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Based on the hot rolling process, a load distribution optimizationmodel is established, which includes rolling forcemodel, thickness
distributionmodel, and temperaturemodel.The rolling force ratio distribution and good strip shape are integrated as two indicators
of objective function in the optimization model. Then, the evolutionary algorithm for complex-process optimization (EACOP) is
introduced in the following optimization algorithm. Due to its flexible framework structure on search mechanism, the EACOP is
improved within differential evolutionary strategy, for better coverage speed and search efficiency. At last, the experimental and
simulation result shows that evolutionary algorithm for complex-process optimization based on differential evolutionary strategy
(DEACOP) is the organism including local search and global search. The comparison with experience distribution and EACOP
shows that DEACOP is able to use fewer adjustable parameters and more efficient population differential strategy during solution
searching; meanwhile it still can get feasible mathematical solution for actual load distribution problems in hot rolling process.

1. Introduction

With the increasing demand for improving the product
quality and control accuracy in hot rolling process, the rolling
scheduling problem has become an important issue in the
steel industry. According to the principle that nominal motor
power should be greater than rolling power, themain purpose
of hot rolling scheduling problem consists in determining
the final thickness for every rolling pass to set other process
parameters [1], such as rolling force and bending force. The
key point and object of hot rolling shape/gauge control is
the shape control of roll gap, in the sense that the load
distribution is the basis of strip shape control. Although the
classic load distribution is simple and reasonable, it cannot
achieve the most optimal setting to shape control [1, 2].

The hot rolling process has been optimized with
rolling theory or heuristics algorithms [3–5]. For example,
a differential evolution algorithm with space-adaptive idea

is applied to several hot strip mills for the optimal design
of scheduling. This algorithm expands or shrinks the search
space by certain rules and realizes the automatic search
for the suitable space and improves the convergence rate
and accuracy [3]. An intelligent method named variable
metric hybrid genetic algorithm was introduced to optimize
hot strip mills [4]. A genetic algorithm-based optimization
was coded and operated for 1370mm tandem cold rolling
schedule. It seems that the performance of the optimal
rolling schedule is satisfactory and promising [5]. Although
the above load distribution is reasonable, it often requires
more adjustable parameters during the search for optimal
solution, thereby making influence on coverage speed and
search efficiency.

Thus, the major objective pursued in this paper is
to formulate a better solution on the rolling scheduling
optimization. Based on the evolutionary algorithm for
complex-process optimization (EACOP) [6–8], we improve
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this algorithm within differential evolutionary strategy and
utilize it to optimize load distribution of hot rolling. The
DEACOP has the flexible structure which is similar to
scatter search and employs some elements of scatter search
[9] and path relinking [10]. Besides, it makes use of a
smaller number of tuning parameters and differential evo-
lutionary strategy among the population members with new
strategies. Firstly, according to model’s characteristics of
load distribution, initial diverse population strategy will be
improved with the consideration of latin hypercube uniform
sampling. Secondly, differential evolutionary strategy will be
presented to replace the original linear combination.Thirdly,
a population-update method is introduced to modify the
balance between intensification and diversification. Finally, a
search intensification strategy called the “go-beyond” to in-
depth search is established for enhancement of the efficiency
of the local optimal solution. This differential evolutionary
strategy can generate broader area around the population
members and get better intensification and diversification of
population members by the go-beyond strategy.

Based on experimental simulation by actual data in hot
rolling process, simulation result shows that the application of
DEACOP optimizes the gauge reduction for each rolling pass
and gives full play to the upstream rolling mill equipment’s
ability. Meanwhile, DEACOP algorithm regulates crown
index of the downstream mills, so it can further improve the
efficiency of plate-shaped regulating.

2. The Gauge and Shape Model

2.1. SystemDescription. In order to determine rolling force of
each stand, as well as the other settings, the key point of load
distribution is that the exit thickness of each stand should be
distributed reasonably. Thus, in this section the optimal load
distributionwith the consideration of overall performance on
shape and gauge is proposed. The optimal load distribution
of finishing mill group can be divided into three stages
[11–13].

The first phase requires that the 1st stand’s reduction
should be left some room, as the steel billet’s thickness may
fluctuate when steel billet goes into rolling mill.

In the second phase, the 2nd and 3rd stands should make
full use of equipment power, therefore making the amount of
the reduction as large as possible.

In the third phase, the rolling force in the last stage should
gradually decrease from the 4th to the last stand, so that the
accuracy and performance of the shape and gauge can be
synthesized properly. Meanwhile, the relative crown of the
last four stands should be equal.

With the consideration of those steps, the objective
function is derived as follows, which constructs with the
desire of above three stages with DEACOP optimizes load
distribution:
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above constraints, the Shohet discriminant [1] about sheet
deformation is also necessary. Since the rolling process of hot
strip mill is different from the cold rolling, to some extent,
Shohet discriminant may relax the requirement of relative
crown:

−80(
ℎ

𝐵
)

𝛼

< (
𝐶
𝐻

𝐻
−
𝐶
ℎ

ℎ
) < 40(

ℎ

𝐵
)

𝛼

, (2)

where 𝐻, ℎ denote the entry and exit strip thickness, 𝐶
𝐻
/𝐻

and 𝐶
ℎ
/ℎ separately stand for relative crown of entry and

exit, 𝐵 is the strip width, and 𝛼 = 2 or 1.86.
Themain purpose of load distribution system is seeking a

set of data ℎ
𝑖
, which not only meets the Shohet equation, but

also can fulfill those technological conditions. Meanwhile, in
order to get the minimum value of objective function, the
rolling force model, thickness distribution model, and the
temperature model have to be established.

2.2. Rolling Force Model. According to [1], the classic rolling
force equation can be expressed as follows:
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where the subscript 𝑖 denotes the rolling pass number, B
is the strip width, and 𝑙
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roller radius, 𝑅󸀠 is roller radius after deformation [12], Δℎ is
the reduction for every rolling pass, ] is Poisson’s ratio,
and 𝐸 is Young’s modulus. Relative deformation degree and
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2.3. Thickness Distribution Model. Consider the following:
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where ℎ
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is the experiential thickness value,𝐾
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, 𝐾
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the site statistics coefficient, 𝜙

𝑖
is cumulative energy distri-

bution coefficient, 𝐻
0
is initial thickness when workpieces

go into the first finishing mill, and ℎ
𝑛
is exit thickness when

workpieces go through the last stand.

2.4. Temperature Model. Temperature is an important factor
in hot rolling, which can directly impact on the rolling force
value of each pass. Equation (8) expresses temperature drop
model from roughing exit to finishing entrance, while the
next equation denotes slab temperature drop caused by going
through finishing mill:
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𝑇
𝐹0

means entry temperature when slab goes into the first
finishing mill. 𝜀 is blackness, 𝛿 is Boltzmann constant, 𝛾 is
density, 𝑐 is specific heat capacity, and 𝜏 is the time when
strip is transferred from the exit of roughing mill to the
entrance of the finishing mill. 𝑇RC is steel temperature after
strip going through roughing mill.

The exit temperature of each finishing mill is denoted
as 𝑇
𝑖
. 𝑇
𝑤
is water spray temperature between mills. 𝐾

𝑎
is

cooling coefficient, the interstand distance (𝐿
𝑗
) is indicated,

and ℎ
𝑛
V
𝑛
is the product that multiplies exit thickness by

rolling speed.

3. Evolutionary Algorithm for
Complex-Process Optimization

In this section, the evolutionary algorithm for complex-
process optimization based on differential evolutionary strat-
egy (DEACOP) is proposed to solve load distribution prob-
lem of the hot rolling scheduling.TheDEACOP is innovative
strategy embedded in various submethodswithin the flexible.
This algorithm improves path relinking to generate a new
combination method which considers a broader area around
the population members. Meanwhile DEACOP improves the
balance between intensification and diversification with a
population-update method. The above strategies can escape
from suboptimal solutions and advance the search efficiency.
The algorithm consists of five parts: (1) building the initial
population, (2) determining similarity solution, (3) differen-
tial evolutionary strategy, (4) population update, and (5) deep
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Figure 1: LHS (𝐻 = 10,𝑁 = 2).

search feasible solutions. Its principle is to deeply explore new
populationmembers near individuals with minimum fitness.
The optimization process will be repeatedly executed unless
the stop conditions were met.

3.1. Building the Initial Population. In this subsection a latin
hypercube uniform sampling (LHS) is first used to generate
the initial population. To illustrate how LHS works, during
the following description we will explain the building process
of LHS. N is variable dimension that is set as 2; sampling
size 𝐻 is 10. The distribution procedure of LHS is as follows.

3.1.1. LHS Algorithm

(1) Each side of the test area was divided equally into 10
parts, so test area was divided into 102 small areas.

(2) (1, 2, . . ., 10) is randomly ordered to (7, 5, 6, 9, 2, 4, 1, 8,
10, 3) and (7, 9, 3, 8, 6, 2, 4, 10, 5, 1). They are arranged
in a matrix as follows:

𝐴 = [
7 5 6 9 2 4 1 8 10 3

7 9 3 8 6 2 4 10 5 1
]

𝑇

. (10)

Column of the matrix, such as (7,7), (5,9), (6,3) . . .
(3,1), is fixed on 10 rectangles.

(3) A sample was randomly selected in each small rect-
angle, and then sampling group was composed of
10 samples. The result about LHS works is shown in
Figure 1.

Through LHSprocedure, an initial set Pop of Psize diverse
vectors is generated, whose size is set as 10 × Nvar (Nvar is
defined as a number of variables which need to be optimized).
Meanwhile high-quality solution set Pop1 is composed in
terms of better fitness. Its number is 𝑏1. Diversity set Pop2
(its size is b2) includes individual selected randomly from
the remaining m−b1 vectors in Pop. According to the above
completion strategy, the population size is 𝑏 = 𝑏1+𝑏2.McKay
et al. [14] pointed out that the total average received LHS than
a simple random sampling mean has smaller total variance.
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≤ 𝑑𝑖𝑠𝑡 then one of two solutions will be replaced with random solution within the search space.

else
until the end of the loop

endif
endfor

endfor

Algorithm 1: Check for solutions similarity algorithm.

3.2. Check for Similarity Solution. The purpose of similarity
determining is to help escape from (possible) local optimal
area. Algorithm 1 checks for duplicity with Euclid distance
in the population before performing the next subsection
(combination method). If the Euclidean distance between
the two solutions is less than set value dist, then one of two
solutions will be replaced with random solution within the
search space. Otherwise, reserve two solutions and continue
to the next judge.

3.3. Differential Evolutionary Strategy of Population. In the
traditional EACOP, the reference set was usually based on
linear combination method, which has advantage in some
aspects. Unfortunately, there is difficult to solutions of com-
plex issue. Thus, an improved differential variation method
was introduced as follows:
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item was used in this strategy in order to increase the algo-
rithm coverage speed.Meanwhile (𝑋𝑡
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as disturbance, which can make difference for each variation
individual, therefore maintaining the population diversity.

Besides, the crossover strategy is used for better evolu-
tionary effects. After the crossover operation on𝑋𝑡

𝑖
and𝑀𝑡+1

𝑖
,

thereby generating the new individual 𝐶𝑡+1
𝑖𝑗

. The crossover
strategy equation can be expressed as follows:
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where CR can be defined as crossover probability factor
between 0 and 1 and rand is uniform random number in the
same interval.

3.4. Population Update. As described in the combination
method, we incorporate each member of the reference set
with the rest 𝑏 − 1members, resulting in 𝑏 − 1 new solution.
Best quality solutions among new solutions were chosen and
compared with their parent, if their value is better than the
parent, and then the latter is replaced in the population. The
principle of population regeneration is that new solutions
are generated along with the path formed by the parent
superrectangular.

3.5. Deep Search Feasible Solutions. By the previous steps,
the new population members are surrounded by hyperrect-
angle in accordance with update strategy. For enhancing
the search intensification to exploit better feasible solu-
tions, the evolutionary algorithmhas implemented go-beyond
strategy which consists in exploiting promising directions.
Go-beyond strategy (Figure 2) means that new solution is
created in the light of direction defined by the child and its
parent (Algorithm 3).

Deep search step is shown as follows: firstly, create a
new solution 𝑥child in hyperrectangle which is generated
by a pair of solutions (𝑥

𝑖
, 𝑥
𝑗
) and estimate if fitness value

𝑓(𝑥child) outperforms parent fitness value 𝑓(𝑥
𝑖
or𝑥
𝑗
) (𝑥
𝑖
, 𝑥
𝑗

is selected after deciding which of them is combined with
other 𝑏 − 1 population individuals). If 𝑓(𝑥child) > 𝑓(x

𝑖
or

x
𝑗
), new solution 𝑥Nchild is created according to go-beyond

strategy over again. Now once more the program deter-
mines if 𝑓(𝑥

𝑁child) is greater than 𝑓(𝑥child); if the result
holds, determine update solution 𝑥

𝑁𝑁child with go-beyond
strategy again. In the end, last subsection 𝐷 is introduced to
make 𝑥

𝑁𝑁child replace one of 𝑥
𝑖
or 𝑥
𝑗
.

3.6. Optimization Process of DEACOP. According to descrip-
tion about above five parts subsection, all of subsections will
be integrated to build an evolutionary algorithm. Optimiza-
tion steps of DEACOP are shown as follows.

Step 1. Set initial parameters that include variable dimension
vars, 𝑃sizediverse vectors of the initial set (normally 𝑃size =

10 × vars), the number of high-quality solution b1, and
random set size b2. Initial population whose size 𝑏 is the sum
of b1 and b2. To escape from suboptimal solution, the number
of consecutive iterations 𝑇stick is defined as a vector. 𝑇stick =

[𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑏
] = [0, 0, . . . , 0]. 𝑇change is denoted as logo

whether get suboptimal solution.

Step 2. This step uses a latin hypercube uniform sampling
to generate initial set of diverse solutions. But the set should
meet constraint condition about optimization problem.

Step 3. Check for similarity solutions. This step uses
Algorithm 2 to test the diversity of population.

Step 4. Make differential evolutionary computation in refer-
ence to the actual individuals of concentration.
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Figure 2: The flow chart of DEACOP.

if 𝑓(𝑥new) < 𝑓(𝑥parent)

𝑥parent = 𝑥new
endif

Algorithm 2: Population-update algorithm.

Step 5. Associate population-update strategy with go-beyond
strategy. If the quality of child 𝑥child that is generated with
combination method outperforms its parent 𝑥

𝑖
, then go-

beyond strategy is used to further exploit solution intensifi-
cation. Otherwise, go-beyond strategy is not performed.

Step 6. Escape from suboptimal solution. If the parent 𝑥
𝑖
is

replaced by the child, then the number of consecutive
iterations 𝑇

𝑖
is reset as 0; otherwise 𝑇

𝑖
= 𝑇
𝑖
+ 1, and estimate

whether 𝑇
𝑖

≥ 𝑇change. If the result is affirmative, 𝑥
𝑖
will

be substituted by the random one of the remaining 𝑃size −
𝑏 members.

Step 7. Repeatedly perform Step 4–Step 6 until all members
of population come through this process.

Step 8. Until stopping criterion is met, go into Step 3.

In order to clarify this algorithm procedure, a flow chart
was shown in Figure 2.

Table 1: Set parameters for optimization.

Model
parameters Value DEACOP

parameters Value

B/mm 1520 𝑏1 10
𝐻
0
/mm 35.3 𝑏2 10

ℎ
𝑛
/mm 5.9 𝑃size 70

𝑇RC/
∘C 1061 𝑇change 20

CR
𝑛
/mm 0.016 r 10−4

n 7 ITTM 150

4. DEACOP Application and Results Analysis

4.1. Set Initial Parameters and Optimization Steps. In order
to validate the effectiveness of DEACOP optimization for
load distribution of the hot rolling, Q235 Steel was used for
simulation experiments. The parameters load distribution
was listed in Table 1, including the width of strip steel B,
initial thickness of workpiece 𝐻

0
, finish product thickness

h
𝑛
, exit temperature of roughing mill 𝑇RC, objective crown

CR
𝑛
, and the number of stands 𝑛. Moreover, parameters in

DEACOP include the number of population b (including
the number of high-quality solutions 𝑏1 and the number
of random solutions 𝑏2), the size of initial set 𝑃size, the
number of dropping into suboptimal region 𝑇change, radius
of suboptimal region r, and iteration times of optimization
ITTM.
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Table 2: Comparison of rolling force distribution.

Methods Variables (/KN)
𝑃
1

𝑃
2

𝑃
3

𝑃
4

𝑃
5

𝑃
6

𝑃
7

Classic 22438.8 20054.3 24530.9 17842.8 12593.2 12170 8941.5
EACOP 20356.8 22629.6 22048.6 17446.9 15130.7 12136.4 9184.9
DEACOP 21845.7 23648.4 23646.4 15963.3 13472.2 9813.8 9148.4

Table 3: Relative crown of each stand.

Methods Variables (×103)
CR
1
/𝐻
1

CR
2
/𝐻
2

CR
3
/𝐻
3

CR
4
/𝐻
4

CR
5
/𝐻
5

CR
6
/𝐻
6

CR
7
/𝐻
7

Classic 1.4 1.7 3 3.1 2.6 2.9 2.8
EACOP 1.2 1.9 2.6 2.9 3.1 2.9 2.8
DEACOP 1.2 1.9 2.6 2.9 2.9 2.8 2.8
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Figure 3: Comparison of rolling force distribution.

The process of DEACOP algorithm optimization for load
distribution of the hot rolling is shown as follows.

Step 1. The load distribution model considering flatness is
established based on the actual production process param-
eters.

Step 2. First of all, thickness value ℎ
󸀠

𝑖
can be obtained accord-

ing to experiential load distribution (6). Variables opti-
mized are determined as Δ𝑜ℎ

𝑖
, so exit thickness optimized is

denoted as ℎ
𝑖
= ℎ
󸀠

𝑖
+ Δ𝑜ℎ

𝑖
.

Step 3. Use DEACOP to optimize mathematic model of load
distribution. According to constraint condition of modeling
details, the process parameters which are calculated by opti-
mizing variable must satisfy actual production requirements.

Step 4. Until stopping criterion is met, go back to Step 3.

4.2. Simulation and Discussion. In this part, we have con-
sidered three methods for optimizing load distribution,
including, experience distribution, EACOP, and DEACOP.

Meanwhile, the results generated through those algorithms
were compared and analyzed. Under constraints conduction
and objective function, as we can notice that top three stands’
reductionmust be as large as possible. For the desire of rolling
force, the first stand rolling force 𝑃

1
is expected as 90% of

the second stand rolling force 𝑃
2
, and 𝑃

2
should be equal

to the third stand rolling force 𝑃
3
. In addition, the purpose

of optimization should guarantee integrated performance
of shape and gauge control system, so the object function
desires that rolling force of the last four stands should be
descended one by one, and relative crown remains consistent
as far as possible. The calculation results about rolling force
distribution as well as relative crown of each stand were
simulated separately by Matlab Platform, and the results are
shown in Tables 2 and 3.

According to reference with the constraints conduction
and objective function in actual rolling process, Figure 3
shows optimization effect of rolling force. For top three
stands, all the results optimized by DEACOP are greater
than those optimized by EACOP and classic optimization.
As for the empirical distribution, the conclusion cannot
meet the characteristics of objective optimization function
because 𝑃

1
and 𝑃

2
are not equal. Meanwhile, the last four

rolling forces which empirical distribution configure cannot
be in accord with objective function neither, while rolling
force allocated by DEACOP and EACOP is in line with in
turn reduced law. Besides, as we can see from Table 4, the
relative crown of the last four mill stands almost maintains
the same by DEACOP algorithm, which perfectly meets the
demand on rolling schedule that the relative crown of the last
four stands should be equal.

The thickness distribution of every stand is shown in
Table 4. Since the values of DEACOP optimization fully
meet the requirements of objective function based on gauge
control system, a similar experiment was made to verify its
better results in strip shape optimization curve; the data of
DEACOP in Table 4 was curved with the consideration of
Shohet discriminant criterion, which is useful to determine
whether shape has met requirements. As shown in Figure 4,
the relative crown difference between entrances and exits
which is optimized by DEACOP does not exceed the scope
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for 𝑖 = 1 to b
Expl = 0
𝐴 change = 1

for 𝑗 = 1 to 2
𝑥parent = 𝑥

𝑖
or 𝑥
𝑗

if 𝑓(𝑥child) < 𝑓(𝑥parent)

The hyper-rectangle direction defined by 𝑥parent and 𝑥child is [𝑎, 𝑏] = [𝑥child −
𝑥parent − 𝑥child

𝐴 change
, 𝑥child]

𝑥parent = 𝑥child
𝑥child = 𝑥

𝑁child
𝐴 change = 𝐴 change/2

endif
endfor

endfor

Algorithm 3: Go-beyond strategy algorithm.

Table 4: Thickness distribution of each stand.

Methods Variables (/mm)
ℎ
1

ℎ
2

ℎ
3

ℎ
4

ℎ
5

ℎ
6

ℎ
7

Classic 24.9662 18.3946 12.7358 9.7047 8.0254 6.718 5.9
EACOP 25.8395 18.2928 13.1485 10.0799 8.04719 6.7393 5.9
DEACOP 25.2135 17.3832 12.1914 9.5458 7.797 6.7361 5.9
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Figure 4: Judgment with Shohet formula.

of moderate wave and edge wave and has a larger margin.
Conclusions show that Shohet discriminant verifies the reli-
ability of the experimental results.

5. Conclusions

In this paper,The DEACOP which has a flexible frame struc-
ture embedding in various submethods has been introduced.
This algorithmwas presented to optimize the rolling schedule
and show its superior ability of global searching. Moreover,
it can not only escape from suboptimal solutions, but also
advance the search efficiency.

According to the experimental results within actual data
in hot rolling process, the DEACOP still can get feasible
and better mathematical solution and validate the real-time
application even by fewer adjustable parameters, which is
more suitable for the actual load distribution problems. With
this algorithm, the optimized rolling schedule can make full
use of the upstream finishing mill equipment which controls
top three stands’ reduction and improves the total rolling
consumption. The rolling force of the last four stands which
control exit thickness can be used as an important means of
shape control. Therefore, the improvement of efficiency in
plate-shaped regulating by DEACOP is recommended as an
important issue for further investigation.
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