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This paper depicts our work in smoothing the sample autocorrelation function (ACF) of traffic. The experimental results exhibit
that the sample ACF of traffic may be smoothed by the way of average. In addition, the results imply that the sum of sample ACFs
of traffic convergences. Considering that the traffic data used in this research is long-range dependent (LRD), the latter may be
meaningful for the theoretical research of LRD traffic.

1. Introduction

Let 𝑥(𝑡(𝑖)) be a sample record of teletraffic time series (traffic
for short), where 𝑡(𝑖) for 𝑖 ∈ N (the set of natural numbers)
is the series of timestamps, indicating the timestamp of the
𝑖th packet arriving at a server. Thus, 𝑥(𝑡(𝑖)) represents the
packet size of the 𝑖th packet recorded at time 𝑡(𝑖) on a
packet-by-packet basis.We use a real-traffic trace named BC-
Aug89 recorded on an Ethernet at the Bellcore Morristown
Research and Engineering facility, which contains 1,000,000
packets [1]. It was used in the pioneering work for revealing
some statistical properties of traffic in fractals, such as self-
similarity and long-range dependence (LRD) [2, 3].

Note 1. The statistical properties described in the early lit-
erature, for example, [2, 3], turn to be ubiquitous in today’s
traffic, according to the research stated in [4, 5]. Thus, the
trace measured in 1989 keeps its value in the research of
general patterns of traffic.

The word traffic is a collective noun. In addition to the
traffic on a packet-by-packet basis as previously described, it
may imply the time series called interarrival times, which is
in the form (see [6, 7])

𝑠 (𝑖) = 𝑡 (𝑖 + 1) − 𝑡 (𝑖) . (1)

The term traffic may also imply the time series named
accumulated traffic, denoted by 𝑦(𝑛), on an interval-by-
interval basis, which is given by

𝑦 (𝑛) =

(𝑛+1)𝑇

∑

𝑖=𝑛𝑇

𝑥 (𝑖) , (2)

where 𝑇 is the interval width. It stands for the accumulated
bytes of arrival traffic in the 𝑛th interval.

Note 2. The statistical properties of 𝑥(𝑡(𝑖)), 𝑠(𝑖), and 𝑦(𝑛)may
be identical [5].

Note 3. The attributes of traffic are application dependent.
More other meanings of traffic are available. It may mean the
packet count [2]. In some applications, one may be interested
in the number of connectionswithin a given time interval [4],
the packet size or the number of packets on a flow-by-flow
basis [8], envelopes of traffic [9], or traffic bounds [10].

This paper relates to the aggregated traffic 𝑥(𝑡(𝑖)). Figure 1
illustrates four types of the series of BC-Aug89. Let the
interval width be 𝑇 = 1024. Then, we obtain 𝑦(𝑛) of BC-
Aug89 according to (2), as shown in Figure 2. Note that the
pattern of 𝑥(𝑡(𝑖)) is consistent with that of 𝑥(𝑖) that represents
the size of the 𝑖th packet. Besides, the statistics of𝑥(𝑖) and𝑦(𝑛)

may generally be identical [5]. Therefore, in what follows,
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Figure 1: Illustrations of real-traffic trace BC-Aug89. (a) Timestamp
series 𝑡(𝑖). (b) Interarrival times 𝑠(𝑖). (c) Traffic in packet size 𝑥(𝑡(𝑖)).
(d) Traffic in packet size𝑥(𝑖).
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Figure 2: Accumulated traffic of BC-Aug89 with the interval width
𝑇 = 1024.

we will use 𝑥(𝑖) for the discussions instead of 𝑥(𝑡(𝑖)) for the
purpose of simplicity.

Remark 1 (burstiness). Without considering the Ethernet
preamble, header, or CRC, the Ethernet protocol forces all
packets to have at least a minimum size of 64 bytes and
at most the maximum size of 1518 bytes. The fixed limit of
1518 bytes is specified by IEEE standard without technical
reason. Thus, it is often the case that the packet size of traffic
may take the same value within a short period of time as
Figure 1(c) shows. In addition, traffic has the behavior of
“burstiness.” By burstiness, one implies that therewould be no
packets transmitted for a while, then flurry of transmission,

no transmission for another long time, and so forth if one
observes traffic over a long period of time [11, 12]. This
phenomenon, indicated in Figures 1(b)–1(d), was described
as intermittency by Tobagi et al. [13].

Note 4. The intermittency of a random function is conven-
tionally discussed in the field of turbulence [14], but we note
that it is also a phenomenon of traffic.

The traffic series 𝑥(𝑖) is LRD. Denote its autocorrelation
function (ACF) by 𝑟(𝑘) in the stationarity case. Then,

𝑟 (𝑘) = 𝐸 [𝑥 (𝑖) 𝑥 (𝑖 + 𝑘)] , (3)

where𝐸 is themean operator and 𝑘 is lag. Its power spectrum
density (PSD) denoted by 𝑆(𝜔) is the Fourier transform of
𝑟(𝑘):

𝑆 (𝜔) = 𝐹 [𝑟 (𝑘)] , (4)

where 𝐹 is the operator of the Fourier transform, 𝜔 = 2𝜋𝑓,
where𝑓 is the frequency. Note that the PSD of 𝑥(𝑖) belongs to
1/𝑓 noise [15].Thus, even from a view of data processing, 𝑟(𝑘)
is preferred [16], because 𝑆(𝜔) is divergent at 𝜔 = 0. In addi-
tion, the correlationmodel of traffic is desired in networking;
see the statement of Paxson and Floyd [17, p. 5] as follows.
The issue of “how to go from the pure correlational structure,
expressed in terms of a time series of packet arrivals per unit
time, to the details of exactly when within each unit of time
each individual packet arrives” has not been solved. For this
reason, we discuss the issue of ACF estimation of LRD traffic.

The remainder of this paper is as follows. In Section 2,
we shall brief the preliminaries. Smoothing the sample ACF
of traffic is discussed in Section 3. A case study is shown
in Section 4. Discussions and future work are in Section 5,
which is followed by conclusions.

2. Brief of Time Series

Denote by {𝑥𝑙(𝑡)} a set of sample functions for 𝑙 ∈ N and 0 <

𝑡 < ∞, and 𝑥𝑙(𝑡) ∈ R (set of real numbers) is the 𝑙th sample
function. A process consists of a set of sample functions [18,
19].

Note 5. In the case of traffic, requiring a set of sample func-
tions {𝑥𝑙(𝑡)} for 𝑙 ∈ N at a specific point in networks may
be unrealistic since one can only measure a single history of
traffic trace at that specific point. One may never achieve a
set of sample records of real traffic in the sense of repeated
experiments under the exactly same conditions for 0 < 𝑡 <

∞. Therefore, in traffic engineering, we are interested in a
sample function 𝑥(𝑡) instead of a process.

Note 6. We consider a time series 𝑥(𝑡) that is a random func-
tion. In this research, the terms of random function, time
series, or process are interchangeable if there are no confu-
sions.

2.1. Moment. Denote by 𝑝(𝑥, 𝑡) the probability density func-
tion (PDF) of a random function 𝑥(𝑡), which is usually
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written as 𝑝(𝑥) in short. Then, the following is called its
moment of order 𝑛:

𝑚𝑛 (𝑡) = 𝐸 [𝑥
𝑛
(𝑡)] = ∫

∞

−∞

𝑥
𝑛
𝑝 (𝑥, 𝑡) 𝑑𝑥. (5)

The moment of a random function is consistent with the
moment of a force in physics as well as mechanics in
expression [20]. It serves as a useful tool to represent certain
important characteristics of a random function.

2.1.1. Mean and Mean Square. Using the concept of the
moment, one may conveniently represent the mean of 𝑥(𝑡)

as its first-order moment given by

𝑚1 (𝑡) = 𝜇 (𝑡) = 𝐸 [𝑥 (𝑡)] = ∫

∞

−∞

𝑥𝑝 (𝑥, 𝑡) 𝑑𝑥. (6)

The second moment of 𝑥(𝑡) may be its mean square value
denoted by

𝑚2 (𝑡) = Ψ (𝑡) = 𝐸 [𝑥
2
(𝑡)] = ∫

∞

−∞

𝑥
2
𝑝 (𝑥, 𝑡) 𝑑𝑥. (7)

Note 7. The mean of 𝑥(𝑡) represents its average value around
which 𝑥(𝑡) fluctuates.

Note 8. The mean square of 𝑥(𝑡) stands for its strength or
average power. To explain this, we assume that𝑥(𝑡) is a voltage
exerting on a resistor of one Ohm. In this case, 𝑥2(𝑡) is the
power the resistor consumes at time 𝑡. Therefore, (7) implies
the average power. Hence, the strength of 𝑥(𝑡).

2.1.2. ACF. Now, we consider the product of 𝑥(𝑡) at two
points, say 𝑥(𝑡1)𝑥(𝑡2) for 𝑡1 ̸= 𝑡2. Since both 𝑥(𝑡1) and 𝑥(𝑡2) are
random variables, we denote by 𝑝(𝑥1, 𝑡1; 𝑥2, 𝑡2) the joint PDF
of 𝑥(𝑡1) and 𝑥(𝑡2). With the help of the concept of moment,
𝐸[𝑥(𝑡1)𝑥(𝑡2)] may be expressed in the form

𝑟 (𝑡1, 𝑡2) = 𝐸 [𝑥 (𝑡1) 𝑥 (𝑡2)]

= ∬

∞

−∞

𝑥 (𝑡1) 𝑥 (𝑡2) 𝑝 (𝑥1, 𝑡1; 𝑥2, 𝑡2) 𝑑𝑥1𝑑𝑥2.

(8)

The function 𝑟(𝑡1, 𝑡2) in (8) is called the ACF of 𝑥(𝑡). It
represents howone randomvariable𝑥(𝑡1) at time 𝑡1 correlates
with the other 𝑥(𝑡2) at another time 𝑡2. In other words, it
represents the correlation of𝑥(𝑡) at two different points 𝑡1 and
𝑡2.

Note 9. In the case of 𝑡1 = 𝑡2 = 𝑡, the ACF of 𝑥(𝑡) reduces to
its mean square:

𝑟 (𝑡1, 𝑡2)



 𝑡
1
=𝑡
2

= 𝐸 [𝑥 (𝑡) 𝑥 (𝑡)] = ∫

∞

−∞

𝑥
2
(𝑡) 𝑝 (𝑥, 𝑡) 𝑑𝑥. (9)

Note 10. The term of the second-order moment of 𝑥(𝑡) may
imply the moments of order 2, which in the wide sense or in
general include mean square (7) and ACF (8).

Note 11. If we consider the moments of 𝑥(𝑡) up to 2, 𝑥(𝑡) is
called 2-order random function, which plays a role in engi-
neering. The moments of orders higher than 2 correspond to
the case of higher order statistics, which we do not discuss in
this paper.

2.1.3. PSD. The Fourier transform of the ACF 𝑟(𝑡, 𝑠) is given
by

𝑆 (𝜔, 𝑡) = ∫

∞

−∞

𝑟 (𝑡, 𝑠) 𝑒
−𝑗𝜔𝑠

𝑑𝑠, 𝑗 = √−1. (10)

It represents the energy distribution of 𝑥(𝑡).

Note 12. In general, 𝑚𝑛(𝑡) is time dependent. Therefore, the
mean, mean square, ACF, and PSD may generally be time
dependent. In the stationary case, they are independent of
time.

2.1.4. Weak Stationarity. If all moments of 𝑥(𝑡) do not vary
with time, 𝑥(𝑡) has the property of strong stationarity. If the
moments up to 2 are independent of time, irrelevant of the
moments of order higher than 2, we say that 𝑥(𝑡) is of weak
stationarity or stationary in the wide sense.

Note 13. In the case of weak stationarity, 𝜇(𝑡) and Ψ(𝑡) are
constants. The ACF only replies on the time lag 𝜏 = |𝑡 − 𝑠|.
Hence, 𝑟(𝑡, 𝑠) = 𝑟(𝜏). Consequently, 𝑆(𝜔, 𝑡) = 𝑆(𝜔).

2.2. Central Moment. Often, one may be interested in a
random functionwithmean zero. For random functions with
mean zero, the previous expression regarding themoment (5)
is extended to the central moment expressed by

𝑚𝑐𝑛 (𝑡) = 𝐸 {[𝑥 (𝑡) − 𝜇 (𝑡)]
𝑛
}

= ∫

∞

−∞

[𝑥 (𝑡) − 𝜇 (𝑡)]
𝑛
𝑝 (𝑥, 𝑡) 𝑑𝑥.

(11)

2.2.1. Variance and Standard Deviation. The central moment
of order 2 given by

𝑚𝑐2 (𝑡) = 𝐸 {[𝑥 (𝑡) − 𝜇 (𝑡)]
2
}

= ∫

∞

−∞

[𝑥 (𝑡) − 𝜇 (𝑡)]
2
𝑝 (𝑥, 𝑡) 𝑑𝑥

(12)

is usually denoted by 𝜎
2
(𝑡) called the variance of 𝑥(𝑡). The

standard deviation, denoted by stdev(𝑡), is given by

stdev (𝑡) = √𝜎
2
(𝑡) = 𝜎 (𝑡) . (13)

Note 14. Howmuch the variation of 𝑥(𝑡) away from its mean
𝜇(𝑡) is characterized by its variance or standard deviation.

Remark 2. Analysis of variance (ANOVA) is a branch of
statistics, which plays a role in many aspects of techniques,
especially in the fields of statistics tests and experimental
design [21–23].

2.2.2. Autocovariance. In the case of mean zero, one uses the
autocovariance function denoted by 𝐶(𝑡1, 𝑡2) (ACF for short
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again) to characterize the correlation property of [𝑥(𝑡)−𝜇(𝑡)].
It may be given by

𝐶 (𝑡1, 𝑡2)

= 𝐸 {[𝑥 (𝑡1) − 𝜇 (𝑡1)] [𝑥 (𝑡2) − 𝜇 (𝑡2)]}

= ∬

∞

−∞

[𝑥 (𝑡1) − 𝜇 (𝑡1)] [𝑥 (𝑡2) − 𝜇 (𝑡2)]

× 𝑝 (𝑥1, 𝑡1; 𝑥2, 𝑡2) 𝑑𝑥1𝑑𝑥2.

(14)

Note 15. When 𝑡1 = 𝑡2 = 𝑡, 𝐶(𝑡1, 𝑡2) reduces to 𝜎
2
(𝑡):

𝐶 (𝑡, 𝑡) = 𝐸 {[𝑥 (𝑡) − 𝜇 (𝑡)]
2
} = 𝜎
2
(𝑡) . (15)

Remark 3. ACF analysis is an important branch in statistics;
see, for example, [19, 23–28].

Remark 4. A Gaussian random function is uniquely deter-
mined by its ACF [29, 30].

As a matter of fact, the PDF of a Gaussian random
function is given by

𝑝 (𝑥) =

1

√2𝜋𝜎

exp[−

(𝑥 − 𝜇)
2

2𝜎
2

] , −∞ < 𝑥 < ∞. (16)

In (16), 𝜎 can be determined by (15) while 𝜇 can be obtained
from the following:

𝐶 (𝑡, 𝑡) = 𝑟 (𝑡, 𝑡) − 𝜇
2
(𝑡) . (17)

Hence, Remark 4 results.

Note 16. If 𝑥(𝑡) is weak stationary, its 𝜇(𝑡) and 𝜎(𝑡) are
constants. Its ACF depends only on lag:

𝐶 (𝑡1, 𝑡2) = 𝐶 (




𝑡1 − 𝑡2





) = 𝐶 (𝜏) , 𝜏 =





𝑡1 − 𝑡2





. (18)

We list two properties of ACF below.

P1: ACF is an even function: 𝑟(𝜏) = 𝑟(−𝜏), 𝐶(𝜏) = 𝐶(−𝜏).
P2: 𝑟(0) ≥ 𝑟(𝜏), 𝐶(0) ≥ 𝐶(𝜏).

Note 17. P1 is obvious because the correlation between 𝑥(𝑡1)

and 𝑥(𝑡2) is always equal to that between 𝑥(𝑡2) and 𝑥(𝑡1). P2 is
natural because the correlation between the same point 𝑥(𝑡1)
and 𝑥(𝑡1) always reaches its maximum.

Without loss of generality for the statistical analysis of
random functions, one may adopt the concept of normalized
random functions. By normalized, we mean 𝑟(0) = 1 or
𝐶(0) = 1. Therefore, a normalized random function may be
obtained by 𝑥(𝑡)/√𝐶(𝑡, 𝑡).

2.3. Computational Methods. Previous expressions in (5)∼
(15) regarding the mean, variance, and ACF of a random
function 𝑥(𝑡) are associated with its PDF. That implies that
they can be determined under the condition that the PDF
is known. However, that may usually be too restrictive in
practical applications in engineering. Fortunately, Wiener et
al. proposed a computation approach using time average
without relating to its PDF if 𝑥(𝑡) is ergodic [18, 31, 32].

Note 18. It may be very difficult if not impossible for one to
test the ergodicity by a sample function of a traffic trace. In
practice, one may simply assume that a traffic trace 𝑥(𝑡) is
ergodic.

In what follows, we suppose that 𝑥(𝑡) is causal. By causal,
wemean that𝑥(𝑡) is defined for 0 ≤ 𝑡 < ∞ and 𝑥(𝑡)= 0 for 𝑡 <

0. In addition, we only consider 𝑥(𝑡) in the weak stationary
sense. By using the time average, therefore, the mean of 𝑥(𝑡)
is given by

𝜇 = 𝐸 [𝑥 (𝑡)] = lim
𝑇→∞

1

𝑇

∫

𝑇

0

𝑥 (𝑡) 𝑑𝑡. (19)

Its mean square is written by

Ψ = 𝐸 [𝑥
2
(𝑡)] = lim

𝑇→∞

1

𝑇

∫

𝑇

0

𝑥
2
(𝑡) 𝑑𝑡. (20)

Its ACF is expressed by

𝑟 (𝜏) = 𝐸 [𝑥 (𝑡) 𝑥 (𝑡 + 𝜏)] = lim
𝑇→∞

1

𝑇

∫

𝑇

0

𝑥 (𝑡) 𝑥 (𝑡 + 𝜏) 𝑑𝑡. (21)

Its variance is given by

𝜎
2
= 𝐸 {[𝑥 (𝑡) − 𝜇]

2
} = lim
𝑇→∞

1

𝑇

∫

𝑇

0

[𝑥 (𝑡) − 𝜇]
2
𝑑𝑡. (22)

Similarly, its autocovariance is given by

𝐶 (𝜏) = 𝐸 {[𝑥 (𝑡) − 𝜇] [𝑥 (𝑡 + 𝜏) − 𝜇]}

= lim
𝑇→∞

1

𝑇

∫

𝑇

0

[𝑥 (𝑡) − 𝜇] [𝑥 (𝑡 + 𝜏) − 𝜇] 𝑑𝑡.

(23)

In what follows, we only consider random functions with
mean zero. Accordingly, 𝑟(𝜏) is equal to 𝐶(𝜏), and Ψ = 𝜎

2

unless otherwise stated.
We write the PSD of 𝑥(𝑡) by

𝑆 (𝜔) = ∫

∞

−∞

𝑟 (𝜏) 𝑒
−𝑗𝜔𝜏

𝑑𝜏. (24)

Alternatively, 𝑟(𝜏) can be expressed by

𝑟 (𝜏) =

1

2𝜋

∫

∞

−∞

𝑆 (𝜔) 𝑒
𝑗𝜔𝜏

𝑑𝜔. (25)

2.4. Defaulted Assumptions in Conventional Time Series. In
the field of conventional time series, the following assump-
tions are usually defaulted [18, 21–37].

(i) The mean of 𝑥(𝑡) exists.
(ii) The variance of 𝑥(𝑡) exists.
(iii) 𝑆(0) = ∫

∞

−∞
𝑟(𝜏)𝑑𝜏 is convergent.

However, the above may be untrue for LRD traffic; see, for
example, [16, 38, 39], which we shall not discuss more in this
paper.
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3. Smoothing Sample ACF of Traffic

Previous discussions require that −∞ < 𝑡 < ∞. Even in the
case of 𝑥(𝑡) being causal, 0 < 𝑡 < ∞ is always required.
However, that requirement may not be satisfied in practice
in general since traffic 𝑥(𝑡) can be measured only in a finite
time interval.

3.1. Sample ACF. Suppose that one records traffic 𝑥(𝑡) in
[0, 𝑇]. Then, he or she attains a sample ACF of 𝑥(𝑡), which
may be estimated by 𝑟1(𝜏):

𝑟1 (𝜏) =

1

𝑇

∫

𝑇

0

𝑥 (𝑡) 𝑥 (𝑡 + 𝜏) 𝑑𝑡. (26)

Note 19. The sample ACF 𝑟1(𝜏) may yet be a representative
of the true ACF 𝑟(𝜏) in a way. Mathematically, 𝑟1(𝜏) = 𝑟(𝜏)

under the condition of𝑇 → ∞. Unfortunately, the condition
𝑇 → ∞ may be physically unrealizable.

Now, assume that there is another person who measures
the traffic at the same point in networks, but he does the
measurement in the time interval [𝑇, 2𝑇]. Then, the sample
ACF is obtained by

𝑟2 (𝜏) =

1

𝑇

∫

2𝑇

𝑇

𝑥 (𝑡) 𝑥 (𝑡 + 𝜏) 𝑑𝑡. (27)

Due to the randomness of 𝑥(𝑡), errors in numerical compu-
tations, and errors in the measurement of traffic data, though
the width of [𝑇, 2𝑇] is equal to that of [0, 𝑇], one has, in
general,

𝑟2 (𝜏) ̸= 𝑟1 (𝜏) . (28)

Denote by 𝑟𝑛(𝜏) the sample ACF of 𝑥(𝑡) in the interval
[(𝑛 − 1)𝑇, 𝑛𝑇] for 𝑛 = 1, 2, . . . , 𝑁. Then,

𝑟𝑛 (𝜏) =

1

𝑇

∫

𝑛𝑇

(𝑛−1)𝑇

𝑥 (𝑡) 𝑥 (𝑡 + 𝜏) 𝑑𝑡. (29)

For the similar reasons we explained in (28), one generally
has

𝑟𝑚 (𝜏) ̸= 𝑟𝑛 (𝜏) for 𝑚 ̸= 𝑛. (30)

Note 20. It may be quite reasonable to consider each sample
ACF 𝑟𝑛(𝜏) as an estimate of the true ACF of 𝑥(𝑡), but neither
may be so appropriate unless 𝑇 is large enough. In fact, 𝑟𝑛(𝜏)
is a random variable [32].

3.2. Smoothed Sample ACF. Denote by 𝑟(𝜏) the ACF estimate
of 𝑥(𝑡). The estimate 𝑟(𝜏) is a random variable again. It has
its distribution in the general form of (31).The issue studying
the concrete form of (31) is interesting, but it is beyond the
scope of this paper:

Prob [𝑟 (𝜏)] . (31)

In this research, we are interested in good estimate of 𝑟(𝜏).
By good estimate, we mean that both its bias and variance are
small. Since

𝐸 [𝑟𝑛 (𝜏)] =

1

𝑇

∫

𝑛𝑇

(𝑛−1)𝑇

𝐸 [𝑥 (𝑡) 𝑥 (𝑡 + 𝜏)] 𝑑𝑡 = 𝑟 (𝜏) , (32)

the sample ACF 𝑟𝑛(𝜏) is unbiased. Therefore, what one is
interested in is to find a way such that Var [𝑟(𝜏)] is small.
The literature about this is relatively rich; see, for example,
[31] and references therein. A simple way to reduce Var [𝑟(𝜏)]
is average. That is, one may compute 𝑟(𝜏) by the average of
the sampleACFs as follows assuming that both lim 𝑇→∞𝑟𝑛(𝜏)

and lim𝑁→∞𝑟(𝜏) exist:

𝑟 (𝜏) =

1

𝑁

𝑁

∑

𝑛=1

𝑟𝑛 (𝜏) . (33)

In that case, Var [𝑟(𝜏)] is inversely proportional to 𝑁 [31]:

Var [𝑟 (𝜏)] is proportional to 1

𝑁

. (34)

The above implies the assumptions that both
lim 𝑇→∞𝑟𝑛(𝜏) and lim𝑁→∞𝑟(𝜏) exist. The research of
whether lim 𝑇→∞𝑟𝑛(𝜏) or lim𝑁→∞𝑟(𝜏) exists is attractive,
but it is out of the scope of the paper. In the experimental
research discussed in this paper, we assume that both exist.

Note 21. The previous expression needs, for the purpose of
ACF estimation of real-traffic 𝑥(𝑡), purposely sectioning the
sample record of a traffic trace 𝑥(𝑡) into a set of blocks such
that the number of blocks, that is, the average count𝑁, is large
enough for the desired level of Var [𝑟(𝜏)].

Note 22. ACF estimate 𝑟(𝜏) is the average of the sample
ACFs or the sum of the sample ACFs divided by 𝑁. Other
smoothing methods are available; see, for example, [40].

The previous discussions take the usage of integral.
In numerical computations, the integral above should be
replaced by summation. In the discrete case, we replace 𝑇 by
𝐼 for 𝑖 = 1, 2, . . . , 𝐼. In addition, 𝑟𝑛(𝜏) is replaced by 𝑟𝑛(𝑘) and
𝑥(𝑡) by 𝑥(𝑖). Thus, we have

𝑟𝑛 (𝑘) =

1

𝐼

𝑛𝐼

∑

(𝑛−1)𝐼

𝑥 (𝑖) 𝑥 (𝑖 + 𝑘) . (35)

The above computation does not follow (35) directly. In
practice, the fast Fourier transform (FFT) and its inverse
(IFFT) are suggested. More precisely, in the interval [(𝑛 −

1)𝐼, 𝑛𝐼], according to the Wiener theorem [18–20, 23, 31, 32,
34, 35], we have

𝑟𝑛 (𝑘) = IFFT {|FFT [𝑥 (𝑖)]|
2
} for (𝑛 − 1) 𝐼 ≤ 𝑖 ≤ 𝑛𝐼.

(36)

Then,

𝑟 (𝑘) =

1

𝑁

𝑁

∑

𝑛=1

𝑟𝑛 (𝑘) . (37)
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Figure 3: Continued.
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Figure 3: Continued.
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Figure 3: Illustrations of sample ACFs. (a) 𝑟1(𝑘). (b) 𝑟2(𝑘). (c) 𝑟3(𝑘). (d) 𝑟4(𝑘). (e) 𝑟5(𝑘). (f) 𝑟6(𝑘). (g) 𝑟7(𝑘). (h) 𝑟8(𝑘). (i) 𝑟9(𝑘). (j) 𝑟10(𝑘). (k)
𝑟11(𝑘). (l) 𝑟12(𝑘). (m) 𝑟13(𝑘). (n) 𝑟14(𝑘). (o) 𝑟15(𝑘). (p) 𝑟16(𝑘).

Note 23. Usually, 𝐼 as well as𝑁 take the form of 2𝑀, where𝑀

is a positive integer.

Note 24. If 𝑥(𝑖) is for 𝑖 = 0, 1, . . . , 𝐼−1, the part of 𝑟𝑛(𝑘) for 𝑘 =

0, 1, . . . , (𝐼 − 1)/2 is enough for the analysis purpose because
𝑟𝑛(𝑘) = 𝑟𝑛(−𝑘). For example, when one sets 𝐼 = 1024, 𝑟𝑛(𝑘) is
for 𝑘 = 0, 1, . . . , 511.

4. A Case Study

Using the real-traffic trace BC-Aug89 in this case study, we
set 𝐼 = 2048. Figure 2 illustrates the 16 sample ACFs for 𝑖 ∈

[(𝑛 − 1)2048, 𝑛2048] with 𝑛 = 1, . . . , 16. The ordinate is in
log. From Figure 3, we see that sample ACFs 𝑟𝑛(𝑘) differ from
each other. Each sample ACF consists of a certain amount of
fluctuations.

Using the technique of average may reduce the variance
of the sample ACF. Denote by 𝑅16(𝑘) the average of 𝑟𝑛(𝑘)

for 𝑛 = 1, . . . , 16. Denote by 𝑅32(𝑘) the average of 𝑟𝑛(𝑘)

for 𝑛 = 1, . . . , 32. Denote by 𝑅64(𝑘) the average of 𝑟𝑛(𝑘)

for 𝑛 = 1, . . . , 64. Figures 4, 5, and 6, respectively, indicate
the smoothed sample ACFs 𝑅16(𝑘), 𝑅32(𝑘), and 𝑅64(𝑘). It
can be seen that the fluctuations in Figure 3 are considerably
reduced in 𝑅16(𝑘). As a result, the larger the average count,
the smoother the curve of the sample ACF estimate; see
Figures 5 and 6.

Note 25. Though Var [𝑟(𝜏)] is inversely proportional to the
averages count 𝑁, over-large 𝑁 may be unnecessary for
improving an estimate. For instance, by eye, one may see that
the one in Figure 6 does not showmuch improvement as that
in Figure 5.
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Figure 4: Smoothed sample ACF with average count 16.
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Figure 5: Smoothed sample ACF with average count 32.

5. Discussions and Future Work

Theprevious exhibits the obvious effects of smoothing sample
ACFs by average. However, there are critical points that
need discussions regarding the smoothing of sample ACFs of
traffic.

Traffic is LRD [1–5]. According to Taqqu’s law, it is heavy
tailed [41]. Resnick et al. [42] explained an important result
in the aspect of sample ACF of heavy-tailed time series. It was
stated in [42] that the sample ACF of heavy-tailed series may
be random when the sample size approaches infinity if the
series is with infinite variance. The case study in Section 4
demonstrates that the sum of sample ACFs is convergent.
Consequently, the sample ACF is convergent too. Thus, may
we infer that traffic, at least the data used there, is with finite
variance?The answer to that questionmay be desired in traffic
theory. We shall work on it in the future.
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R
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4
(k
)
(lo

g)

Figure 6: Smoothed sample ACF with average count 64.

Finally, it is noted that the relationship between the
sample size and the variance of the sample ACF refers to [43].
In addition, the relationship between the sample size and the
variance bound of the sample ACF of fractional Gaussian
noise with LRD is described in [44].

6. Conclusions

We have discussed the smooth effect of sample ACFs of
traffic by average. Future researchwhether traffic is with finite
variance or infinite one has been noted.
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