interventional programme. The tourism system
of some famous protected areas or precious fragile natural
history park is currently in the great danger of large visita-
tions.

3. The Stochastically
Dynamics Model Perturbed by Visitor
Educational Intervention

As demonstrated in the simulations of Section 2, with the
high and disordered consumption, the ecological tourism
system especially precious fragile protected areas or parks
will eventually collapse without any visitor education or other
visitor interventions. The booming China tourism market
is extremely crowded in many famous tourism destinations
on the public vacations. Although there are a lot of visitor
regulations and rules in the tourism destinations, the lack of
the effective visitors educational intervention coused the nat-
ural resource and culture resource to be badly degraded. The
natural resource impacts and social impacts are extremely
serious. So it is critical importance to develop effective and
systematical visitor educational programme such as the
Chinese version of LNT Programme to avoid systematical

103000
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−15100
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Figure 2: The simulation of 𝑥(𝑡) given the different initial values of
𝑥
0
and 𝛼, 𝛽, and 𝛾.

explosion of the ecological tourism system. Increasing tourist
activity in protected regions demandsmanagement strategies
including visitor education to reduce the impacts on the
ecological tourism system and avoid the explosion of solution
of the dynamic equation describing the system. In this paper,
we suppose that the intrinsic increasing rate of stakeholders
is intervened by visitor education, but the efficacy of visitor
education is different from diverse visitor characteristics, the
educational message content, message delivery approaches,
and so forth. Hence, the intrinsic increasing rate of stake-
holders behaves stochastically when perturbed by visitor
intervention. Naturally, we can suppose that the intrinsic rate
of increase is stochastically perturbed with

𝛼 → 𝛼 + 𝜀𝜔 (𝑡) , (4)

where 𝜔(𝑡) and 𝜀 represent the Brownian movement and
the intensity of visitor education, respectively. Substituting
(4) into the original differential equation (1), we can obtain
the stochastic dynamic model of ecological tourism system
perturbed by visitor education intervention programme,

𝑑𝑥 = 𝑥(𝛼 + 𝛽 − 𝛾 −

1

𝐾

𝑥)𝑑𝑡 + 𝜀𝑥
2
𝑑𝜔 (𝑡) . (5)

The critical purpose of the paper is to study whether the
stochastic parameter of intrinsic increasing rate of stakehold-
ers can effectively suppress the explosion of the solution of (2)
in a finite time with any initial value 𝑥

0
and stop the collapse

of the ecological tourism system eventually. In this paper, we
should prove that the solution of (5) can no longer explode in
a finite time with a probability one when 𝛼+𝛽 < 𝛾+(1/𝐾)𝑥

0
.

And we will then see that for arbitrary parameters 𝛼, 𝛽, 𝛾 ∈

[0, 1] and 𝐾 ∈ 𝑅
+, the dynamic system will not explode in

a finite time with a probability one provided any intensity of
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the perturbed visitor educational intervention 𝜀. The results
demonstrate that effective visitor education programmes will
support the sustainable development of ecological tourism
system and suppress the explosion of the stochastic dynamic
model.

4. The Existence of Nonexplosion Solutions
of the Ecological Tourism Dynamic System
with Visitor Education of Intervention

In the paper, we denote (Ω,F, {F
𝑡
}
𝑡≥0

,P) to be a complete
probability space with a filtration {F

𝑡
}
𝑡≥0

satisfying the usual
condition (i.e., right continuous, and F

0
contains all 𝑝-null

sets) [14]. Let 𝜔(𝑡) be one-dimensional Brownian motion
defined on the probability space.

The definition 𝑥(𝑡) should be nonnegative because it
represents the stakeholders. For any given initial value 𝑥

0
,

if the stochastic differential equation (5) has a unique global
solution, then the coefficient of the equation should be satisfy
the linear growth condition and local Lipschilz condition
[14–17]. Unfortunately, the coefficients of (5) only satisfy the
locally Lipschitz continuous condition, so the solution of (5)
only has local solutionwhichmay explode at a finite time [18].

Now, we will show that the visitor education intervention
can suppress the explosion of the solution as proved by the
following theorem.

Theorem 2. Given any system parameters 𝛼, 𝛽, 𝛾 ∈ [0, 1],𝐾 ∈

𝑅
+ and any initial value𝑥

0
∈ 𝑅
+ if intensity of visitor education

intervention 𝜀 ̸= 0, there is a unique solution𝑥(𝑡) of (3) at 𝑡 ≥ 0,
and the solution will be positive with probability one, namely,
𝑥(𝑡) > 0 when 𝑡 ≥ 0 a.s.

Proof. For the coefficients of (5) are the locally Lipschitz
continuous, for any given initial value 𝑥

0
∈ 𝑅
+, there is

a unique solution 𝑥(𝑡) on the 𝑡 ∈ (0, 𝜏
𝑒
) where 𝜏

𝑒
is the

explosion time [18, 19]. To prove the solution of (5) 𝑥(𝑡) is
global and positive, we need to show that 𝜏

𝑒
= ∞ almost

surely. Let 𝑘
0

> 0 be sufficiently large value and the initial
value of the equation 𝑥

0
belong to the interval [1/𝑘

0
, 𝑘
0
]. For

any nonnegative integer 𝑘 ≥ 𝑘
0
, we define the stopping time

as follows

𝜏
𝑘
= inf {𝑡 ∈ [0, 𝜏

𝑒
) : 𝑥 (𝑡) ∉ (

1

𝑘

, 𝑘)} , (6)

where setting inf 0 = ∞ throughout the whole paper, as usual
0 denotes the empty set. Obviously, 𝜏

𝑘
is increasing when

𝑘 → ∞. Set 𝜏
∞

= lim
𝑘→∞

𝜏
𝑘
hence 𝜏

∞
≤ 𝜏
𝑒
a.s. If it can

be proved that 𝜏
∞

= ∞ a.s., then it is natural that 𝜏
𝑒

= ∞

a.s. and 𝑥(𝑡) ∈ 𝑅
+ for any 𝑡 ≥ 0. In other words, in order to

show that 𝑥(𝑡) ∈ 𝑅
+ will not explode, we should show that

𝜏
∞

= ∞ a.s. first. Employing contradiction methodology, if
this statement 𝜏

∞
= ∞ a.s. is false, then there is a pair of

constant 𝑇 ≥ 0 and 𝜀 ∈ (0, 1), such that

𝑃 {𝜏
∞

≤ 𝑇} > 𝜀. (7)

Therefore, an integer 𝑘
1
≥ 𝑘
0
can be found, such that

𝑃 {𝜏
∞

≤ 𝑇} > 𝜀 ∀𝑘 ≥ 𝑘
1
. (8)

Define a 𝐶
2-function 𝑉 : 𝑅

+
→ 𝑅
+,

𝑉 (𝑥) = √𝑥 − 1 − log𝑥
0.5

. (9)

It is easily proved that 𝐶
2-function 𝑉(𝑥) is nonnegative

on 𝑥 > 0.
If 𝑥(𝑡) ∈ 𝑅

+, it can be calculated from the Ito formula as
follows

𝑑𝑉 (𝑥)

= {0.5 (𝑥
−0.5

−𝑥
−1

) 𝑥 [(𝛼 + 𝛽 − 𝛾−

1

𝐾

𝑥)𝑑𝑡+𝜀𝑥𝑑𝜔 (𝑡)]}

+ 0.5 (0.5𝑥
−2

− 0.25𝑥
−1.5

) 𝜀
2
𝑥
4
𝑑𝑡

= {0.5 (𝑥
0.5

− 1) [(𝛼 + 𝛽 − 𝛾 −

1

𝐾

𝑥)

+ (0.25 − 0.125𝑥
0.5

) 𝜀
2
𝑥
2
]} 𝑑𝑡

+ 0.5 (𝑥
0.5

− 1) 𝜀𝑥𝑑𝜔 (𝑡) ,

(10)

where we denote 𝑥(𝑡) = 𝑥 for simplification.
Then (10) can be simplified as follows

0.5 (𝑥
0.5

− 1) (𝛼 + 𝛽 − 𝛾 −

1

𝐾

𝑥)

= 0.5 (𝛼 + 𝛽 − 𝛾) 𝑥
0.5

− 0.5

1

𝐾

𝑥
1.5

− 0.5 (𝛼 + 𝛽 − 𝛾) + 0.5

1

𝐾

𝑥

= −0.5

1

𝐾

𝑥
1.5

+ 0.5

1

𝐾

𝑥

+ 0.5 (𝛼 + 𝛽 − 𝛾) 𝑥
0.5

− 0.5 (𝛼 + 𝛽 − 𝛾) ,

(0.25 − 0.125𝑥
0.5

) 𝜀
2
𝑥
2
= 0.25𝜀

2
𝑥
2
− 0.125𝜀

2
𝑥
2.5

.

(11)

We note that

𝐹 (𝑥)

= −0.125𝜀
2
𝑥
2.5

+

1

4

𝜀
2
𝑥
2
− 0.5

1

𝐾

𝑥
1.5

+ 0.5

1

𝐾

𝑥 + 0.5 (𝛼 + 𝛽 − 𝛾) 𝑥
0.5

− 0.5 (𝛼 + 𝛽 − 𝛾)

≤ −0.125𝜀
2
𝑥
2.5

+

1

4

𝜀
2
𝑥
2
+ 0.5

1

𝐾

𝑥
1.5

+ 0.5

1

𝐾

𝑥 + 0.5 (𝛼 + 𝛽 − 𝛾) 𝑥
0.5

+ 0.5 (𝛼 + 𝛽 − 𝛾) .

(12)

Then we have 𝑑𝑉(𝑥) = 𝐹(𝑥)𝑑𝑡 + 0.5(𝑥
0.5

− 1)𝜀𝑥𝑑𝜔(𝑡).
If 𝜀 ̸= 0, then it is not difficult to yield that𝐹(𝑥) is bounded

by sufficiently large positive value 𝑀, so that 𝑑𝑉(𝑥) ≤ 𝑀 +

0.5(𝑥
1.5

− 𝑥)𝜀𝑑𝜔
𝑇
(𝑡).
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It is clear to obtain the following expression by integrating
the both sides of the proceeding inequality from 0 to 𝑇 ∧ 𝜏

𝑘

as follows

∫

𝑇∧𝜏𝑘

0

𝑑𝑉 (𝑥) ≤ ∫

𝑇∧𝜏𝑘

0

𝑀𝑑𝑡 + ∫

𝑇∧𝜏𝑘

0

0.5 (𝑥
0.5

− 1) 𝜀𝑥𝑑𝜔 (𝑡) .

(13)

With (𝑇 ∧ 𝜏
𝑘
) ∈ 𝑅
+, taking expectations on both sides of ine-

quality (8), we can yield

𝐸𝑉 (𝑥 (𝑇 ∧ 𝜏
𝑘
)) ≤ 𝑉 (𝑥

0
) + 𝑀𝐸 (𝑇 ∧ 𝜏

𝑘
) ≤ 𝑉 (𝑥

0
) + 𝑀𝑇.

(14)

Let Ωk = {𝜏k ≤ 𝑇} for k ≥ 𝑘 and the inequality (7) so
that 𝑃(Ωk) > 𝜀. Taking any 𝑤 ∈ Ωk, with the definition of
stopping time (6), 𝑥(𝜏

𝑘
, 𝑤) equals either 1/𝑘 or 𝑘, and then

it is easy to conclude that 𝑉(𝑥(𝜏
𝑘
, 𝑤)) is not less than either

√𝑘 − 1 − 0.5 log 𝑘 or √1/𝑘 − 1 − 0.5 log(1/𝑘). So 𝑥(𝑡) ≥ 𝑘 or
𝑥(𝑡) ≤ 1/𝑘 when 𝑡 ≥ 𝜏

𝑘
. Therefore, it is not difficult to get the

following inequality:

𝑉 (𝑥 (𝜏
𝑘
, 𝑤))

≥ [√𝑘 − 1 − 0.5 log 𝑘] ∧ √
1

𝑘

− 1 − 0.5log(

1

𝑘

) .

(15)

Taking expectation on both sides of (15), we get

𝐸𝑉 (𝑥 (𝜏
𝑘
, 𝑤))

≥ [√𝑘 − 1 − 0.5 log 𝑘] ∧ √
1

𝑘

− 1 − 0.5 log(

1

𝑘

) .

(16)

It is easy to show that

𝑉 (𝑥
0
) + 𝑀𝑇

≥ 𝐸 [1
Ωk(𝑤)

𝑉 (𝑥 (𝑇 ∧ 𝜏
𝑘
))]

≥ 𝜀 [√𝑘 − 1 − 0.5 log 𝑘] ∧ √
1

𝑘

− 1 − 0.5 log(

1

𝑘

) ,

(17)

where 1
Ωk(𝑤)

is the indicator function ofΩk. Letting 𝑘 → ∞

in (17), then

∞ > 𝑉(𝑥
0
) + 𝑀𝑇 = ∞, (18)

where 𝑇 is a constant denoted in (7). Obviously, (18) is
contradicted. So we can conclude that the statement of (7)
is false. Hence, there are constants 𝑇 > 0 and 𝜀 ∈ (0, 1) such
that 𝑃{𝜏

∞
≤ 𝑇} > 𝜀. Consequently, the original statement is

true in which 𝑃{𝜏
𝑘
≤ 𝜏
∞

} < 𝜀. In other words, the statement
𝜏
∞

= ∞ is true almost surely.

It is clear to derive from the Theorem 2 that there is a
positive solution 𝑥(𝑡) of (7) and 𝑥(𝑡) will never explode in
a finite time. Following the condition of Theorem 2, we can

deduce that the visitor educational intervention brings the
stochastic intrinsic increasing rate of stakeholders into the
tourism ecological system.When the intensity of intervention
𝜀 ̸= 0, the stochastic intrinsic increasing rate can effectively
suppress the explosion of the solution 𝑥(𝑡) for any given 𝑥

0

and avoid the collapse mentioned in Section 2. It means that
the slight or tiny stochastical change of intrinsic increasing
rate of stakeholder introduced by visitor educational inter-
vention can keep the tourism ecological system developing
safely and steadily. In fact, early in 1970s, Fishbein, Fazio [20],
and Bradley [21] already noticed that the negative recreation
impacts on wildlands and wildlife, and the ecological system
or environment could not keep sustainable development
without recreation planning and management. According to
Theorem 2, the visitor educational intervention is a necessary
condition for the safe and stable developing of the tourism
ecological system. Especially in China, the booming recre-
ation market is in urgent need of the visitor educational
intervention to stop the chaotic tourism activities.

5. The Boundedness of the Solution of
the Dynamic Model

With the intensities of the visitor educational intervention,
the solution of the dynamic model (5) cannot explode in a
finite time following by the Theorem 2. However, it is not
enough to show that the solution exists and does not explode.
We consider how the solution of the dynamic model varies in
a finite interval in this section. In other words, we will show
that the solution of (5) is ultimately bounded.

Denote𝑥(𝑡, 𝑥
0
) as the unique global solution of (5) for any

given initial value 𝑥
0

> 0. We define stochastically ultimate
bounded property of the solution of the dynamic model as
follows.

Definition 3. For any initial value 𝑥
0
> 0, if the solution of (3)

𝑥(𝑡, 𝑥
0
) has the property

lim
𝑡→∞

inf 𝑥 (𝑡, 𝑥
0
) > 0, (19)

then (5) is defined to be stochastically ultimately bounded
with probability one. The following theorem shows (5) is
stochastically ultimately bounded.

Theorem 4. If the coefficient of (5) satisfies the following ine-
quality:

1

2

𝜀
2
−

1

𝐾

< 0,

(𝛼 + 𝛽 − 𝛾 +

1

𝐾

)

2

+ 4 (

1

2

𝜀
2
−

1

𝐾

) (𝛼 + 𝛽 − 𝛾) ≤ 0.

(20)

Then the solution of (5) 𝑥(𝑡, 𝑥
0
) is stochastically ultimately

bounded with a probability one. Given any initial value 𝑥
0

∈

𝑅
+, the solution of (3) has the property

lim
𝑡→∞

sup𝑥 (𝑡, 𝑥
0
) < ∞. (21)
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So the solution of (5) 𝑥(𝑡, 𝑥
0
) belongs to a finite interval

[ lim
𝑡→∞

inf 𝑥 (𝑡) , lim
𝑡→∞

sup𝑥 (𝑡)] . (22)

Proof. It is necessary to define a 𝐶
2-function 𝑉 : 𝑅

+
→ 𝑅
+

by

𝑉 (𝑥) = 𝑥 − 1 − log𝑥. (23)

Applying the Ito formula, we derive from (23) that

𝑑𝑉 (𝑥) = 𝐿𝑉 (𝑥) 𝑑𝑡 + (1 − 𝑥
−1

) 𝑥
2
𝜀𝑑𝜔 (𝑡) , (24)

where

𝐿𝑉 (𝑥) = (1 − 𝑥
−1

) 𝑥 (𝛼 + 𝛽 − 𝛾 −

1

𝐾

𝑥) +

1

2

𝑥
−2

𝜀
2
𝑥
4

= (𝑥 − 1) (𝛼 + 𝛽 − 𝛾 −

1

𝐾

𝑥) +

1

2

𝜀
2
𝑥
2

= (

1

2

𝜀
2
−

1

𝐾

)𝑥
2
+ (𝛼 + 𝛽 − 𝛾 +

1

𝐾

)𝑥 − (𝛼 + 𝛽 − 𝛾) .

(25)

It is obvious to see that 𝐿𝑉(𝑥(𝑡)) is a quadratic function.
Applying the property of quadratic function, when

1

2

𝜀
2
−

1

𝐾

< 0, (26)

Δ = (𝛼 + 𝛽 − 𝛾 +

1

𝐾

)

2

+ 4 (

1

2

𝜀
2
−

1

𝐾

) (𝛼 + 𝛽 − 𝛾) ≤ 0.

(27)

If (20) is satisfied, the quadratic function 𝐿𝑉(𝑥(𝑡)) must be
less than zero. Therefore, we can get that

𝑑𝑉 (𝑥 (𝑡)) ≤ 0𝑑𝑡 + (𝑥
2
− 𝑥) 𝜀𝑑𝜔 (𝑡) . (28)

Integrating both sides of inequality (28) from 0 to 𝑡, we can
get

∫

𝑡

0

𝑑𝑉 (𝑥 (𝑡)) ≤ ∫

𝑡

0

0𝑑𝑡 + ∫

𝑡

0

(𝑥
2
− 𝑥) 𝜀𝑑𝜔 (𝑡) . (29)

Thus,

𝑉 (𝑥 (𝑡)) ≤ 𝑉 (𝑥
0
) + ∫

𝑡

0

(𝑥
2
− 𝑥) 𝜀𝑑𝜔 (𝑡) . (30)

For convenience, we define

𝑋 (𝑡) := 𝑉 (𝑥
0
) + ∫

𝑡

0

(𝑥
2
− 𝑥) 𝜀𝑑𝜔 (𝑡) . (31)

Since 𝑉(𝑥) is a nonnegative function, applying Doob’s mar-
tingale convergence theorem, we can yield

lim
𝑡→∞

𝑥 (𝑡) < ∞ a.s. (32)

Thus, it is natural to yield lim
𝑡→∞

sup𝑥(𝑡) < ∞ a.s.

𝑥0 = 30

𝑥0 = 100
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0
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Figure 3: The simulation of 𝑥(𝑡) with 𝛼 = 0.25, 𝛽 = 0.12, 𝛾 = 0.08,
and 𝐾 = 1000 and different initial values 𝑥

0
.

Recalling the definition of 𝐶2-function 𝑉 : 𝑅
+

→ 𝑅
+, if

and only if𝑥 → ∞ or𝑥 → 0, the limit of𝑉(𝑥) = 𝑥−1−log𝑥

is ∞. Hence lim
𝑡→∞

sup𝑉(𝑥(𝑡)) = lim
𝑡→∞

sup(𝑥(𝑡)) − 1 −

log(𝑥(𝑡)) < ∞ a.s.
Then it is not difficult to deduce that

0 < lim
𝑡→∞

inf 𝑥 (𝑡) < lim
𝑡→∞

sup𝑥 (𝑡) < ∞ a.s. (33)

In conclusion, given any initial value 𝑥
0
, the solution

of (3) 𝑥(𝑡) will vary in the interval of [lim
𝑡→∞

inf 𝑥(𝑡),

lim
𝑡→∞

sup𝑥(𝑡)].

From Theorem 4, the stakeholders of the ecological
tourism system with visitor educational intervention can
develop within an interval sustainably and steadily. Dif-
ferent kinds of stakeholders retained in a safety interval
can immigrate from outside the system or emigrate from
inside the system with regular rate. Hence, visitor education
programmes are important elements of management efforts
to ensure the protection of protected areas including Natural
History Park and precious culture resource areas, and so
forth.

6. The Simulations of the Stochastic Dynamic
Model of Ecological Tourism System

Following the Euler-Maruyama method [22] and using Mat-
lab program, we can obtain the numerical solutions and their
figures of the stochastic dynamicmodel of ecological tourism
system (5) with different parameters 𝛼, 𝛽, 𝛾 and different
initial values 𝑥

0
.

Given 𝛼 = 0.25, 𝛽 = 0.12, 𝛾 = 0.08, and 𝐾 = 1000,
it is easy to gain the simulation data of 𝑥(𝑡) and draw Figure 3
when 𝑥

0
= 30 and 𝑥

0
= 100. Figure 3 demonstrates that

the stochastic dynamic model is varying far away from
the maximum carrying capacity of the ecological system
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𝐾 = 1000. And the peak value of 𝑥(𝑡) is 625 much smaller
than 𝐾 = 1000. Comparing Figure 1 with Figure 3, it can
be concluded that the stochastic dynamic model (5) can
effectively suppress the explosion and avoid the chaotic and
unsustainable situation with the same parameters 𝛼, 𝛽, 𝛾.

Given 𝛼 = 0.15, 𝛽 = 0.08, 𝛾 = 0.06, 𝐾 = 1000, it
is not difficult to get the simulation data of 𝑥(𝑡) and draw
Figure 4 when 𝑥

0
= 30 and 𝑥

0
= 80. Figure 2 shows that the

original logistical differential Equation (1) collapses in a finite
time. But Figure 4 shows that the stochastic dynamic model
(5) does not explode with the same parameters 𝛼, 𝛽, 𝛾. The
peak value of 𝑥(𝑡) is 298 with smaller parameters 𝛼, 𝛽, 𝛾, see
Figure 4.

Shown by Figure 5, the ecological tourism system per-
turbed by visitor educational intervention does not collapse
even with larger initial value 𝑥

0
= 900 which is very

close to 𝐾 = 1000. When there is a large number of visi-
tors in the ecological tourism system, the effective visitor
education programme will also keep resource and social
conditions within acceptable limits by employing low impact
behaviors. Figure 5 demonstrates that the system restores to
normal condition quickly. Following Figures 3 to 5, it can
be concluded that the ecological tourism system with visitor
educational intervention can develop safely and steadily.

7. Conclusions

The ever-increasing demand for outdoor recreation in parks
and protected areas worldwide continues to present a consid-
erable challenge for managers [22]. Allowing recreational use
while preserving natural conditions, it also presents a chal-
lenge for park managers in China because of fast expanding
visitation.The protected areas including some natural history
parks will be quickly damaged without visitor education
intervention, while regulation and site management are also
gaining very limited efficacy.

In Section 2, supposing that the different kinds of stake-
holders of ecological tourism system grow with the specified
intrinsic increasing rate and the stakeholders from outside
competitors can immigrate into the system and some insider
of the system can also go out freely when they finish
their activities or business, we set up a differential equation
to describe the ecological tourism system. Without any
perturbed factors especially visitor educational intervention
shown by the theoretical proof and numerical simulation, the
solution of the dynamic system will explode in a finite time
given any initial value.

In order to avoid the explosion of the solution of the
dynamic model and the unstable situation of the ecological
tourism system, we add visitor educational intervention
into the system in Section 3. Supposing that the intrinsic
increasing rate of stakeholders is stochastically perturbed by
the visitor educational intervention, we explore a stochastic
dynamic model which can effectively suppress the explosion
of the solution shown in Section 4. And in Section 5, we also
prove that the solution of the stochastic dynamic model will
vary in a finite interval. In Section 6, following the Euler-
Maruyama method, we obtain the numerical solutions and
their figures of the stochastic dynamic model of ecological
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𝑥0 = 30
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0
0 2010 30 40 50 60 70 80 90 100

Figure 4: The simulation of 𝑥(𝑡) with 𝛼 = 0.15, 𝛽 = 0.08, 𝛾 = 0.06,
𝐾 = 1000 and different initial value 𝑥

0
.
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Figure 5: The simulation of 𝑥(𝑡) with 𝛼 = 0.25, 𝛽 = 0.12, 𝛾 = 0.08,
𝐾 = 100 and 𝑥

0
= 900.

tourism system. So we demonstrate that the tourism system
will develop steadily and safely even under a large amount
of visitors in public vocation, when employing continuous
visitor education intervention programmes.

Generally, the findings of the stochastic dynamic model
support that the continuous visitor education intervention
including ecological knowledge, minimum impact behavior
or technique, and regulations message is the necessary re-
sponse to the challenge of recreation impact issues which try
to manage resources sustainably and provide quality visitor
experiences.
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