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Discussion on equations of motion of planar flexible mechanisms is presented in this paper. The finite element method (FEM) is
used for obtaining vibrational analysis of links. In derivation of dynamic equations it is commonly assumed that the shape function
of elastic motion can represent rigid-body motion. In this paper, in contrast to this assumption, a model of the shape function
specifically dedicated to the rigid-body motion is presented, and its influence on elastic motion is included in equations of motion;
the inertia matrix related to the rigid-body acceleration vector depends on both shape functions of the elastic and rigid elements.
The numerical calculations are conducted in order to determine the influence of the assumed shape function for rigid-bodymotion
on the vibration of links in the case of closed-loop and open-loop mechanisms. The results of numerical simulation show that for
transient analysis and for some specific conditions (e.g., starting range, open-loop mechanisms) the influence of assumed shape
functions on vibration response can be quite significant.

1. Introduction

In recent years considerable attention has been given to the
analysis of flexiblemechanisms.Theneed for taking flexibility
of linkages into account is due tomuch higher speed of opera-
tion and the greater restrictions onweight and power require-
ments ofmechanismmembers. Consequently, for high-speed
operation, both rigid body and elastic effects should be
included in the mechanism design process in order to reduce
dynamic reactions and allow the linkage to perform its pre-
scribed kinematic functions.

Many papers published in recent years involved applica-
tions of special-purpose finite element methods [1]. In these
studies, the response of a mechanism was typically obtained
by using so-called “superposition theory”. In this method,
rigid-bodymotion is first determined, and then the unknown
elastic displacements are solved. In the derivation of equa-
tions of motion an assumption is made that the shape func-
tion for rigid-body motion is the same as for elastic motion
[2–6]. As a result, the system inertia matrix for elastic dis-
placement vector appears also together with the rigid-body
acceleration vector on the right-hand side of equations of
motions.

Relying on the previously described method, however,
does not yield accurate results when high-speed systems are

considered, since it does not provide for the mutual dynamic
coupling of both the rigid and elasticmotions. Analytical pro-
cedure developed by Song and Haug [7] introduced the “one
pass” method which models both the large motions and
small elastic displacements of the links simultaneously. How-
ever, the interconnections of the bodies are described by a
large set of constraint equations formulated for each type of
joints.This procedure increases the dimension of the problem
considerably and yields to the set of equations composed of
both differential and algebraic equations, which are not easy
to solve. Later works by Nagarajan and Turcic [8, 9] and
others [10, 11] allowed for the rigid-body motion and the
elastic motion to influence each other, and both rigid-
body degrees of freedom and elastic degrees of freedom are
considered as generalized coordinates in the derivation.

The later workswere directed towards developing higher
order element model [12] or to include the influence of geo-
metric nonlinearities in high-speed applications [13–15]. The
paper of Shaker and Ghosal [14] dealt with nonlinear mod-
eling of planar manipulators; equations of motion were ob-
tained using Lagrangian formulation and were nondimen-
sionalized using two characteristic velocities. These values
allowed them to predict whether the nonlinear analysis
was needed or the linear case produced satisfactory results.
Korayem et al. [15] developed the Lagrange approach to
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flexible mobile manipulators for determining maximum
allow able dynamic load.

The most often method used for obtaining equations of
motion for flexible-body systems is the Lagrange’s approach
[16]. However, in comparison with Lagrange’s equations of
motion the use of the Gibbs-Appel equations [17, 18] simpli-
fies the derivation of governing dynamic equations. In this
second method the second derivative of the generalized vec-
tor is firstly calculated and then the appropriate secondpartial
derivative of the Gibbs function is obtained. In Lagrange’s
equations ofmotion the sequence is quite opposite, and when
the general point displacement is presented in a vector form,
Lagrange’s equations are not particularly well suited.

In the present paper, a form of equations of motion used
in the superposition theory of elastic linkages is discussed.
The model of a shape function for the planar rigid-body mo-
tion proposed in [19, 20] is used. In this way, in contrast
to many other studies [2–6], the shape function for elastic
motion is not used to describe an arbitrary large rigid-body
translation. Moreover, as proven in the Appendix, the shape
function for planar beam elements is only an approximation
of displacement distribution along rigid finite elements and
for exact description of rigid motion the shape function pro-
posed in this paper should be used.The use of different shape
functions for elastic and rigidmotions implies that the inertia
matrix, standing by rigid-body acceleration vector in the
equations ofmotion of flexiblemechanisms, depends on both
shape functions of elastic and rigid elements.The influence of
assumed shape functions on vibrational response of mecha-
nism links is discussed in the paper.

2. Equations of Motion

The coupling between the nonlinear rigid-body motions and
the linear small elastic deformation stands as the main prob-
lem in the solution of the dynamics of flexible mechanisms.
In the superposition theory the elastic displacements are
separated from the rigid-body displacements (which are pre-
viously calculated) and solved as the unknowns of the system.
In this way the rigid-body motion is not influenced by the
elastic motion, but the vibration of links appears due to cen-
trifugal forces generated in rigid-body motion of a mecha-
nism.

Figure 1 presents a general planar beam element in three
frames of reference. Frame 𝑋𝑌 is fixed to the ground and
serves as the global coordinate system. The element oriented
frame 𝜉𝜂 is a rotating reference frame and its 𝜉-axis is parallel
to the undeformed center line of the element. The origin of
the 𝑥𝑦 frame is located at a node point of a finite element and
it remains parallel to the 𝑋𝑌 system. The frames 𝑥𝑦 and 𝜉𝜂
are updated continually as the element moves.

Let us assume that during the motion of the mechanism
a finite element has changed its position determined by end-
points 1 and 2 to the points 1 and 2 (dotted) due to the rigid-
body motion and to the points 1 and 2 due to the elastic
deformation.The components of nodal displacement vectors
11 and 22 can be expressed in the relative coordinate system
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Figure 1: Displacements of a finite element in global and local
coordinates.

𝑥𝑦 by the following vector:
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are displacements of nodes 1 and 2 in

𝑥 and 𝑦 direction, respectively, 𝑝
01
, 𝑝
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, V
01
, V
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are displace-

ments of nodes 1 and 2 in 𝜉 and 𝜂 direction, respectively.
The displacement vector r

0
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the finite element can be expressed in terms of the displace-
ments of the element’s endpoints using the formula

r0 ≡ {𝑟0} = [𝑟0𝑥, 𝑟0𝑦]
𝑇

= [𝑁
𝑒0
] {𝛿
0
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0
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(3)

where [𝑁
𝑒0
] is the shape function for the rigid body motion

which can be expressed as [6]

[𝑁
𝑒0
] = [

0.5 0 0.5 0

0 1 − 𝜉 0 𝜉
] , (4)

where 0 ≤ 𝜉 ≤ 1, and [𝑇
0
] is the following transformation

matrix:

[𝑇
0
] =

[
[
[

[

cos𝛼 sin𝛼 0 0

− sin𝛼 cos𝛼 0 0

0 0 cos𝛼 sin𝛼
0 0 − sin𝛼 cos𝛼

]
]
]

]

, (5)

where 𝛼 is the angle between 𝜉𝜂 and the global coordinate
systems. Since the longitudinal displacements of nodes in the
case of rigid motion are equal, the shape function for the
rigid-body motion (4) can be presented in other forms as
shown in [22].

The position of the general point in the global coordinate
system (see Figure 1) is denoted by r and can be written as

r = R0 + q, (6)
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where R0 is the displacement connected with the rigid-body
motion and q is an elastic deformation vector in the local
coordinate system 𝜉𝜂. Vector R0 can be defined as a sum of
the initial position vector rc and displacement vector r0 of the
general point due to rigid-body motion

R0 = rc + r0. (7)

By differentiating (6) with respect to time the velocity and
acceleration of the general point can be obtained

̇r = Ṙ0 + 𝜔 × q + q̇ = ̇r0 + 𝜔 [Ω] q + q̇,

̈r = ̈r0 + 2𝜔 [Ω] q̇ − 𝜔
2q + q̈ + �̇� [Ω] q,

(8)

where 𝜔 = col[0, 0, 𝜔] is the absolute angular velocity of the
𝜉𝜂 frame and [Ω] is Boolean-type operator matrix defined as

[Ω] = [
0 −1

1 0
] . (9)

In derivation of (8) the constancy of the initial position vector
rc (see Figure 1) has been taken into account which implies
the following identities: Ṙ0 = ̇r0, R̈0 = ̈r0.

Now let us consider the elastic motion which describes
the vibrations of links. The components of nodal displace-
ment vectors 11 and 22 due to elastic deformation can be

expressed in the 𝑥𝑦 and 𝜉𝜂 systems by the vectors {𝑠} and {𝛿},
respectively,

{𝑠}
𝑇
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1
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2
, Θ
2
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where: 𝑢
1
, 𝑤
1
, 𝑢
2
, 𝑤
2
are displacements of nodes 1 and 2 in 𝑥

and 𝑦 direction, respectively, and Θ
1
, Θ
2
are angular defor-

mations of nodes 1 and 2,
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where𝑝
1
, 𝑝
2
, V
1
, V
2
are displacements of nodes 1 and 2 in 𝜉 and

𝜂 direction, respectively.
The vector {𝛿} is transformed into {𝑠} by

{𝛿} = [𝑇] {𝑠} , (12)

where [𝑇] is the transformation matrix

[𝑇] =

[
[
[
[
[
[
[

[

cos𝛼 sin𝛼 0 0 0 0

− sin𝛼 cos𝛼 0 0 0 0

0 0 1 0 0 0

0 0 0 cos𝛼 sin𝛼 0

0 0 0 − sin𝛼 cos𝛼 0

0 0 0 0 0 1

]
]
]
]
]
]
]

]

. (13)

Introducing thematrix notation essential in the finite element
formulation, the displacement vector q can be expressed in
terms of the displacements of the element’s endpoints:

q ≡ {𝑞} = [𝑁
𝑒
] {𝛿} = [𝑁

𝑒
] [𝑇] {𝑠} . (14)

The shape function [𝑁
𝑒
] for elastic displacement is as follows:

𝑁
𝑒
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1 − 𝜉 0 0 𝜉 0 0
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2
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3
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2
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3
) 0 3𝜉
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3
𝐿 (𝜉
3
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2
)
] , (15)

where 0 ≤ 𝜉 ≤ 1.
Equations of motion are obtained by making use of

Gibbs-Appel equations [11]:

𝜕𝐺
𝑒

𝜕 { ̈𝛿}

+
𝜕𝑈
𝑒

𝜕 {𝛿}
= {𝑄} , (16)

where {𝛿} represents the generalized nodal degree of freedom,
𝑈
𝑒
is the potential energy, {𝑄} are the generalized forces act-

ing on the element, and𝐺
𝑒
is the Gibbs function or “energy of

acceleration”.The energy of dissipation is not involved in for-
mulated equations of motion; in case of structural damping
the damping matrices can be introduced in system equations
of motion as a linear combination of system inertia and
stiffness matrices.

The Gibbs function is expressed as follows:
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(17)

where [𝑁
𝑒0
] and [𝑁

𝑒
] are the shape function for the rigid body

motion (4) and elastic motion (15), respectively.
The strain energy 𝑈

𝑒
of the element is associated with

vector {𝛿} and is given by

𝑈
𝑒
=
1

2
{𝛿}
𝑇
[𝐾
𝑒
] {𝛿} , (18)

where the element stiffness matrix [𝐾
𝑒
] is in the same form as

for beam elements.
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Substituting expressions on Gibbs function and strain
energy of an element into Gibbs-Appel equations (16), the
equations of motion for one element are obtained in the fol-
lowing form:

[𝑀
𝑒
] { ̈𝛿} + [𝐶ge] {

̇𝛿} + ([𝐾
𝑒
] + [𝐾ce]) {𝛿}

= {𝐹
𝑒
} − [𝑀

𝑒0
] { ̈𝛿
0
} ,

(19)

where [𝑀
𝑒
] is the element inertia matrix, [𝐾ce] is the cen-

trifugal matrix, [𝐶ge] is the gyroscopic matrix, and [𝑀
𝑒0
] is

the coefficient matrix defined by the following notation:
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∫
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𝑒
]
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0
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(20)

and {𝐹
𝑒
} are generalized forces acting on finite element.

At the level of element equations of motion there exist
forces from adjacent links which at the system size level are
internal forces and occur in positive and negative pairs which
cancel. Taking into account the boundary conditions and
introducing dampingmatrix [𝐶], the equations of motion for
the system are stated as [20]

[𝑀] {�̈�} + [𝐶] {�̇�} + [𝐶
𝑔
] {�̇�} + ([𝐾] + [𝐾

𝑐
]) {𝑥}

= {𝐹} − [𝑀
0
] {�̈�
0
} ,

(21)

where coefficient matrices are global matrices obtained from
appropriate element matrices, {𝐹} represents generalized
forces, and {�̈�}, {�̇�}, and {𝑥} represent acceleration, velocity,
and displacement vectors (in nodal points). Vectors {𝑥} and
{𝑥
0
} are assembled forms of element vectors {𝑠} and {𝑠

0
} with

regard to boundary conditions.
By neglecting the rigid body and elastic motion coupling

terms, the equations of motion (21) are obtained in a simpli-
fied form as

[𝑀] {�̈�} + [𝐶] {�̇�} + [𝐾] {𝑥} = {𝐹} − [𝑀
0
] {�̈�
0
} . (22)

In most studies on the flexible multibody formulation
[2–6] it is assumed that the element shape function adopted
for elastic motion can be used to describe an arbitrary large
rigid-body translation. Thus the shape function for elastic
displacement [𝑁

𝑒
] (15) can be used to determine rigid-body

displacement, that is,

𝑟
0
= [𝑁
𝑒
] {𝛿


0
} , (23)

where vector {𝛿
0
} is similar to the one given by (11), but the

displacements are due to rigid-body motion.
By comparison to (3) it is obviously seen that the rigid-

body shape function [𝑁
𝑒0
] appearing in the Gibbs function

(17) is now changed by the elastic shape function [𝑁
𝑒
]. The

coefficient matrix denoted previously by [𝑀
𝑒0
] (see (20)) is

now equal to [𝑀
𝑒
], that is,

[𝑀
𝑒
] = ∫

𝐿

0

[𝑁
𝑒
]
𝑇

[𝑁
𝑒
] 𝑑𝑚. (24)

The assumption formulated in (23) leads to equations of
motion in which the inertia matrix related to the rigid-body
acceleration vector is the same as the system inertiamatrix. In
simplified form the equations of motion in global coordinate
system are as follows [3]:

[𝑀] {�̈�} + [𝐶] {�̇�} + [𝐾] {𝑥} = {𝐹} − [𝑀] {�̈�
0
} . (25)

By comparing (22) and (25) it can be seen that, assuming the
shape function for rigid-bodymotion (4), the inertiamatrices
related to the rigid-body acceleration vector at right-hand
side of equations of motion differ considerably in the two
cases considered.

The solution {𝑥} of matrix (22) and (25) is obtained by
using Newmark method for integrating the equations. In the
numerical examples, the gravity and damping effects are not
taken into account.

3. Illustrative Examples

In order to determine the influence of the assumed rigid-body
motion shape function on vibration of links, two numerical
examples are considered: the first one is an example of a
closed-chain mechanism, a four-bar linkage, and the second
one represents an open-chain mechanism of two-link planar
manipulator. It is also interesting to compare the proposed
methodwith the commonly used assumption of applying ele-
ment-type (in our case beam finite element) shape function
to rigid-body motion. Thus, the calculations are conducted
for two cases.

Case 1. By solving equations of motion (22) which have been
formulated for the shape function for the rigid-body motion
given by (4).

Case 2. By solving commonly used equations of motion of
type (25).

3.1. Four-Bar Linkage. All threemovingmembers of the link-
age are assumed to be deformable. A total of six elementswere
employed—each link is represented by two finite elements.
The corresponding placement of nodes is shown in Figure 2.

There are nodes (numbers 3 and 5) at the revolute
connection between the crank and the coupler, and between
the coupler and the follower, which aremodelled by assuming
two independent rotational d.o.f. (left and right) at each
of these nodes. Boundary conditions of zero translational
displacement were imposed at nodes 1 and 7.

During numerical simulations the equations of motion
given by (22) and (25) were solved. In both cases the vector
of the unknown functions (nodal displacement vector {𝑥})
consists of eighteen elements: displacements 𝑢 and𝑤 in the𝑋
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Figure 2: Four-bar linkage with nodes.

and 𝑌 directions, respectively, of moving nodes 2, 3, 4, 5, and
6 and the nodal deformation angles Θ

{𝑥}
𝑇
= [𝑢
2
, 𝑤
2
, Θ
2
, 𝑢
3
, 𝑤
3
, Θ
31
, Θ
32
, 𝑢
4
, 𝑤
4
, Θ
4
, 𝑢
5
,

𝑤
5
, Θ
51
, Θ
52
, 𝑢
6
, 𝑤
6
, Θ
6
, Θ
7
] .

(26)

The systemmatrices for elastic vibration [𝑀], [𝐶], and [𝐾] are
of dimensions 18 × 18. The order of the nodal displacement
vector for the rigid-body motion {𝑥

0
} differs depending on

the case considered. In (22) it consists of ten elements, that is,
the displacements of moving nodes in the𝑋 and 𝑌 direction,
respectively, due to the rigid-body motion (i.e., all displace-
ments are with the index 0):

{𝑥
0
}
𝑇

= [𝑢
02
, 𝑤
02
, 𝑢
03
, 𝑤
03
, 𝑢
04
, 𝑤
04
, 𝑢
05
, 𝑤
05
, 𝑢
06
, 𝑤
06
] .

(27)

In this way thematrix [𝑀
0
] in (22) is of dimension 18×10 due

to different size of vectors {𝑥} and {𝑥
0
}. In the case of (25) the

rigid-body displacement vector {𝑥
0
} consists of 18 elements

since it stands near global inertia matrix [𝑀] formulated
for flexible elements. Thus the vector {𝑥

0
} contains elements

appearing in the beamfinite elements: in addition to displace-
ments there are angular deformations which in the case of
rigid-body motion are set to be equal to 0. The rigid-body
displacement vector {𝑥

0
} in the case of (25) is as follows:

{𝑥
0
}
𝑇

= [𝑢
02
, 𝑤
02
, 0, 𝑢
03
, 𝑤
03
, 0, 0, 𝑢

04
, 𝑤
04
, 0,

𝑢
05
, 𝑤
05
, 0, 0, 𝑢

06
, 𝑤
06
, 0, 0] .

(28)

It is seen that the dimension of the rigid-body vector in
the proposed method is lower (compare (27) and (28)) and
assuming the shape function for rigid-body motion in the
form of elastic motion leads to artificial substitution of these
angle deformations for rigid motion as equal to 0.

The geometrical data taken for numerical simulation is
given in Table 1 [3].

The input torque𝑀
𝑡
applied to the crank of the mecha-

nism is assumed to be as follows:

𝑀
𝑡
= 𝑀
𝑡0
+𝑀
𝑡1
sin𝛼, (29)

where 𝛼 is the crank angle. The data given for the numerical
simulation are 𝑀

𝑡0
= 1Nm, 𝑀

𝑡1
= 0.5Nm. The initial

Table 1: Four-bar linkage parameters [3].

Parameters Crank Coupler Follower
Length, m 0.10795 0.2794 0.27051
Cross-section, m2

1.07 × 10
−4

0.406 × 10
−4

0.406 × 10
−4

Bending moments of
inertia, m4 1.62 × 10

−10
8.67 × 10

−12
8.67 × 10

−12

Distance between ground pivots: 0.254m.
Lumped mass at node 3: 0.0450 kg
Lumped mass at node 5: 0.0375 kg
Modulus of elasticity: 0.71× 1011 N/m2

Mass density: 2710 kg/m3

conditions (crank angle and crank angular velocity) are 𝛼 =
0 rad,𝜔 = 0 rad/sec. Simulation time is from 0 to 0.25 sec and
assures the crank to perform a full rotation.

The results of computer simulation show that, in the case
of considered four-bar linkage, the differences in equations
of motion do not significantly influence the results. The
midspan bending strains for the coupler (Figure 3) and for
the follower (Figure 4) are very similar for the two cases con-
sidered, and the relative difference in results does not exceed
3%. Thus, it would hardly be visible in the figures, and
additional charts are provided in order to show differences in
midspan strains: in Figure 5 for the coupler and in Figure 6
for the follower.

The difference in equations of motion (22) and (25)
representing Cases 1 and 2, respectively, is only in the inertia
force vector on the right-hand sides of these equations. For
(22) this vector is equal to 𝐹

𝑐0
= [𝑀

0
]{�̈�
0
}, and for (25)

𝐹
𝑐
= [𝑀]{�̈�

0
}. It was of interest to investigate how close to

each other are these forces. In Figure 7, the inertia force as
function of the crank angle is presented; in both cases the
results are very close and the differences are not visible in the
figure.Thus in the next Figure 8, the difference between these
forces (i.e., 𝐹

𝑐
−𝐹
𝑐0
) is presented; its value is approximately 1%

of the value of component forces.

3.2. Two-Link Planar Manipulator. The second example
concerns the open-loop mechanism of a two-link planar
manipulator (Figure 9). The mechanical basic characteristics
of this manipulator are the same as in [21] and are given in
Table 2. In addition, the following initial properties are the
mass at the joint 3 (𝑚

3
= 0.5 kg), the moment of inertia at the

hub 𝐼
3
= 0.04 kgm2, and the nominal payload 𝑚

4
= 0.3 kg

are taken into account.
The vibration of links arises due to the motion of

the manipulator excited by external torques applied to the
manipulator links at the joints. It was assumed that the values
of torques are as follows:𝑀

1
= −𝑀

2
= 10Nm.The vibration

analysis is conducted by solving equations ofmotion (22) and
(25) which correspond to the two cases considered.The initial
conditions are 𝛼 = 0 rad, 𝛽 = 0.5 rad, zero angular velocities;
the time of simulation is equal to 0.25 sec.

Taking into account the elastic vibration of links the nodal
displacement vector {𝑥} in (22) or (25) consists of 12 elements:
displacements 𝑢 and V in the𝑋 and 𝑌 directions, respectively
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Figure 3: Midspan bending strains for a coupler with crank angle.
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Crank angle (rad)
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Figure 4: Midspan bending strains for a follower with crank angle.
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Figure 5: Difference between two cases in midspan coupler strains
as a function of the crank angle.

Table 2: Two-link manipulator parameters [21].

Parameters Link I Link II
Length, m. 𝐿

1
= 1 𝐿

2
= 1

Cross-section area, m2
𝐹
1
= 4 × 10

−4
𝐹
2
= 4 × 10

−4

Moment of inertia, m4
𝐼
1
= 16/3 × 10

−8
𝐼
2
= 16/3 × 10

−8

Modulus of elasticity, N/m2
𝐸 = 2.1 × 10

11

Mass density, kg/m3
𝜌 = 7800

of moving nodes 2, 3, 4, and 5, and nodal deformation angles
Θ:

{𝑥}
𝑇
= [𝑢
2
, 𝑤
2
, Θ
2
, 𝑢
3
, 𝑤
3
, Θ
3
, 𝑢
4
, 𝑤
4
, Θ
4
, 𝑢
5
, 𝑤
5
, Θ
5
] .

(30)
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Figure 6: Difference between two cases in midspan coupler strains
as a function of the crank angle.
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Figure 7: Inertia force versus the crank angle.
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Figure 8: Difference in inertia force between two cases versus the
crank angle.
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Figure 9: A two-link planar manipulator.
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Figure 10: Displacement of manipulator’s tip in 𝑋 direction for
cases: I (solid line) and II (dashed line) versus time.
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Figure 11: Displacement ofmanipulator’s tip in𝑌 direction for cases:
I (solid line) and II (dashed line) versus time.

From the reason described in Section 3.1 the nodal displace-
ment vector for the rigid-body motion in the case of (22) is
equal to

{𝑥
0
}
𝑇

= [𝑢
02
, 𝑤
02
, 𝑢
03
, 𝑤
03
, 𝑢
04
, 𝑤
04
, 𝑢
05
, 𝑤
05
] (31)

and in the case of (25) of the form

{𝑥
0
}
𝑇

= [𝑢
02
, 𝑤
02
, 0, 𝑢
03
, 𝑤
03
, 0, 𝑢
04
, 𝑤
04
, 0, 𝑢
05
, 𝑤
05
, 0] .

(32)

The system matrices [𝑀], [𝐶], and [𝐾] in (22) and (25) are
of dimensions 12 × 12, and the matrix [𝑀

0
] in (22) is of

dimensions 12 × 8.
The horizontal and vertical displacements of manipula-

tor’s tip are presented in Figures 10 and 11, respectively. Now
the difference in results for the two cases considered is consid-
erable and can be clearly seen. In particular the displacements
in 𝑌 direction for starting range differ significantly. It should
be noted, however, that the calculations have been performed
for transient motion with sudden torques applied to both
links of the manipulator.

In order to analyze the influence of payload on displace-
ments of manipulator’s tip, the numerical simulation with
no payload was conducted. The results in vertical direction
are presented in Figure 12. It can be seen that for the given
data, due to lower inertial forces in the no payload case, the
increase of vibration response is observed.

8.0𝐸−03

6.0𝐸−03

4.0𝐸−03

2.0𝐸−03

0.0𝐸+00

−2.0𝐸−03

−4.0𝐸−03
Time (s)

Displacement in 𝑌 direction (m)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Figure 12: Displacement of manipulator’s tip (no payload) in 𝑌
direction for cases: I (solid line) and II (dashed line) versus time.

The previous results have been obtained for linear model
of planar beam elements which assumes that the transverse
displacements are independent of the axial displacements or
forces. If, in derivation of equations of motion, the nonlinear
strain-displacement relationship is taken into account [14,
20]; the additional geometric stiffness matrix [𝑘

𝐺
] appears in

dynamic equations, and it should be added to the element
stiffness matrix [𝑘]. For a beam element this matrix can be
presented in the following form [23]:

[𝑘
𝐺
] =

𝐹

𝐿

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0

0
6

5
Symm.

0
𝐿

10

2𝐿
2

15

0 0 0 0

0 −
6

5
−
𝐿

10
0

6

5

0
𝐿

10
−
𝐿
2

30
0 −

𝐿

10

2𝐿
2

15

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (33)

where 𝐹 is equal to the axial force in the element.
The additional numerical simulations have been per-

formed in order to evaluate the influence of nonlinear effects
on dynamic response of the considered two-linkmanipulator.
The results of midspan bending strains for link I and II are
presented in Figures 13 and 14, respectively, for linear (solid
line) and nonlinear (dashed line) models.

The results show that in the case considered the geometric
stiffness matrix has very small influence on the solution of
equations of motion. However, in the case of manipulators
with the low actuating torque frequency [14] the difference in
results can be significant.

4. Conclusions

A finite element model for analysing the kineto-elastodyna-
mic transient characteristics of a flexible mechanism is de-
veloped in the present paper. In multibody dynamics, there
is a direct relationship between the selection of mode shapes
in assumed coordinate system and the vibration response
of constrained deformable bodies. By assuming the pro-
posed shape function for rigid-body motion, the vibration
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Figure 13: Midpoint bending strains for link I for linear (solid line)
and nonlinear (dashed line) cases versus time.

Midspan bending strains for link II4.0𝐸−03
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Figure 14: Midpoint bending strains for link II for linear (solid line)
and nonlinear (dashed line) cases versus time.
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Figure 15: Planar rigid element.

equations of motion are derived, and the comparative anal-
ysis with existing commonly used approach is presented.
The difference in the equations ofmotion between the former
and proposed approaches is in the coupling between elastic
and rigid bodymodes; namely, the inertia force vector corres-
ponding to the rigid-body acceleration is different for both
approaches.

The method presented here is illustrated for the cases
of planar open- and closed-loop linkages. The results of
numerical simulation show that in the case of considered
four-bar linkage the differences in equations ofmotion do not
considerably influence the results. An opposite observation

is made in the case of an open-loop mechanism—two-link
planar manipulator—the differences in results between two
discussed approaches are significant. However, in this case
the severe excitation conditions were assumed; the transient
response was examined after stepped torques applied to the
links. Apart from the starting range, the solutions are very
close to each other, which leads to the conclusion that for
stable conditions of work (e.g., mechanisms circulating at
constant speed, steady-state response is analysed) the two
approaches presented in this paper should give quite con-
verged results.

Appendix

In this appendix the derivation of displacements of a finite
element in the rigid-body motion for two different shape
functions, beam finite element (15), and rigid element (4) is
presented.

Let us consider the rigid finite element of length 𝐿 in the
local coordinate frame 𝜉𝜂 shown in Figure 15.

The components of the nodal displacement vector {𝛿
0
}

are expressed in the local coordinate system 𝜉𝜂 by (2). The
displacement vector r0 of a general point 𝐾 belonging to
the finite element and determined by coordinate 𝑥 (see
Figure 15) can be expressed in terms of the displacements of
the element’s endpoints using the formula (3)

r0 ≡ {𝑟0} = [𝑝𝑥, V𝑥]
𝑇

= [𝑁
𝑒0
] {𝛿
0
} . (A.1)

For rigid elements the displacements in longitudinal direc-
tion of all points belonging to the element are equal; that
is, the relationship 𝑝

01
= 𝑝
𝑥
= 𝑝
02

holds for any 𝑥. In the
transverse direction the displacement of any point is a linear
combination of transverse displacements of element’s end-
points. Thus, for example, displacements of a general point
𝐾 determined by coordinates 𝑥 = 0.5𝐿 and 𝑥 = 0.25𝐿 are as
follows (note that nondimensional coordinate appearing in
the shape function formulation is equal to 𝜉 = 𝑥/𝐿, so the
calculations are provided for 𝜉 = 0.5 and 𝜉 = 0.25):

for 𝜉 = 0.5 𝑝
𝑥
= 𝑝
01
= 𝑝
02
, V
𝑥
=
V
01
+ V
02

2
;

for 𝜉 = 0.25 𝑝
𝑥
= 𝑝
01
= 𝑝
02
, V
𝑥
=
3V
01
+ V
02

4
.

(A.2)

If we assume that the shape function for elastic displacement
[𝑁
𝑒
] (15) can be used to determine rigid-body displacements,

the formula of (23) is used and the general point displace-
ments are formulated as

[𝑝
𝑥
, V
𝑥
]
𝑇

= [𝑁
𝑒
] {𝛿


0
} = [

1 − 𝜉 0 0 𝜉 0 0

0 1 − 2𝜉
2
+ 2𝜉
3
𝐿 (𝜉 − 2𝜉

2
+ 𝜉
3
) 0 3𝜉

2
− 2𝜉
3
𝐿 (𝜉
3
− 𝜉
2
)
]

× [𝑝
01
, V
01
, 0, 𝑝
01
, V
01
, 0]
𝑇

.

(A.3)
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It is easy to show that, for the given values of 𝜉, the following
displacements are obtained:

𝑝
𝑥
(𝜉 = 0.5) =

𝑝
01
+ 𝑝
02

2
; V
𝑥
(𝜉 = 0.5) =

V
01
+ V
02

2
,

𝑝
𝑥
(𝜉 = 0.25) =

3𝑝
01
+ 𝑝
02

4
; V
𝑥
(𝜉 = 0.25) =

27V
01
+ 5V
02

32
.

(A.4)

It is seen that while the formulation for rigid-body dis-
placements for 𝜉 = 0.5 is correct, the result for transverse
displacement of the general point V

𝑥
for 𝜉 = 0.25 is incorrect.

Using the shape function for the rigid-body motion (4)
the general point displacements are formulated as (A.1)

[𝑝
𝑥
, V
𝑥
]
𝑇

= [𝑁
𝑒0
] {𝛿
0
}

= [
0.5 0 0.5 0

0 1 − 𝜉 0 𝜉
] × [𝑝

01
, V
01
, 𝑝
01
, V
01
]
𝑇

,

(A.5)

and the longitudinal and transverse displacements for the
given values of 𝜉 are

𝑝
𝑥
(𝜉 = 0.5) =

𝑝
01
+ 𝑝
02

2
; V
𝑥
(𝜉 = 0.5) =

V
01
+ V
02

2
,

(A.6)

𝑝
𝑥
(𝜉 = 0.25) =

𝑝
01
+ 𝑝
02

2
; V
𝑥
(𝜉 = 0.25) =

3V
01
+ V
02

4
.

(A.7)

It is seen that for both values of 𝜉 the obtained results are now
correct and are in fact the same as expected in the rigid-body
motion and shown in (A.2). The only difference is in the for-
mulation of 𝑝

𝑥
but in view of the longitudinal deformation in

the rigid motion being constant (i.e., 𝑝
01
= 𝑝
02
), the obtained

formulas give the same results.
From this short derivation one can conclude that the

assumption that the shape function for beam finite element
can convey also rigid-body motion is only an approximation
and that the shape function for rigid-body motion (4) should
be used for exact description.
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