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This paper deals with a new approach to robust control design for a class of nonlinearly affine control systems.Thedynamicalmodels
under consideration are described by a special class of structured implicit differential equations called semi-explicit differential-
algebraic equations (of index one), in the presence of additive bounded uncertainties. The proposed robust feedback design
procedure is based on an extended version of the classical invariant ellipsoid technique that we call the Attractive Ellipsoid (AE)
method. The theoretic schemes elaborated in our contribution are illustrated by a simple computational example.

1. Introduction

Recently the interest the new powerful robust control design
approaches to the nonconventional control systems has been
significantly increased (see, e.g., [1–10]). For example, the
robust stabilizing of dynamic models described by implicit
differential equations has emerged as a challenging problem
of the modern systems theory [11–13]. In our paper, we
consider a particular family of control processes governed
by so-called semi-explicit differential algebraic equations
(DAEs) of index one in the presence of bounded uncer-
tainties. We restrict our consideration to the mathematical
models of nonlinear systems with affine structures. Our aim
is to elaborate a constructive control design scheme that
guarantees the practical stability (stabilization with respect
to a bounded “small” region) of the closed-loop system
realizations. The concrete robust control synthesis approach
proposed in our contribution is a consequence of the newly
established “Attractive Ellipsoid’’ (AE) method established in
[5, 6, 8, 10, 14–16].

In our paper, we investigate a particular family of dynamic
processes characterized by the implicit differential equations
with the so called quasi-Lipschitz right-hand sides that can
be reduced to the semi-explicit DAEs of index one (see, e.g.,
[12] for details). The main mathematical tool used in our

paper is an appropriate extension of the classic Lyapunov-
based techniques (consult [1, 3, 4, 9, 17]). However, we apply
these techniques in combination with the descriptor method
[18].The effectiveness of the method we propose is illustrated
bymeans of an example of a strictly nonlinear implicit control
system.

The remainder of our paper is organized as follows.
Section 2 contains the problem formulation and related
concepts. The basic analytic results related to the AE method
are collected in Section 3. In this part of the paper we also
discuss a robust feedback control design procedure based
on a “minimal-size” attractive ellipsoid. Section 4 is devoted
to the corresponding computational technique that extends
the elaborated methodology. In fact, we reduce the robust
controller design problems to an auxiliary LMI-constrained
optimization problem. Section 5 summarizes the paper.

2. Problem Formulation and
Some Preliminaries

Let us consider the following initial value problem for the
nonlinear implicit system with an affine structure

𝐸�̇� (𝑡) = 𝑓 (𝑥 (𝑡)) + 𝐵𝑢 (𝑥 (𝑡)) + 𝜂 (𝑡) , 𝑡 ∈ R
+
,

𝑥 (0) = 𝑥
0
,

(1)
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Figure 1: The one-dimensional domain of quasi-Lipschitz func-
tions.

where 𝐸 ∈ R𝑛×𝑛 is a given matrix with det{𝐸} = 0 and
𝐵 ∈ R𝑛×𝑚. By 𝑥(𝑡) ∈ R𝑛, 𝑡 ∈ R

+
and 𝑥 ∈ R𝑛, 𝑢(𝑥) ∈

R𝑚, we denote here the 𝑛-dimensional state vector and the
𝑚-dimensional feedback-type control vector, respectively.
Problem (1) constitutes an adequate modeling framework for
a wide class of control systems characterized by an implicit
state equation in presence of some bounded uncertainties
𝜂(𝑡) ∈ R𝑛, 𝑡 ∈ R

+
, where ||𝜂(𝑡)||

𝑄𝜂
≤ 1 (see [19]). By || ⋅ ||

𝐻
,

where 𝐻 is a 𝑛 × 𝑛-dimensional symmetric positive defined
matrix, we denote a weighted Euclidean norm ||𝑥||

𝐻
:=

√𝑥𝑇𝐻𝑥. Let us now make the basic technical assumptions
associated with (1):

(i) 𝑓 : R𝑛 → R𝑛 is a continuously differentiable
function with a bounded derivative and moreover,

𝑓 (𝑥) − 𝐴𝑥


2

𝑄𝑓

≤ 𝛿 + ‖𝑥‖
2

𝑄𝑥

∀𝑥 ∈ R
𝑛

, ℎ ∈ R
+
; (2)

(ii) 𝜂(⋅) is assumed to be a bounded measurable function;
(iii) 𝑢(𝑥) is chosen in the form of a linear feedback,

namely, 𝑢(𝑥) = 𝐾𝑥, where𝐾 ∈ R𝑚×𝑛.

Here, 𝑄
𝑓
and 𝑄

𝑥
are symmetric positive defined matrices.

Through this paper, functions 𝑓(⋅) that satisfy the first basic
hypothesis are called quasi-Lipschitz functions (the first
hypothesis from the abovemain conditions).The simple one-
dimensional illustration of the quasi-Lipschitz restrictions is
given on Figure 1.

We now use the basic assumption and rewrite (1) in the
following equivalent form

𝐸�̇� (𝑡) = 𝐴𝑥 (𝑡) + (𝑓 (𝑥 (𝑡)) − 𝐴𝑥 (𝑡) + 𝐵𝐾𝑥 (𝑡) + 𝜂 (𝑡)) ,

𝑥 (0) = 𝑥
0
, 𝑡 ∈ R

+
.

(3)

Let us introduce some useful concepts and facts associated
with a matrix pair (Γ

1
, Γ
2
), where Γ

1
, Γ
2
∈ R𝑛×𝑛. We refer to

[12] for the additional technical details.

Definition 1. A matrix pair (Γ
1
, Γ
2
) is called regular if the

characteristic polynomial 𝑝(𝜆) := det(𝜆Γ
1
− Γ
2
), 𝜆 ∈ R is

not a zero polynomial. A matrix pair which is not regular is
called singular.

Definition 2. Two pairs of matrices (Γ
1
, Γ
2
) and (Σ

1
, Σ
2
),

Σ
1
, Σ
2
∈ R𝑛×𝑛, are called strongly equivalent if there exist

nonsingular matrices Θ,Δ ∈ R𝑛×𝑛 such that

Σ
1
= ΘΓ
1
Δ, Σ

2
= ΘΓ
2
Δ; (4)

if this is the case, we write (Γ
1
, Γ
2
) ∼ (Σ

1
, Σ
2
).

Recall that a matrix 𝑁 is called a nilpotent matrix of the
index ] ∈ N if 𝑁]

= 0 and 𝑁]−𝑘
̸= 0 for all 1 ≤ 𝑘 ≤ ] − 1,

𝑘 ∈ N. Using the above concepts, we are now ready to discuss
so called Weierstrass canonical form (see, e.g., [12]).

Theorem 3. Let (Γ
1
, Γ
2
) be regular. Then, one has

(Γ
1
, Γ
2
) ∼ ([

𝐼 0

0 𝑁
] , [

𝐽 0

0 𝐼
]) , (5)

where 𝐽 is a matrix in Jordan canonical form and 𝑁 is a
nilpotent matrix also in Jordan canonical form. Moreover, it is
allowed that the one or the other block is not present.

Theorem 3 gives rise to further retransformation of the
original closed-loop system (3). Let us additionally assume
that the given matrix pair (𝐸, 𝐴) is regular, namely,

(𝐸, 𝐴) ∼ ([
𝐼 0

0 𝑁
] , [

𝐽 0

0 𝐼
]) , (6)

for some nonsingular matrices Π and Ψ. Introduce a coordi-
nate transformation given by 𝑥 = Ψ𝑧 and multiply both sides
of equation in (3) by Π (from the left); we now rewrite (3) as
a system

�̇�
1
(𝑡) = 𝐽𝑧

1
(𝑡)

+ Π (𝑓 (Ψ𝑧 (𝑡)) − 𝐴Ψ𝑧 (𝑡) + 𝐵𝐾Ψ𝑧 (𝑡) + 𝜂 (𝑡)) ,

𝑁�̇�
2
(𝑡) = 𝑧

2
(𝑡)

+ Π (𝑓 (Ψ𝑧 (𝑡)) − 𝐴Ψ𝑧 (𝑡) + 𝐵𝐾Ψ𝑧 (𝑡) + 𝜂 (𝑡)) ,

𝑧 (0) = Ψ
−1

𝑥
0
,

(7)

where 𝑧 := (𝑧
1
, 𝑧
2
)
𝑇 such that dim{𝑧

1
} = dim{𝐽} and

dim{𝑧
2
} = 𝑛 − dim{𝑧

1
}. Assume that the nilpotent matrix

𝑁 in (7) has the nilpotency index ]. In that case the second
equation in (7) implies the following algebraic equation:

𝑁
]−1
𝑧
2
(𝑡)

+ 𝑁
]−1
Π(𝑓 (Ψ𝑧 (𝑡))

−𝐴Ψ𝑧 (𝑡) + 𝐵𝐾Ψ𝑧 (𝑡) + 𝜂 (𝑡)) = 0.

(8)
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Finally, we obtain a system of so-called semi-explicit differ-
ential algebraic equations (DAEs)

�̇�
1
(𝑡) = 𝐽𝑧

1
(𝑡)

+ Π (𝑓 (Ψ𝑧 (𝑡)) − 𝐴Ψ𝑧 (𝑡) + 𝐵𝐾Ψ𝑧 (𝑡) + 𝜂 (𝑡)) ,

0 = 𝐺 (𝑧
1
, 𝑧
2
, 𝑡) , 𝑧 (0) = Ψ

−1

𝑥
0
,

(9)

where𝐺(𝑧
1
, 𝑧
2
, 𝑡) := 𝑁

]−1
𝑧
2
(𝑡)+𝑁

]−1
Π(𝑓(Ψ𝑧(𝑡))−𝐴Ψ𝑧(𝑡)+

𝐵𝐾Ψ𝑧(𝑡)+𝜂(𝑡)), (9) is equivalent to the originally given initial
value problem (3).

Definition 4 (see [12]). A DAE of the form

�̇� = 𝑔
1
(𝑥, 𝑦, 𝑡) , 0 = 𝑔

2
(𝑥, 𝑦, 𝑡) (10)

is called semi-explicit DAE. Where 𝑥 ∈ R𝑛, 𝑦 ∈ R𝑚

are dependent variables, 𝑔
1
(⋅, ⋅, ⋅), 𝑔

2
(⋅, ⋅, ⋅) are continuously

differentiable functions.

In our paper we also restrict our consideration to implicit
systems (3)which can be transformed, viamatrix transforma-
tion, into a semi-explicit DAE of the form (9) with differential
index one.

Recall that a differentiation index of DAE (9) is a most
minimal number 𝐿 ∈ N such that

𝑑
(𝑙)

𝑑𝑡(𝑙)
(𝑁

]−1
𝑧
2
(𝑡)

+ 𝑁
]−1
Π(𝑓 (Ψ𝑧 (𝑡)) − 𝐴Ψ𝑧 (𝑡)

+𝐵𝐾Ψ𝑧 (𝑡) + 𝜂 (𝑡))) = 0,

(11)

where 𝑙 = 1, . . . , 𝐿, implies an semi-explicit DAE with respect
to 𝑧
2
(see [12] for details). Equation above has the next form

for index one:
𝑑

𝑑𝑡
(𝐺 (𝑧
1
, 𝑧
2
, 𝑡)) =

𝜕

𝜕𝑧
1

(𝐺 (𝑧
1
, 𝑧
2
, 𝑡)) �̇�
1

+
𝜕

𝜕𝑧
2

(𝐺 (𝑧
1
, 𝑧
2
, 𝑡)) �̇�
2

+
𝜕

𝜕𝑡
(𝐺 (𝑧
1
, 𝑧
2
, 𝑡)) .

(12)

The index one property requires that 𝐺(𝑧
1
, 𝑧
2
, 𝑡) be solvable

with respect to 𝑧
2
. In other words, the differentiation index

is one if by differentiation on time of the algebraic part of an
implicit differential system,

�̇�
1
(𝑡) = 𝐽𝑧

1
(𝑡)

+ Π (𝑓 (Ψ𝑧 (𝑡)) − 𝐴Ψ𝑧 (𝑡) + 𝐵𝐾Ψ𝑧 (𝑡) + 𝜂 (𝑡)) ,

0 =
𝜕

𝜕𝑧
1

(𝐺 (𝑧
1
, 𝑧
2
, 𝑡)) �̇�
1
+
𝜕

𝜕𝑧
2

(𝐺 (𝑧
1
, 𝑧
2
, 𝑡)) �̇�
2

+
𝜕

𝜕𝑡
(𝐺 (𝑧
1
, 𝑧
2
, 𝑡)) ,

(13)

which is solvable for (�̇�
1
, �̇�
2
) if det((𝜕/𝜕𝑧

2
)(𝐺(𝑧
1
, 𝑧
2
, 𝑡))) ̸= 0.

The above assumptions on the semi-explicit DAE (9) of
differential index one or on the initial implicit system (3)
makes it possible to use all the conventional systematic
concepts associatedwith the dynamic behavior of the implicit
systems of the type (3) including all the classic Lyapunov
stability and the set stability concepts.

Let us now recall these standard definitions. A set D in
the state space of system of a dynamic system is said to be
(positively) invariant if an admissible trajectory initiated in
this set remains inside the set at all future time instants. Let
us denote by Ω(𝑧(0)) the (positive) limit set of (9) (the set
of all positive limit points). We refer to [1, 3, 4] for further
theoretical background and useful results.

Definition 5. A compact invariant set D ⊂ R𝑛 of the
closed-loop semi-explicit system (9) of index one is called
asymptotically Lyapunov stable ifΩ(𝑧(0)) ∈ D and

(i) for all 𝜖 > 0 there exists 𝛿
1
> 0 such that

dist{𝑧(0),D} < 𝛿
1
implies that dist{𝑧(𝑡),D} < 𝜖, 𝑡 ≥ 0

(the Lyapunov stability of the set);
(ii) there exists𝛿

2
> 0 such that dist{𝑧(0),D} < 𝛿

2
implies

lim
𝑡→∞

dist{𝑧(𝑡),D} = 0 (the attraction of the set).

Here dist{𝑧,D} := min
�̃�∈D||𝑧 − �̃�||R𝑛 is the usual Euclidean

distance between a point 𝑧 ∈ R𝑛 andD.

Our aim is to specify an invariant set for the closed-loop
semi-explicit system (9) in the form of an ellipsoidE

𝑃
:= {𝑧 ∈

R2 | 𝑧𝑇𝑃𝑧 ≤ 1}, where 𝑃 is a symmetric positive defined
𝑛×𝑛-dimensional matrix. Using the above-mentioned classic
definition of an asymptotically stable set, we now introduce
the useful “attractive ellipsoid” concept.

Definition 6. We callE
𝑃
an attractive ellipsoid for system (9)

if it is an asymptotically stable invariant set of (9).

The chosen gain matrix 𝐾 for the linear feedback causes
a dynamic behavior of the complete state vector 𝑧(𝑡) such
that the inequality 𝑧𝑇(𝑡)𝑃𝑧(𝑡) ≤ 1 holds. The last can
be considered in an exact or any approximative sense. The
resulting dynamic behavior of the closed-loop system can be
interpreted as a stability in a “practical” sense.

From the point of view of an implementable control appli-
cations we are usually interested to construct an attractive
ellipsoid E

𝑃
that possesses a minimal size (in an adequate

sense). This requirement can be formalized in the form of a
specific minimization problem subject to the characteristic
parameters of E

𝑃
. This minimality property can be formal-

ized by the following minimization problem:

minimize tr {𝑃−1} ,

subject to 𝑃 > 0, 𝑃 = 𝑃
𝑇

, 𝐾 ∈ Υ,

(14)

where Υ ⊂ R𝑚×𝑛 is the set of matrices which ensure inva-
riance of attractive ellipsoid E

𝑃
. The basic optimization

problem (14) determines a suitable control function of the
linear feedback type that guarantees asymptotical stability
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and the invariance of the designed ellipsoidal region E
𝑃

(called attractive ellipsoid). Evidently, next we need to give
a constructive characterization of the set Υ and propose an
implementable method for a computational treatment of the
optimization problem (14). The above-mentioned concrete
specification of the set Υ will be proceeded (in the next
sections) by means of a Lyapunov-like analysis and using the
technique of the linearmatrix inequalities (see [20] for LMIs).

3. The Attractive Ellipsoid Method

As mentioned in Introduction, the basic results from the
Lyapunov set stability theory cannot be directly applied to
the implicit nonlinear system (3). Moreover, the analogous
theory for the general implicit systems (see, e.g., [11, 12, 21])
is quite sophisticated in the context of practical implementa-
tions. Motivated from that fact, our study of the asymptotical
stability properties of E will be based on the following
auxiliary result.

Lemma 7. Let a functionV : R
+
→ R
+
satisfy the following

differential inequality: V̇(𝑡) ≤ −𝛼V(𝑡) + 𝛽, where 𝛼 > 0

and 𝛽 > 0 are some constants. Then lim
𝑡↑∞

V(𝑡) ≤ 𝛽/𝛼 and
moreover

V (𝑡) ≤
𝛽

𝛼
+ (V (0) −

𝛽

𝛼
) exp (−𝛼𝑡) ∀𝑡 ≥ 0. (15)

Note that the presented Lemma 7 can be proved directly
using the well-known properties of the linear systems and the
Comparison Principle (see [9]). A functionV fromLemma 7
is further called a “storage function”.

Our aim is to show that under some additional assump-
tions the combined function 𝑉(𝑥(𝑡)), where 𝑥(⋅) is a solution
to (3) for a suitable gain matrix 𝐾 ∈ Υ, satisfies all
the conditions of the Lemma 7. With this aim let us use
the Lyapunov-like analytic tool and introduce the following
“energetic” function 𝑉 : R𝑛 → R

+
associated with the

original implicit system (3):

𝑉 (𝑥) := 𝑥
𝑇

𝑃𝑥, 𝑃 = 𝑃
𝑇

, 𝑃 > 0. (16)

Note that the symmetric positive defined matrix 𝑃 here is the
samematrix as in (14). Let us consider this energetic function,
namely,𝑉(𝑥(𝑡)), evaluated along the trajectories of the initial
system (3). We use the additional notation 𝜎(𝜂(𝑡), 𝑥(𝑡)) :=
(𝜂(𝑡) + 𝑓(𝑥(𝑡)) − 𝐴𝑥(𝑡)). We are now ready to formulate our
main theoretic result.

Theorem 8. Let 𝛼 > 0, 𝛽 := 1 + 𝛿 > 0. Then the Lie derivative

𝐷𝑉 (𝑥 (𝑡)) |
(2)
:= ∇𝑉 (𝑥 (𝑡))

× [𝐴𝑥 (𝑡) + (𝑓 (𝑥 (𝑡))

− 𝐴𝑥 (𝑡) + 𝐵𝐾𝑥 (𝑡) + 𝜂 (𝑡))]

(17)

of the combined function𝑉(𝑥(⋅)) satisfies the following inequal-
ity:

𝐷𝑉 (𝑥 (𝑡)) + 𝛼𝑉 (𝑥 (𝑡)) − 𝛽 ≤ 𝑍
𝑇

(𝑡)𝑊 (𝑃, 𝑃
1
, 𝐾, 𝛼)𝑍 (𝑡) ,

(18)

where 𝑍(𝑡) = (𝑥𝑇(𝑡), �̇�𝑇(𝑡), 𝜎𝑇(𝜂(𝑡), 𝑥(𝑡)))𝑇 is the extended
state vector, 𝑃

1
∈ R𝑛×𝑛, and 𝑊(𝑃, 𝑃

1
, 𝐾, 𝛼) is a matrix-

function. If 𝑊(𝑃, 𝑃
1
, 𝐾, 𝛼) is chosen as a negative defined

matrix, then the combined function 𝑉(𝑥(⋅)) has all the prop-
erties of a storage functionV(⋅).

Proof. Let 𝑉(𝑥) = 𝑥𝑇𝑃𝑥 and 𝑃
1
∈ R𝑛×𝑛. Using the idea of the

“descriptor method” (see [18] for details), we can represent
𝐷𝑉(𝑥(𝑡)) as follows:

𝐷𝑉 (𝑥 (𝑡)) = 𝐷𝑉 (𝑥 (𝑡))

+ 2 ⟨[𝑃𝑥 (𝑡) + 𝑃�̇� (𝑡) + 𝑃
1
𝜎 (𝜂 (𝑡) , 𝑥 (𝑡))] ,

(−𝐸�̇� (𝑡) + (𝐴 + 𝐵𝐾) 𝑥 (𝑡)

+𝜎 (𝜂 (𝑡) , 𝑥 (𝑡)))⟩ ,

(19)

where the second addend in the last formula is an
effective zero. Applying this representation and taking
into consideration the next useful effective zero given by
𝜎(𝜂(𝑡), 𝑥(𝑡))

𝑇

𝑄
𝜂
𝜎(𝜂(𝑡), 𝑥(𝑡)) − 𝜎(𝜂(𝑡), 𝑥(𝑡))

𝑇

𝑄
𝜂
𝜎(𝜂(𝑡), 𝑥(𝑡)),

we get

𝐷𝑉 (𝑥 (𝑡)) + 𝛼𝑉 (𝑥 (𝑡)) − 𝛽

= 𝑍
𝑇

(𝑡)𝑊 (𝑃, 𝑃
1
, 𝐾, 𝛼)𝑍 (𝑡) − 𝛽

+ 𝜎(𝜂 (𝑡) , 𝑥 (𝑡))
𝑇

𝑄
𝜂
𝜎 (𝜂 (𝑡) , 𝑥 (𝑡))

− 𝜎(𝜂 (𝑡) , 𝑥 (𝑡))
𝑇

𝑄
𝜂
𝜎 (𝜂 (𝑡) , 𝑥 (𝑡))

= 𝑍
𝑇

(𝑡) �̃� (𝑃, 𝑃
1
, 𝐾, 𝛼)𝑍 (𝑡) − 𝛽

+ 𝜎(𝜂 (𝑡) , 𝑥 (𝑡))
𝑇

𝑄
𝜂
𝜎 (𝜂 (𝑡) , 𝑥 (𝑡)) .

(20)

Here we defined

�̃� := (

�̃�
11
�̃�
12
�̃�
13

�̃�
21
�̃�
22
�̃�
23

�̃�
31
�̃�
32
�̃�
33

) (21)

with

�̃�
11
:= 𝑃𝐴 + 𝐴

𝑇

𝑃 + 𝑃𝐵𝐾 + 𝐾
𝑇

𝐵
𝑇

𝑃 + 𝛼𝑃,

�̃�
12
:= 𝑃 − 𝑃𝐸 + 𝐴

𝑇

𝑃 + 𝐾
𝑇

𝐵
𝑇

𝑃,

�̃�
13
:= 𝑃 + 𝐴

𝑇

𝑃
1
+ 𝐾
𝑇

𝐵
𝑇

𝑃
1
,

�̃�
21
:= 𝑃 − 𝐸

𝑇

𝑃 + 𝑃𝐴 + 𝑃𝐵𝐾,

�̃�
22
:= − (𝑃𝐸 + 𝐸

𝑇

𝑃) , �̃�
23
:= 𝑃 − 𝐸

𝑇

𝑃
1
,

�̃�
31
:= 𝑃 + 𝑃

𝑇

1
𝐴 + 𝑃

𝑇

1
𝐵𝐾,

�̃�
32
:= 𝑃 − 𝑃

𝑇

1
𝐸, �̃�

33
:= 𝑃
𝑇

1
− 𝑄
𝜂
,

(22)

where 𝑊(𝑃, 𝑃
1
, 𝐾, 𝛼) is the same matrix-function �̃�(𝑃, 𝑃

1
,

𝐾, 𝛼) replacing �̃�
11
by

𝑊
33
:= 𝑃
𝑇

1
. (23)
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Using the boundedness conditions from Section 2, we easily
obtain ‖ 𝑓(𝑥)−𝐴𝑥‖2

𝑄𝜂

≤ 𝛿+ℎ ‖ 𝑥‖
2

, ‖ 𝜂‖
2

𝑄𝜂

≤ 1. We now put
𝛽 = 1 + 𝛿 and derive the final estimation

𝐷𝑉 (𝑥 (𝑡)) + 𝛼𝑉 (𝑥 (𝑡)) − 𝛽

= 𝑍
𝑇

(𝑡) �̃� (𝑃, 𝑃
1
, 𝐾, 𝛼)𝑍 (𝑡) − 𝛽

+
𝜎 (𝜂 (𝑡) , 𝑥 (𝑡))



2

𝑄𝜂

= 𝑍
𝑇

(𝑡) �̃� (𝑃, 𝑃
1
, 𝐾, 𝛼)𝑍 (𝑡) − 𝛽

+
𝜂 (𝑡) + 𝑓 (𝑥 (𝑡)) − 𝐴𝑥 (𝑡)



2

𝑄𝜂

≤ 𝑍
𝑇

(𝑡) �̃� (𝑃, 𝑃
1
, 𝐾, 𝛼)𝑍 (𝑡) − 𝛽

+
𝜂 (𝑡)



2

𝑄𝜂

+
𝑓 (𝑥 (𝑡)) − 𝐴𝑥 (𝑡)



2

𝑄𝜂

≤ 𝑍
𝑇

(𝑡) �̃� (𝑃, 𝑃
1
, 𝐾, 𝛼)𝑍 (𝑡) − 𝛽 + 1

+ 𝛿 + ℎ‖𝑥 (𝑡)‖
2

≤ 𝑍
𝑇

(𝑡)𝑊 (𝑃, 𝑃
1
, 𝐾, 𝛼)𝑍 (𝑡) − 𝛽 + 1 + 𝛿

≤ 𝑍
𝑇

(𝑡)𝑊 (𝑃, 𝑃
1
, 𝐾, 𝛼)𝑍 (𝑡) ,

(24)

where term ℎ ‖ 𝑥(𝑡)‖
2 is included into the new matrix

function𝑊(𝑃, 𝑃
1
, 𝐾, 𝛼) and 𝛽 = 1 + ℎ.𝑊(𝑃, 𝑃

1
, 𝐾, 𝛼) is the

same matrix-function �̃�(𝑃, 𝑃
1
, 𝐾, 𝛼) replacing �̃�

11
by

𝑊
11
:= 𝑃𝐴 + 𝐴

𝑇

𝑃 + 𝑃𝐵𝐾 + 𝐾
𝑇

𝐵
𝑇

𝑃 + (𝛼 + ℎ) 𝑃. (25)

Evidently, the negative definiteness of𝑊(𝑃, 𝑃
1
, 𝐾, 𝛼) guaran-

tees the properties of the storage functionV(⋅) (see Lemma 7)
for the combined function 𝑉(𝑥(⋅)).

Using Theorem 8, we are now able to characterize the
abstract constraint set Υ in the main optimization problem
(14) by a constructive way. Recall that Υ ⊂ R𝑚×𝑛 is the set of
the admissible gain matrices that guarantee the attractiveness
of the ellipsoid E

𝑃
(see Definition 6). Therefore, the main

problem (14) has now the following form:

minimize tr {𝑃−1} ,

subject to 𝑃 > 0, 𝑃 = 𝑃
𝑇

,

𝑊 (𝑃, 𝑃
1
, 𝐾, 𝛼) < 0

(26)

with a symmetric block-matrix 𝑊(𝑃, 𝑃
1
, 𝐾, 𝛼). Let us now

note that due to the bilinear structure of 𝑊(𝑃, 𝑃
1
, 𝐾, 𝛼) the

negative definiteness of this matrix-function constitutes a
numerically sophisticated question. The nonlinear nature of
the obtained multidimensional inequality in (26) evidently
involves a possible relaxation approach. We next replace the
above bilinear matrix inequality by an auxiliary system of
linear matrix inequalities (see [20] for LMIs). This expected
relaxed system will provide a basis for the further numerical

treatment of the main optimization problem (26). Introduce
the following symmetric matrix-function:

𝑊
𝑟
(𝑃, 𝑃
1
, 𝑌, 𝛼) := 𝑀

𝑇

𝑊(𝑃, 𝑃
1
, 𝐾, 𝛼)𝑀, (27)

where 𝑀 := diag(𝑃−1, 𝑃−1, 𝑃−1
1
) ∈ R3𝑛×3𝑛 is an auxiliary

matrix. The component wise definition of𝑊
𝑟
(𝑃, 𝑃
1
, 𝑌, 𝛼) can

be given by the corresponding expressions:

𝑊
𝑟11
= 𝐴𝑃
−1

+ 𝑃
−1

𝐴
𝑇

+ 𝐵𝑌 + 𝑌
𝑇

𝐵
𝑇

+ (𝛼 + ℎ) 𝑃
−1

,

𝑊
𝑟12
= 𝑃
−1

− 𝐸𝑃
−1

+ 𝑃
−1

𝐴
𝑇

+ 𝑌
𝑇

𝐵
𝑇

,

𝑊
𝑟13
= 𝑃
−1

1
+ 𝑃
−1

𝐴
𝑇

+ 𝑌
𝑇

𝐵
𝑇

,

𝑊
𝑟21
= 𝑃
−1

− 𝑃
−1

𝐸
𝑇

+ 𝐴𝑃
−1

+ 𝐵𝑌,

𝑊
𝑟22
= − (𝐸𝑃

−1

+ 𝑃
−1

𝐸
𝑇

) , 𝑊
𝑟23
= 𝑃
−1

1
− 𝑃
−1

𝐸
𝑇

,

𝑊
𝑟31
= 𝑃
−1

1
+ 𝐴𝑃
−1

+ 𝐵𝑌,

𝑊
𝑟32
= 𝑃
−1

1
− 𝐸𝑃
−1

, 𝑊
𝑟33
= 𝑃
−1

1
− 𝑃
−1

1
𝑄
𝜂
𝑃
−1

1
,

(28)

where 𝑌 := 𝐾𝑃−1 ∈ R𝑚×𝑛 is an artificial variable. The last
expressions for the component of 𝑊

𝑟
(𝑃, 𝑃
1
, 𝐾, 𝛼) are linear

functions (excepting the term𝑊
𝑟33
) with respect to the basic

variables (𝑃, 𝑃
1
, 𝑌, ) for a fixed scalar component 𝛼. To avoid

the technical problems with the bilinear structure of𝑊
𝑟33

of
the matrix𝑊

𝑟
(𝑃, 𝑃
1
, 𝑌, 𝛼) it is always be possible to ask for a

𝑃
−1

1
which satisfies inequality

𝑃
−1

1
𝑄
𝜂
𝑃
−1

1
> 𝜌𝑃
−1

1
(29)

for some real constant 𝜌 > 0 and then majorize 𝑊
𝑟
(𝑃, 𝑃
1
,

𝐾, 𝛼) < 𝐹
𝑟
(𝑃, 𝑃
1
, 𝑌, 𝛼), where 𝐹

𝑟
(𝑃, 𝑃
1
, 𝑌, 𝛼) is a matrix that

is equal to𝑊
𝑟
(𝑃, 𝑃
1
, 𝑌, 𝛼) with replacing of the element𝑊

𝑟33

by the overestimated term 𝐹
𝑟33
:= (1 − 𝜌)𝑃

−1

1
. We can apply

the celebrated Schur technique to inequality above to obtain

𝜒 := (
𝑄
𝜂

𝐼
𝑛

𝐼
𝑛
𝜌
−1
𝑃
−1

1

) > 0, (30)

where 𝐼
𝑛
is the identity matrix of the size 𝑛 × 𝑛 and 𝜌 > 0 is a

suitable constant. Finally, in position of the original bilinear
inequality in (26) we obtain the following matrix inequality
that has a linear structure under assumption of fixed scalar
parameter 𝛼:

W := diag (𝐹
𝑟
(𝑃, 𝑃
1
, 𝑌, 𝛼) , −𝜒) < 0, (31)

where 𝜒 is defined above. Note that all terms inW are linear.
Therefore, the main optimization problem (14) has now the
following relaxed form:

minimize tr {𝑃−1} ,

subject to 𝑃 > 0, 𝑃 = 𝑃
𝑇

,

W (𝑃, 𝑃
1
, 𝑌, 𝛼) < 0

(32)

with a symmetric block-matrixW(𝑃, 𝑃
1
, 𝑌, 𝛼).
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Theorem 9. Assume that the relaxed optimization problem
(32) has an optimal solution (𝑃opt, 𝑃opt

1
, 𝑌

opt
) for a fixed scalar

variable 𝛼. Then the following 5-tuple (𝑃opt, 𝑃opt
1
, 𝐾

opt
, 𝛼) is

also an optimal solution to the initial nonlinearly constrained
problem (26) with 𝐾opt

:= 𝑌
opt
𝑃
opt.

The last result is a direct consequence of the one-to-
one transformations (introduced above) 𝐾 = 𝑌𝑃 for some
admissible 𝑃 and 𝑌. Therefore, the formal relaxation of the
initial problem does not really extend the solutions set of the
original problem (26). The obtained equivalent optimization
problem (32) with linear type restrictions (LMIs) provides an
analytic basis for the implementable numerical algorithms
associated with the given problem (14) initially formulated
in the abstract form. Recall that (14) determines the practi-
cally stable linear feedback control strategy for the implicit
dynamic system (3). This control design is based on the
minimal size attractive ellipsoidE

𝑃
and in fact defined by the

selection of the optimal gain matrix𝐾opt.

4. Numerical Aspects of the Attractive
Ellipsoid Method

In this part of the paper we apply the theoretic results from
Section 3 to the practical stability analysis of implicit systems
(3). Our aim is to propose a realizable attractive ellipsoid
based numerical scheme for the computational robust control
design. Let us first summarize the constructive approaches
discussed above in the form of a Conceptual Algorithm.

Algorithm 10.

(0) Put 𝑙 = 0, select an initial positive scalar 𝛼(0), and
choose an accuracy 𝜖 > 0.

(1) Solve the optimization problem (32).
(2) Use the obtained solution Φ(𝑙) := (𝑃

(𝑙)
, 𝑃
(𝑙)

1
, 𝑌
(𝑙)
) to

(32) and solve the system of linear inequalities (with
respect to the unknown pair 𝛼)

W (𝑃
(𝑙)

, 𝑃
(𝑙)

1
, 𝑌
(𝑙)

, 𝛼) < 0

𝛼 > 0.

(33)

(3) Get a solution 𝛼(𝑙) to (33). Increase 𝑙 = 𝑙 + 1 and solve
(32). If |𝑃(𝑙)−𝑃(𝑙−1)| < 𝜖, go to Step (4). Else, go to Step
(2).

(4) Stop. Determine (𝑃opt, 𝑃opt
1
, 𝑌

opt
, 𝛼

opt
) := (𝑃

(𝑙)
, 𝑃
(𝑙)

1
,

𝑌
(𝑙)
, 𝛼
(𝑙)
) and𝐾opt

:= 𝑌
(𝑙)
𝑃
(𝑙).

The minimization problem (32) in Steps (1) and (3)
constitutes an important part of the proposed algorithm. It
can be solved using some standard numerical techniques.The
same is also true with respect to the auxiliary subproblem
(33). Note that (32) (under assumption of the fixed scalar
parameter 𝛼) is a linear optimization problem with respect to
the unknownmatrices. Let us illustrate the effectiveness of the
proposed Conceptual Algorithm 10 by way of an academic
example.

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0
−0.2
−0.4
−0.5 0 5 10 15 20

Phase plane

Phase plane

St
at

e𝑥
2
(𝑡

)

State 𝑥1(𝑡)

Figure 2: Phase plane of nonlinear system.

Example 11. Consider the semi-explicit DAE system of the
type (1) with index one and concrete dates

𝐸 = (
1 0

0 0
) , 𝑓 (𝑥) = (−0.1 sign (𝑥

1
) , 𝑥
2
) ,

𝐴 = (
−0.1 0

0 1
) , 𝐵 = (

1

1
) .

(34)

We evidently have the following simple estimations that
corresponds to our main assumptions (see Section 2)

𝑓 (𝑥) − 𝐴𝑥


2

=
−0.1 (sign (𝑥1) − 𝑥1)



2

≤ (0.1)
2

+ (0.1)
2

𝑥
2

1
.

(35)

We now fix ℎ = 𝛿 = 0.01 and the initial value 𝛼(0) = 10−5.
Using the Conceptual Algorithm discussed above, we next
obtain

𝑃
opt
= (

0.05879 0.00645

0.00645 0.01235
) ,

𝐾
opt
= (−0.056 − 0.032) .

(36)

Using the obtained value 𝐾opt, and applying the standard
MATLAB toolboxes Ode23t, Ode15s, and Ode15i, we are able
to calculate the trajectory 𝑥(⋅) of the closed-loop system (3).
We have considered the following initial conditions 𝑥

0
=

(20, 1.157)
𝑇, �̇�
0
= (−1.257, 10)

𝑇. The external perturbation
is selected as 𝜂(𝑡) = 1 × 10

−3
(sin 𝑡, sin 𝑡)𝑇. The application

of Conceptual Algorithm 10 in the given system induces the
following numerical results indicated on Figures 2 and 3.
Figure 2 represents the state coordinates of the closed-loop
system (3). The calculated optimal matrix 𝑃opt determines
the corresponding attractive ellipsoid of theminimal size that
contains the origin. Figure 3 shows the time evolution of the
same state components (𝑥

1
(𝑡), 𝑥
2
(𝑡)).

Finally note that the applied theoretic method and
the corresponding computational results constitute a robust
behavior of the resulting system in the sense of the effective
disturbances rejection.
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Figure 3: Temporal evolution of trajectories 𝑥
1
and 𝑥

2
.

5. Concluding Remarks

In this paper we developed a new analytic and computational
method for the robust feedback control design of nonlinear
implicit dynamic systems governed by semi-explicit DAEs of
index one and closed by a linear control law. The proposed
design procedure in our contribution constitutes an exten-
sion of the conventional invariant ellipsoid technique (called
the attractive ellipsoid method). From the analytic point of
view, the elaborated methodology generates an admissible
linear feedback control strategy that guarantee existence
and a concrete characterization of a minimal size invariant
ellipsoid associated with the system realization.The obtained
ellipsoidal invariant set is asymptotically stable in the sense
of Lyapunov. Finally note that the main analytic idea and
the associated numerical treatment can be easily applied to
some alternative linear and nonlinear control processes that
incorporate some natural bounded uncertainties.
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