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This paper is devoted to the stability and convergence analysis of the two-step Runge-Kutta (TSRK) methods with the Lagrange
interpolation of the numerical solution for nonlinear neutral delay differential equations. Nonlinear stability and D-convergence
are introduced and proved. We discuss the GR(𝑙)-stability, GAR(𝑙)-stability, and the weak GAR(𝑙)-stability on the basis of (𝑘, 𝑙)-
algebraically stable of the TSRKmethods; we also discuss the D-convergence properties of TSRKmethods with a restricted type of
interpolation procedure.

1. Introduction

Neutral delay differential equations (NDDEs) arise in a
variety of fields as biology, economy, control theory, and
electrodynamics (see, e.g., [1–5]). The stability and conver-
gence properties of numerical methods for linear NDDEs
have been widely researched by many authors (see, e.g., [6–
11]). For the case of nonlinear delay differential equations, this
kind of methodology had been first introduced by Bellen and
Zennaro [12] and Torelli [13] and then developed by Torelli
[14], Bellen [15], and Zennaro [16, 17]. In 1997, Koto proved
the asymptotic stability of natural Runge-Kutta method for a
class of nonlinear delay differential equations in [18]. Bellen
et al. [19] gave a discussion of the stability of continuous
numerical methods for a special class of nonlinear neutral
delay differential equations. In particular, Jackiewicz [20–
22] systematically investigated the convergence of various
numerical methods for more general neutral functional
differential equations (NFDEs). In 2009, Yang et al. gave a
novel robust stability criteria for stochastic Hopfield neural
networks with time delays in [23]. Yang et al. [24] studied
the exponential stability on stochastic neural networks with
discrete interval and distributed delays in 2010. In 2011,
Liu [25] gave the robust stability for Neutral time-varying
delay systems with non-linear peturbations. On the stability,
Tanikawa studied the values of random zero-sum games in

[26], and in [27] Basin and Calderon-Alyarez gave the delay-
dependent stability studies for vector nonlinear stochastic
systems with multiple delays.

However, these important convergence results are based
on the classical Lipschitz conditions. The studies focusing on
the stability and convergence of the numerical method for
nonlinear NDDEs based on a one-sided Lipschitz condition
have not yet been seen in literature until now. By means
of a one-sided Lipschitz condition, in the present paper we
discuss the stability and convergence of two-step Runge-
Kutta (TSRK) methods for nonlinear NDDEs. Thanks to the
one-sided nature of the Lipschitz condition, the error bounds
obtained in the present paper are sharper than those given in
the references mentioned.

2. Two-Step Runge-Kutta Methods for NDDEs

It is the purpose of this paper to investigate the nonlinear
stability and convergence properties of the followingNDDEs:

𝑦
󸀠

(𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏) , 𝑦
󸀠

(𝑡 − 𝜏)) , 𝑡 ∈ [0, 𝑇] ,

𝑦 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(1)
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where𝑓 : [0, 𝑇]× 𝐶𝑁× 𝐶𝑁× 𝐶𝑁 → 𝐶𝑁 is a givenmapping, 𝜏
is a positive delay term, and𝜑 : [−𝜏, 0] → 𝐶𝑁 is a continuous
function. Moreover, we assume that there exist some inner
product ⟨⋅, ⋅⟩ and the induced norm ‖ ⋅ ‖ in 𝐶𝑁, such that

Re ⟨𝑓 (𝑡, 𝑦
1
, 𝑢, V) − 𝑓 (𝑡, 𝑦

2
, 𝑢, V) , 𝑦

1
− 𝑦
2
⟩ ≤ 𝛼

󵄩󵄩󵄩󵄩𝑦1 − 𝑦2
󵄩󵄩󵄩󵄩
2

,

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑦, 𝑢1, V) − 𝑓 (𝑡, 𝑦, 𝑢2, V)
󵄩󵄩󵄩󵄩 ≤ 𝛽

󵄩󵄩󵄩󵄩𝑢1 − 𝑢2
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑦, 𝑢, V1) − 𝑓 (𝑡, 𝑦, 𝑢, V2)
󵄩󵄩󵄩󵄩 ≤ 𝛾

󵄩󵄩󵄩󵄩V1 − V
2

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝐾 (𝑡, 𝑦, 𝑢
1
, V, 𝑤) − 𝐾 (𝑡, 𝑦, 𝑢

2
, V, 𝑤)

󵄩󵄩󵄩󵄩 ≤ 𝑞
󵄩󵄩󵄩󵄩𝑢1 − 𝑢2

󵄩󵄩󵄩󵄩 ,

(2)

where 𝐾(𝑡, 𝑦, 𝑢, V, 𝑤) = 𝑓(𝑡, 𝑦, 𝑢, 𝑓(𝑡 − 𝜏, 𝑢, V, 𝑤)), 𝑡 ∈ [0, 𝑇],
∀𝑦, 𝑦
1
, 𝑦
2
, 𝑢, 𝑢
1
, 𝑢
2
, V, V
1
, V
2
, 𝑤 ∈ 𝐶𝑁, and 𝛼, 𝛽, 𝛾, 𝑞 are

constants.
In order to make the error analysis feasible, we always

assume that problem (1) has a unique solution 𝑦(𝑡) which is
sufficiently differentiable and satisfies

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑𝑖𝑦 (𝑡)

𝑑𝑡𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝑀
𝑖
, 𝑖 = 1, 2, . . . , 𝑡 ∈ [−𝜏, 𝑇] , (3)

and denotes the problem class 𝑅(𝛼, 𝛽, 𝛾, 𝑞) that consists of all
NDDEs with (2).

Many numerical methods have been proposed for the
numerical solution of problem (1).

In this paper, we are concerned with two-step Runge-
Kutta (TSRK) method of the form

𝑌
(𝑛)

𝑖
= 𝑦
𝑛
+ ℎ

×

𝑠

∑
𝑗=1

𝑎
𝑖𝑗
𝑓 (𝑡
𝑛
+ 𝑐
𝑗
ℎ, 𝑌
(𝑛)

𝑗
) , 𝑖 = 1, 2, . . . , 𝑠,

(4a)

𝑌
(𝑛−1)

𝑖
= 𝑦
𝑛−1

+ ℎ

×

𝑠

∑
𝑗=1

𝑎
𝑖𝑗
𝑓 (𝑡
𝑛−1

+ 𝑐
𝑗
ℎ, 𝑌
(𝑛−1)

𝑗
) , 𝑖 = 1, 2, . . . , 𝑠,

(4b)

𝑦
𝑛+1

= (1 − 𝜃) 𝑦
𝑛
+ 𝜃𝑦
𝑛−1

+ ℎ

𝑠

∑
𝑖=1

𝑏
𝑖
𝑓 (𝑡
𝑛
+ 𝑐
𝑖
ℎ, 𝑌
(𝑛)

𝑖
)

+ ℎ

𝑠

∑
𝑖=1

𝑏̃
𝑖
𝑓 (𝑡
𝑛−1

+ 𝑐
𝑖
ℎ, 𝑌
(𝑛−1)

𝑖
) ,

(4c)

where∑𝑠
𝑖=1

𝑏
𝑖
+∑
𝑠

𝑖=1
𝑏̃
𝑖
= 1+𝜃, 𝑐

𝑖
= ∑
𝑠

𝑗=1
𝑎
𝑖𝑗
,𝑦
𝑛
is the numerical

approximation at 𝑡
𝑛
= 𝑛ℎ to the analytic solution 𝑦(𝑡

𝑛
), ℎ > 0

is a step size, and 0 ≤ 𝜃 ≤ 1.The abovemethods are studied in

[11]. Now we consider the adaptation of the two-step Runge-
Kutta method to (1):

𝑌
(𝑛)

𝑖
= 𝑦
𝑛
+ ℎ

×

𝑠

∑
𝑗=1

𝑎
𝑖𝑗
𝑓(𝑡
𝑛
+ 𝑐
𝑗
ℎ, 𝑌
(𝑛)

𝑗
, 𝑌
(𝑛)

𝑗
, 𝑌̃
(𝑛)

𝑗
) , 𝑖 = 1, 2, . . . , 𝑠,

(5a)

𝑌
(𝑛−1)

𝑖
= 𝑦
𝑛−1

+ ℎ

×

𝑠

∑
𝑗=1

𝑎
𝑖𝑗
𝑓 (𝑡
𝑛−1

+ 𝑐
𝑗
ℎ, 𝑌
(𝑛−1)

𝑗
,

𝑌
(𝑛−1)

𝑗
, 𝑌̃
(𝑛−1)

𝑗
) , 𝑖 = 1, 2, . . . , 𝑠,

(5b)

𝑦
𝑛+1

= (1 − 𝜃) 𝑦
𝑛
+ 𝜃𝑦
𝑛−1

+ ℎ

𝑠

∑
𝑖=1

𝑏
𝑖
𝑓(𝑡
𝑛
+ 𝑐
𝑖
ℎ, 𝑌
(𝑛)

𝑖
, 𝑌
(𝑛)

𝑖
, 𝑌̃
(𝑛)

𝑖
)

+ ℎ

𝑠

∑
𝑖=1

𝑏̃
𝑖
𝑓(𝑡
𝑛−1

+ 𝑐
𝑖
ℎ, 𝑌
(𝑛−1)

𝑖
, 𝑌
(𝑛−1)

𝑖
, 𝑌̃
(𝑛−1)

𝑖
) ,

(5c)

where 𝑦
𝑛
is the numerical approximation to the analytic

solution 𝑦(𝑡
𝑛
) with 𝑡

𝑛
= 𝑛ℎ.

In particular, 𝑦
0
= 𝜑(0). The argument 𝑌(𝑛)

𝑗
denotes an

approximation to𝑦(𝑡
𝑛
+𝑐
𝑗
ℎ−𝜏) and the argument 𝑌̃(𝑛)

𝑗
denotes

an approximation to 𝑦󸀠(𝑡
𝑛
+ 𝑐
𝑗
ℎ − 𝜏) which are obtained by a

specific interpolation procedure at the point 𝑡 = 𝑡
𝑛
+ 𝑐
𝑗
ℎ − 𝜏.

Using values 𝑌(𝑘)
𝑗

= 𝜑(𝑡
𝑘
+ 𝑐
𝑗
ℎ) with 𝑘 < 1, 𝑡

𝑘
+ 𝑐
𝑗
ℎ ≤ 0.

Let 𝜏 = (𝑚 − 𝛿)ℎ with integer 𝑚 and 𝛿 ∈ [0, 1), V, 𝜇 ≥ 0

be integers. Define

𝑌
(𝑛)

𝑗
=

{{

{{

{

𝜑(𝑡
𝑛
+ 𝑐
𝑗
ℎ − 𝜏) 𝑡

𝑛
+ 𝑐
𝑗
ℎ − 𝜏 ≤ 0,

V

∑
𝑖=−𝜇

𝐿̃
𝑖
(𝛿) 𝑌
(𝑛−𝑚+𝑖)

𝑗
𝑡
𝑛
+ 𝑐
𝑗
ℎ − 𝜏 > 0, V + 1 ≤ 𝑚,

(6)

where

𝐿̃
𝑖
(𝛿) =

V

∏
𝑘=−𝜇

𝑘 ̸= 𝑖

(
𝛿 − 𝑘

𝑖 − 𝑘
) , 𝛿 ∈ [0, 1) ,

𝑌̃
(𝑛)

𝑗
= 𝑓(𝑡

𝑛
+ 𝑐
𝑗
ℎ − 𝜏, 𝑌

(𝑛)

𝑗
, 𝑌
(𝑛+1)

𝑗
, 𝑌̃
(𝑛+1)

𝑗
) .

(7)

We assume 𝑚 ≥ V + 1 is to guarantee that no (unknown)
values 𝑌(𝑖)

𝑗
with 𝑖 ≥ 𝑛 are used in the interpolation procedure.

It should be pointed out that the adopted interpolation
procedures (6) is only a class of interpolation procedure
for 𝑌(𝑛)
𝑗
; there also exist some other types of interpolation

procedures, such as numerical schemes which use Hermite
interpolation between grid points (see [28–30]). It is the aim
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of our future research to investigate the future adaptation of
two-step Runge-Kutta methods to NDDEs by means of other
interpolation procedures.

3. The Nonlinear Stability Analysis

In this section, we will investigate the stability of the two-step
Runge-Kutta methods for NDDEs.

In order to consider the stability property, we also need to
consider the perturbed problem of (1):

𝑧
󸀠

(𝑡) = 𝑓 (𝑡, 𝑧 (𝑡) , 𝑧 (𝑡 − 𝜏) , 𝑧
󸀠

(𝑡 − 𝜏)) , 𝑡 ∈ [0, 𝑇] ,

𝑧 (𝑡) = 𝜓 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(8)

where 𝜓 : [−𝜏, 0] → 𝐶𝑁 is a continuous function. The
unique exact solution of the problem (8) is denoted as 𝑧(𝑡).

Applying the two-step Runge-Kutta method (4a), (4b),
and (4c) to (8) leads to

𝑍
(𝑛)

𝑖
= 𝑧
𝑛
+ ℎ

×

𝑠

∑
𝑗=1

𝑎
𝑖𝑗
𝑓(𝑡
𝑛
+ 𝑐
𝑗
ℎ, 𝑍
(𝑛)

𝑗
, 𝑍
(𝑛)

𝑗
, 𝑍
(𝑛)

𝑗
) ,

𝑖 = 1, 2, . . . , 𝑠,

(9a)

𝑍
(𝑛−1)

𝑖
= 𝑧
𝑛−1

+ ℎ

×

𝑠

∑
𝑗=1

𝑎
𝑖𝑗
𝑓(𝑡
𝑛−1

+ 𝑐
𝑗
ℎ, 𝑍
(𝑛−1)

𝑗
, 𝑍
(𝑛−1)

𝑗
, 𝑍
(𝑛−1)

𝑗
) ,

𝑖 = 1, 2, . . . , 𝑠,

(9b)

𝑧
𝑛+1

= (1 − 𝜃) 𝑧
𝑛
+ 𝜃𝑧
𝑛−1

+ ℎ

𝑠

∑
𝑖=1

𝑏
𝑖
𝑓(𝑡
𝑛
+ 𝑐
𝑖
ℎ, 𝑍
(𝑛)

𝑖
, 𝑍
(𝑛)

𝑖
, 𝑍
(𝑛)

𝑖
)

+ ℎ

𝑠

∑
𝑖=1

𝑏̃
𝑖
𝑓(𝑡
𝑛−1

+ 𝑐
𝑖
ℎ, 𝑍
(𝑛−1)

𝑖
, 𝑍
(𝑛−1)

𝑖
, 𝑍
(𝑛−1)

𝑖
) .

(9c)

3.1. Some Concepts

Definition 1. Let 𝑙 be a real constant, a two-step Runge-Kutta
method with an interpolation procedure is said to be 𝑅(𝑙)-
stable if there exists a constant 𝐶 dependent only on the
method and 𝑙 such that (𝛼 + 𝛽 + 𝛾𝑞)ℎ ≤ 𝑙 and

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩
2

≤ [2 + 𝐶 (𝛽 + 𝛾𝑞)]max
𝑡≤0

󵄩󵄩󵄩󵄩𝜑 (𝑡) − 𝜓 (𝑡)
󵄩󵄩󵄩󵄩
2

, 𝑛 ≥ 1,
(10)

with step size ℎ satisfying ℎ𝑚 = 𝜏, where 𝑚 is a positive
integer.

GR(𝑙)-stability is defined by dropping the restriction
ℎ𝑚 = 𝜏.

Definition 2. Let 𝑙 be a real constant, a two-step Runge-Kutta
method with an interpolation procedure is said to be AR(𝑙)-
stable if

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩 = 0 (11)

with step size ℎ satisfying (𝛼+𝛽+𝛾𝑞)ℎ ≤ 𝑙 and ℎ𝑚 = 𝜏, where
𝑚 is a positive integer.

GAR(𝑙)-stability is defined by dropping the restriction
ℎ𝑚 = 𝜏.

Definition 3. Let 𝑙 be a real constant; a two-step Runge-
Kutta method with an interpolation procedure is said to be
weakAR(𝑙)-stable if, under the conditions ofDefinition 2, (11)
holds when 𝑓 further satisfies

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢1, V, 𝑤) − 𝑓 (𝑡, 𝑢2, V, 𝑤)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑢1 − 𝑢2
󵄩󵄩󵄩󵄩
𝑝0 (12)

with 𝑝
0
being a positive real number and 𝐿 being a nonnega-

tive real number.
Weak GAR(𝑙)-stability is defined by dropping the restric-

tion ℎ𝑚 = 𝜏.

3.2. The Stability of TSRK Methods. Let 𝑤
𝑛
= 𝑦
𝑛
− 𝑧
𝑛
,𝑊(𝑛)
𝑖

=

𝑌
(𝑛)

𝑖
− 𝑍
(𝑛)

𝑖
, 𝑊(𝑛)
𝑖

= 𝑌
(𝑛)

𝑖
− 𝑍
(𝑛)

𝑖
, 𝑊̃(𝑛)
𝑖

= 𝑌̃
(𝑛)

𝑖
− 𝑍
(𝑛)

𝑖
, 𝑄(𝑛)
𝑖

=

ℎ[𝑓(𝑡
𝑛
+ 𝑐
𝑖
ℎ, 𝑌
(𝑛)

𝑖
, 𝑌
(𝑛)

𝑖
, 𝑌̃
(𝑛)

𝑖
) − 𝑓(𝑡

𝑛
+ 𝑐
𝑖
ℎ, 𝑍
(𝑛)

𝑖
, 𝑍
(𝑛)

𝑖
, 𝑍
(𝑛)

𝑖
)], and

𝑖 = 1, 2, . . . , 𝑠.
It follows from (5a), (5b), (5c), (9a), (9b), and (9c) that

𝑊
(𝑛)

𝑖
= 𝑤
𝑛
+

𝑠

∑
𝑗=1

𝑎
𝑖𝑗
𝑄
(𝑛)

𝑗
, 𝑖 = 1, 2, . . . , 𝑠, (13a)

𝑊
(𝑛−1)

𝑖
= 𝑤
𝑛−1

+

𝑠

∑
𝑗=1

𝑎
𝑖𝑗
𝑄
(𝑛−1)

𝑗
, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑠, (13b)

𝑤
𝑛+1

= (1 − 𝜃)𝑤
𝑛
+ 𝜃𝑤
𝑛−1

+

𝑠

∑
𝑖=1

𝑏
𝑖
𝑄
(𝑛)

𝑖
+

𝑠

∑
𝑖=1

𝑏̃
𝑖
𝑄
(𝑛−1)

𝑖
.

(13c)

Now we will write the s-stage TSRK methods (4a), (4b),
and (4c) as a general linear method.

Let 𝑉(𝑛)
𝑖

= (𝑊
(𝑛)

𝑖
,𝑊
(𝑛−1)

𝑖
)
𝑇 be the internal stages, 𝜇

𝑛+1
=

(𝑤
𝑛+1

, 𝑤
𝑛
)
𝑇 the external vectors, and 𝑃(𝑛)

𝑖
= (𝑄
(𝑛)

𝑖
, 𝑄
(𝑛−1)

𝑖
)
𝑇.

Then we have a 2(𝑠 + 1)-stage partitioned general linear
method:

𝑉
(𝑛)

𝑖
=

𝑠

∑
𝑗=1

𝐶
11

𝑖𝑗
𝑃
(𝑛)

𝑖
+

𝑠

∑
𝑗=1

𝐶
12

𝑖𝑗
𝜇
𝑛
, 𝑖 = 1, 2, . . . , 𝑠, (14a)

𝜇
𝑛+1

=

𝑠

∑
𝑗=1

𝐶
21

𝑖𝑗
𝑃
(𝑛)

𝑖
+

𝑠

∑
𝑗=1

𝐶
22

𝑖𝑗
𝜇
𝑛
, 𝑖 = 1, 2, . . . , 𝑠, (14b)
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where

𝐶
11
= (𝐶
11

𝑖𝑗
) = (

𝐴 0

0 𝐴
) , 𝐶

12
= (𝐶
12

𝑖𝑗
) = (

𝑒 0

0 𝑒
) ,

𝐶
21
= (𝐶
21

𝑖𝑗
) = (

𝑏 𝑏̃

0 0
) , 𝐶

22
= (𝐶
22

𝑖𝑗
) = (

1 − 𝜃 𝜃

0 0
) ,

𝐴 = (𝑎
𝑖𝑗
) , 𝑒 = (1, 1, . . . 1) ,

𝑏 = (𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑠
) , 𝑏̃ = (𝑏̃

1
, 𝑏̃
2
, . . . , 𝑏̃

𝑠
) .

(15)

Definition 4. Let 𝑘, 𝑙 be real constants; a TSRK method is
said to be (𝑘, 𝑙)-algebraically stable if there exists a diagonal
nonnegative matrix𝐺 and𝐷 = diag(𝑑

1
, 𝑑
2
, . . . , 𝑑

2𝑠
) such that

𝑀 = (𝑚
𝑖𝑗
) is nonnegative, where

𝑀(𝑘, 𝑙) = (
𝑘𝐺 − 𝐶𝑇

22
𝐺𝐶
22
− 2𝑙𝐶𝑇

12
𝐷𝐶
12

𝐶𝑇
12
𝐷 − 𝐶𝑇

22
𝐺𝐶
21
− 2𝑙𝐶𝑇

12
𝐷𝐶
11

𝐷𝐶
12
− 𝐶𝑇
21
𝐺𝐶
22
− 2𝑙𝐶𝑇

11
𝐷𝐶
12

𝐶𝑇
11
𝐷 + 𝐷𝐶

11
− 𝐶𝑇
21
𝐺𝐶
21
− 2𝑙𝐶𝑇

11
𝐷𝐶
11

) . (16)

In this paper, we use the linear interpolation procedure.
Let 𝜏 = (𝑚 − 𝛿)ℎ with integer𝑚 ≥ 1 and 𝛿 ∈ [0, 1).

Define

𝑌
(𝑛)

𝑗
= 𝛿𝑌
(𝑛−𝑚+1)

𝑗
+ (1 − 𝛿) 𝑌

(𝑛−𝑚)

𝑗
, (17a)

𝑍
(𝑛)

𝑗
= 𝛿𝑍
(𝑛−𝑚+1)

𝑗
+ (1 − 𝛿)𝑍

(𝑛−𝑚)

𝑗
, 𝑗 = 1, 2, . . . , 𝑠,

(17b)

where 𝑌(𝑖)
𝑗
= 𝜑(𝑡
𝑖
+ 𝑐
𝑗
ℎ) and 𝑍(𝑖)

𝑗
= 𝜓(𝑡
𝑖
+ 𝑐
𝑗
ℎ) for 𝑖 < 0. When

the step size ℎ satisfies 𝜏 = 𝑚ℎ, we have

𝑌
(𝑛)

𝑗
= 𝑌
(𝑛−𝑚)

𝑗
, 𝑍
(𝑛)

𝑗
= 𝑍
(𝑛−𝑚)

𝑗
, 𝑗 = 1, 2, . . . , 𝑠. (18)

Theorem5. Assume that a TSRKmethod is (𝑘, 𝑙)-algebraically
stable. Then
󵄩󵄩󵄩󵄩𝜇𝑛+1

󵄩󵄩󵄩󵄩
2

≤ 𝑘
󵄩󵄩󵄩󵄩𝜇𝑛

󵄩󵄩󵄩󵄩
2

+

2𝑠

∑
𝑗=1

𝑑
𝑗
[((2𝛼 + 𝛽 + 𝛾𝑞) ℎ − 2𝑙)

󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ ℎ (𝛽 + 𝛾𝑞)

× (𝛿
󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑛−𝑚)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝛿)
󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑛−𝑚−1)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

)] .

(19)

Proof. It is well known that

󵄩󵄩󵄩󵄩𝜇𝑛+1
󵄩󵄩󵄩󵄩
2

− 𝑘
󵄩󵄩󵄩󵄩𝜇𝑛

󵄩󵄩󵄩󵄩
2

− 2

2𝑠

∑
𝑗=1

𝑑
𝑗
Re ⟨𝑉(𝑛)

𝑗
, 𝑃
(𝑛)

𝑗
− 𝑙𝑉
(𝑛)

𝑗
⟩

= −

2𝑠+2

∑
𝑖=1

2𝑠+2

∑
𝑗=1

𝑀
𝑖𝑗
⟨𝑟
𝑖
, 𝑟
𝑗
⟩ ,

(20)

where
𝑟
1
= 𝑤
𝑛+1

, 𝑟
2
= 𝑤
𝑛
,

𝑟
𝑗
= 𝑄
(𝑛)

𝑗−2
, 𝑗 = 3, 4, . . . , 𝑠 + 2,

𝑟
𝑗
= 𝑄
(𝑛−1)

𝑗−𝑠−2
, 𝑗 = 𝑠 + 3, 𝑠 + 4, . . . , 2𝑠 + 2.

(21)

Bymeans of (𝑘, 𝑙)-algebraical stability of the method, we have

󵄩󵄩󵄩󵄩𝜇𝑛+1
󵄩󵄩󵄩󵄩
2

≤ 𝑘
󵄩󵄩󵄩󵄩𝜇𝑛

󵄩󵄩󵄩󵄩
2

+ 2

2𝑠

∑
𝑗=1

𝑑
𝑗
Re ⟨𝑉(𝑛)

𝑗
, 𝑃
(𝑛)

𝑗
− 𝑙𝑉
(𝑛)

𝑗
⟩ . (22)

It follows from (2) and (6) that

2Re ⟨𝑊(𝑛)
𝑗
, 𝑄
(𝑛)

𝑗
⟩

= 2ℎRe⟨𝑊(𝑛)
𝑗
, 𝑓 (𝑡
𝑛
+ 𝑐
𝑗
ℎ, 𝑌
(𝑛)

𝑗
, 𝑌
(𝑛)

𝑗
, 𝑌̃
(𝑛)

𝑗
)

−𝑓 (𝑡
𝑛
+ 𝑐
𝑗
ℎ, 𝑍
(𝑛)

𝑗
, 𝑌
(𝑛)

𝑗
, 𝑌̃
(𝑛)

𝑗
)⟩

+ 2ℎRe⟨𝑊(𝑛)
𝑗
, 𝑓 (𝑡
𝑛
+ 𝑐
𝑗
ℎ, 𝑍
(𝑛)

𝑗
, 𝑌
(𝑛)

𝑗
, 𝑌̃
(𝑛)

𝑗
)

−𝑓 (𝑡
𝑛
+ 𝑐
𝑗
ℎ, 𝑍
(𝑛)

𝑗
, 𝑍
(𝑛)

𝑗
, 𝑌̃
(𝑛)

𝑗
)⟩

+ 2ℎRe⟨𝑊(𝑛)
𝑗
, 𝑓 (𝑡
𝑛
+ 𝑐
𝑗
ℎ, 𝑍
(𝑛)

𝑗
, 𝑍
(𝑛)

𝑗
, 𝑌̃
(𝑛)

𝑗
)

−𝑓 (𝑡
𝑛
+ 𝑐
𝑗
ℎ, 𝑍
(𝑛)

𝑗
, 𝑍
(𝑛)

𝑗
, 𝑍
(𝑛)

𝑗
)⟩

≤ 2ℎ𝛼
󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ 2ℎ𝛽
󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩

⋅
󵄩󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
+ 2ℎ𝛾

󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩
⋅
󵄩󵄩󵄩󵄩󵄩
𝑊̃
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩

≤ 2ℎ𝛼
󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ 2ℎ𝛽
󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩

⋅
󵄩󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
+ 2ℎ𝛾𝑞

󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩
⋅
󵄩󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

≤ 2ℎ𝛼
󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ 2ℎ (𝛽 + 𝛾𝑞)
󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩
⋅
󵄩󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

≤ 2ℎ𝛼
󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ 2ℎ (𝛽 + 𝛾𝑞)
󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩

⋅ (𝛿
󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛−𝑚)

𝑗

󵄩󵄩󵄩󵄩󵄩
+ (1 − 𝛿)

󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛−1−𝑚)

𝑗

󵄩󵄩󵄩󵄩󵄩
)
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≤ ℎ (2𝛼 + 𝛽 + 𝛾𝑞)
󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ ℎ (𝛽 + 𝛾𝑞) (𝛿
󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛−𝑚)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝛿)
󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛−1−𝑚)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

) .

(23)

Substitution into (20) gives (19).

Theorem6. Assume that a TSRKmethod is (𝑘, 𝑙)-algebraically
stable and 𝑘 ≤ 1. Then the method with linear interpolation
procedure is GR(l)-stable.

Proof. The inequality (𝛼+𝛽+𝛾𝑞)ℎ ≤ 𝑙 andTheorem 5 lead to

󵄩󵄩󵄩󵄩𝜇𝑛+1
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝜇𝑛

󵄩󵄩󵄩󵄩
2

+

2𝑠

∑
𝑗=1

𝑑
𝑗
[− (𝛽 + 𝛾𝑞) ℎ

󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ ℎ (𝛽 + 𝛾𝑞)

× (𝛿
󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑛−𝑚)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝛿)
󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑛−𝑚−1)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

)] .

(24)

By induction, we have

󵄩󵄩󵄩󵄩𝜇𝑛+1
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝜇0

󵄩󵄩󵄩󵄩
2

+ ℎ

2𝑠

∑
𝑗=1

𝑑
𝑗
(𝛽 + 𝛾𝑞)(𝛿

−1

∑
𝑖=−𝑚

󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑖)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝛿)

−1

∑
𝑖=−𝑚−1

󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑖)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

)

≤
󵄩󵄩󵄩󵄩𝜇0

󵄩󵄩󵄩󵄩
2

+ ℎ

2𝑠

∑
𝑗=1

𝑑
𝑗
(𝛽 + 𝛾𝑞)

× [𝛿 (𝑚 − 1) + (1 − 𝛿)𝑚] max
−𝑚−1≤𝑖≤−1

󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑖)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝜇0

󵄩󵄩󵄩󵄩
2

+ (𝛽 + 𝛾𝑞) 𝜏

2𝑠

∑
𝑗=1

𝑑
𝑗

max
−𝑚−1≤𝑖≤−1

󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑖)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝜇0

󵄩󵄩󵄩󵄩
2

+ (𝛽 + 𝛾𝑞) 𝜏

2𝑠

∑
𝑗=1

𝑑
𝑗
max
𝑡≤0

󵄩󵄩󵄩󵄩𝜑 (𝑡) − 𝜓 (𝑡)
󵄩󵄩󵄩󵄩
2

.

(25)

Because 𝜇
𝑛+1

= (𝑤
𝑛+1

, 𝑤
𝑛
)
𝑇, so we have

󵄩󵄩󵄩󵄩𝑤𝑛
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑤0

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑤−1

󵄩󵄩󵄩󵄩
2

+ (𝛽 + 𝛾𝑞) 𝜏

×

2𝑠

∑
𝑗=1

𝑑
𝑗
max
𝑡≤0

󵄩󵄩󵄩󵄩𝜑 (𝑡) − 𝜓 (𝑡)
󵄩󵄩󵄩󵄩
2

≤ 2max
𝑡≤0

󵄩󵄩󵄩󵄩𝜑(𝑡) − 𝜓(𝑡)
󵄩󵄩󵄩󵄩
2

+ (𝛽 + 𝛾𝑞) 𝜏

×

2𝑠

∑
𝑗=1

𝑑
𝑗
max
𝑡≤0

󵄩󵄩󵄩󵄩𝜑(𝑡) − 𝜓(𝑡)
󵄩󵄩󵄩󵄩
2

≤ [2 + 𝐶 (𝛽 + 𝛾𝑞) 𝜏]max
𝑡≤0

󵄩󵄩󵄩󵄩𝜑(𝑡) − 𝜓(𝑡)
󵄩󵄩󵄩󵄩
2

.

(26)

Therefore, it is GR(𝑙)-stable, where 𝐶 = ∑
2𝑠

𝑗=1
𝑑
𝑗
.

Theorem7. Assume that a TSRKmethod is (𝑘, 𝑙)-algebraically
stable and 𝑘 < 1. Then the method with linear interpolation
procedure is GAR(l)-stable.

Proof. Let 𝜇 = (2𝛼 + 𝛽 + 𝛾𝑞)ℎ − 2𝑙 and 𝑘 = max{𝑘, (𝛽 +

𝛾𝑞)ℎ/(−𝜇)
1/(𝑚+1)

}.
Then, when (𝛼 + 𝛽 + 𝛾𝑞)ℎ < 𝑙, we have 𝜇 < −(𝛽 + 𝛾𝑞)ℎ

and 0 < 𝑘 < 1.
The application of Theorem 5 yields

󵄩󵄩󵄩󵄩𝜇𝑛+1
󵄩󵄩󵄩󵄩
2

≤ 𝑘
󵄩󵄩󵄩󵄩𝜇𝑛

󵄩󵄩󵄩󵄩
2

+

2𝑠

∑
𝑗=1

𝑑
𝑗
[𝜇
󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ ℎ (𝛽 + 𝛾𝑞)

× (𝛿
󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑛−𝑚)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝛿)
󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑛−𝑚−1)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

)] .

(27)

By induction, we have

󵄩󵄩󵄩󵄩𝜇𝑛+1
󵄩󵄩󵄩󵄩
2

≤ 𝑘
𝑛+1󵄩󵄩󵄩󵄩𝜇0

󵄩󵄩󵄩󵄩
2

+

𝑛

∑
𝑖=0

𝑘
𝑛−𝑖
2𝑠

∑
𝑗=1

𝑑
𝑗
[𝜇
󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑖)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ ℎ (𝛽 + 𝛾𝑞)

× (𝛿
󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑖−𝑚)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝛿)

×
󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑖−𝑚−1)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

)]

≤ 𝑘
𝑛+1󵄩󵄩󵄩󵄩𝜇0

󵄩󵄩󵄩󵄩
2

+

2𝑠

∑
𝑗=1

𝑑
𝑗
[

𝑛−𝑚

∑
𝑖=0

(𝑘
𝑛−𝑖

𝜇 + ℎ (𝛽 + 𝛾𝑞) 𝛿𝑘
𝑛−𝑚−𝑖

+ℎ (𝛽 + 𝛾𝑞) (1 − 𝛿) 𝑘
𝑛−𝑚−𝑖−1

)

×
󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑖)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ ℎ (𝛽 + 𝛾𝑞)

× (𝛿

−1

∑
𝑖=−𝑚

𝑘
𝑛−𝑚−𝑖󵄩󵄩󵄩󵄩󵄩

𝑉
(𝑖)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝛿)

−1

∑
𝑖=−𝑚−1

𝑘
𝑛−𝑚−𝑖−1󵄩󵄩󵄩󵄩󵄩

𝑉
(𝑖)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

)]
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≤ 𝑘
𝑛+1󵄩󵄩󵄩󵄩𝜇0

󵄩󵄩󵄩󵄩
2

+

2𝑠

∑
𝑗=1

𝑑
𝑗
[

𝑛−𝑚

∑
𝑖=0

𝑘
𝑛−𝑚−𝑖−1

(𝑘
𝑚+1

𝜇 + ℎ (𝛽 + 𝛾𝑞) 𝛿𝑘

+ℎ (𝛽 + 𝛾𝑞) (1 − 𝛿))
󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑖)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+𝑘
𝑛−𝑚

ℎ (𝛽 + 𝛾𝑞)

−1

∑
𝑖=−𝑚−1

󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑖)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

] .

(28)

On the other hand,

𝜇𝑘
𝑚+1

+ ℎ𝑘 (𝛽 + 𝛾𝑞) 𝛿

+ ℎ (𝛽 + 𝛾𝑞) (1 − 𝛿)

≤ ℎ (𝛽 + 𝛾𝑞) + ℎ𝑘 (𝛽 + 𝛾𝑞) 𝛿

+ ℎ (𝛽 + 𝛾𝑞) (1 − 𝛿) ≤ 0.

(29)

Considering 𝑑
𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑠 and 0 < 𝑘 < 1, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝜇𝑛
󵄩󵄩󵄩󵄩 = 0. (30)

Because 𝜇
𝑛+1

= (𝑤
𝑛+1

, 𝑤
𝑛
)
𝑇, so we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑤𝑛
󵄩󵄩󵄩󵄩 = 0; (31)

which shows that the method is GAR(𝑙)-stable.

Theorem8. Assume that a TSRKmethod is (𝑘, 𝑙)-algebraically
stable, 𝑘 < 1, and 𝑑

𝑗
> 0, 𝑗 = 1, 2 . . . , 𝑠. Then the method with

linear interpolation procedure is weak GAR(l)-stable.

Proof. It follows fromTheorem 5 that

󵄩󵄩󵄩󵄩𝜇𝑛+1
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝜇𝑛

󵄩󵄩󵄩󵄩
2

+

2𝑠

∑
𝑗=1

𝑑
𝑗

× [−𝜎
󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ ℎ (𝛽 + 𝛾𝑞)

× (𝛿
󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑛−𝑚)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝛿)
󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑛−𝑚−1)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

)] ,

(32)

where 𝜎 = 2𝑙 − (2𝛼 + 𝛽 + 𝛾𝑞)ℎ. When (𝛼 + 𝛽 + 𝛾𝑞)ℎ < 𝑙, we
have 𝜎 > 0. Analogous to Theorem 6, we can easily obtain

󵄩󵄩󵄩󵄩𝜇𝑛+1
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝜇0

󵄩󵄩󵄩󵄩
2

+

2𝑠

∑
𝑗=1

𝑑
𝑗
[ (𝛽 + 𝛾𝑞) 𝜏 max

−𝑚−1≤𝑖≤−1

󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑖)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

−𝜎

𝑛

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑖)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

] ,

(33)

which shows

lim
𝑛→∞

2𝑠

∑
𝑗=1

𝑑
𝑗

󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

= 0, lim
𝑛→∞

2𝑠

∑
𝑗=1

𝑑
𝑗

󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

= 0, (34)

lim
𝑛→∞

2𝑠

∑
𝑗=1

𝑑
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
𝑉
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

2

= 0, lim
𝑛→∞

2𝑠

∑
𝑗=1

𝑑
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

2

= 0. (35)

On the other hand,

󵄩󵄩󵄩󵄩󵄩
𝑄
(𝑛)

𝑖

󵄩󵄩󵄩󵄩󵄩
≤ ℎ

󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑡
𝑛
+ 𝑐
𝑖
ℎ, 𝑌
(𝑛)

𝑖
, 𝑌
(𝑛)

𝑖
, 𝑌̃
(𝑛)

𝑖
)

−𝑓 (𝑡
𝑛
+ 𝑐
𝑖
ℎ, 𝑍
(𝑛)

𝑖
, 𝑌
(𝑛)

𝑖
, 𝑌̃
(𝑛)

𝑖
)
󵄩󵄩󵄩󵄩󵄩󵄩

+ ℎ
󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑡
𝑛
+ 𝑐
𝑖
ℎ, 𝑍
(𝑛)

𝑖
, 𝑌
(𝑛)

𝑖
, 𝑌̃
(𝑛)

𝑖
)

−𝑓 (𝑡
𝑛
+ 𝑐
𝑖
ℎ, 𝑍
(𝑛)

𝑖
, 𝑍
(𝑛)

𝑖
, 𝑍
(𝑛)

𝑖
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ ℎ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑡
𝑛
+ 𝑐
𝑖
ℎ, 𝑍
(𝑛)

𝑖
, 𝑍
(𝑛)

𝑖
, 𝑌̃
(𝑛)

𝑖
)

−𝑓 (𝑡
𝑛
+ 𝑐
𝑖
ℎ, 𝑍
(𝑛)

𝑖
, 𝑍
(𝑛)

𝑖
, 𝑍
(𝑛)

𝑖
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ℎ
󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑡
𝑛
+ 𝑐
𝑖
ℎ, 𝑌
(𝑛)

𝑖
, 𝑌
(𝑛)

𝑖
, 𝑌̃
(𝑛)

𝑖
)

−𝑓 (𝑡
𝑛
+ 𝑐
𝑖
ℎ, 𝑍
(𝑛)

𝑖
, 𝑌
(𝑛)

𝑖
, 𝑌̃
(𝑛)

𝑖
)
󵄩󵄩󵄩󵄩󵄩󵄩

+ ℎ𝛽
󵄩󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
+ ℎ𝛾

󵄩󵄩󵄩󵄩󵄩
𝑊̃
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩

≤ ℎ
󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑡
𝑛
+ 𝑐
𝑖
ℎ, 𝑌
(𝑛)

𝑖
, 𝑌
(𝑛)

𝑖
, 𝑌̃
(𝑛)

𝑖
)

−𝑓 (𝑡
𝑛
+ 𝑐
𝑖
ℎ, 𝑍
(𝑛)

𝑖
, 𝑌
(𝑛)

𝑖
, 𝑌̃
(𝑛)

𝑖
)
󵄩󵄩󵄩󵄩󵄩󵄩

+ ℎ𝛽
󵄩󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
+ ℎ𝛾𝑞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
.

(36)

In view of (12) and (35), we have

lim
𝑛→∞

2𝑠

∑
𝑗=1

𝑑
𝑗

󵄩󵄩󵄩󵄩󵄩
𝑄
(𝑛)

𝑗

󵄩󵄩󵄩󵄩󵄩

2

= 0. (37)

Considering (9a), (9b), (9c), (22), and (37) with 𝑑
𝑗
> 0, we

have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝜇𝑛
󵄩󵄩󵄩󵄩 = 0. (38)

Because 𝜇
𝑛+1

= (𝑤
𝑛+1

, 𝑤
𝑛
)
𝑇, so we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑤𝑛
󵄩󵄩󵄩󵄩 = 0, (39)

which shows that the method is weak GAR(𝑙)-stable.
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4. The Convergence of
TSRK Method for NDDEs

4.1. Some Concepts. In order to study the convergence of the
method, we define

𝑌
(𝑛)

= (𝑌
(𝑛)
𝑇

1
, . . . , 𝑌

(𝑛)
𝑇

𝑠
, 𝑌
(𝑛−1)

𝑇

1
, . . . , 𝑌

(𝑛−1)
𝑇

𝑠
)
𝑇

∈ 𝐶
2𝑠𝑁

,

𝑌
(𝑛)

= (𝑌
(𝑛)
𝑇

1
, . . . , 𝑌

(𝑛)
𝑇

𝑠
, 𝑌
(𝑛−1)

𝑇

1
, . . . , 𝑌

(𝑛−1)
𝑇

𝑠
)
𝑇

∈ 𝐶
2𝑠𝑁

,

𝑌̃
(𝑛)

= (𝑌̃
(𝑛)
𝑇

1
, . . . , 𝑌̃

(𝑛)
𝑇

𝑠
, 𝑌̃
(𝑛−1)

𝑇

1
, . . . , 𝑌̃

(𝑛−1)
𝑇

𝑠
)
𝑇

∈ 𝐶
2𝑠𝑁

,

𝜁
(𝑛+1)

= (𝑦
(𝑛+1)

𝑇

, 𝑦
(𝑛)
𝑇

)
𝑇

∈ 𝐶
2𝑁
,

𝐹 (𝑡
𝑛
, 𝑌
(𝑛)
, 𝑌
(𝑛)

, 𝑌̃
(𝑛)
)

= (𝑓(𝑡
𝑛
+ 𝑐
1
ℎ, 𝑌
(𝑛)

1
, 𝑌
(𝑛)

1
, 𝑌̃
(𝑛)

1
)
𝑇

, . . . ,

𝑓(𝑡
𝑛
+ 𝑐
𝑠
ℎ, 𝑌
(𝑛)

𝑠
, 𝑌
(𝑛)

𝑠
, 𝑌̃
(𝑛)

𝑠
)
𝑇

,

𝑓(𝑡
𝑛−1

+ 𝑐
1
ℎ, 𝑌
(𝑛−1)

1
, 𝑌
(𝑛−1)

1
, 𝑌̃
(𝑛−1)

1
)
𝑇

, . . . ,

𝑓(𝑡
𝑛−1

+ 𝑐
𝑠
ℎ, 𝑌
(𝑛−1)

𝑠
, 𝑌
(𝑛−1)

𝑠
, 𝑌̃
(𝑛−1)

𝑠
)
𝑇

)

𝑇

∈ 𝐶
2𝑠𝑁

(40)

Thus, process (5a), (5b), and (5c) can be written in the
more compact form

𝑌
(𝑛)

= ℎ𝐶
11
𝐹(𝑡
𝑛
, 𝑌
(𝑛)
, 𝑌
(𝑛)

, 𝑌̃
(𝑛)
) + 𝐶
12
𝜁
(𝑛)
, (41a)

𝜁
(𝑛+1)

= ℎ𝐶
21
𝐹(𝑡
𝑛
, 𝑌
(𝑛)
, 𝑌
(𝑛)

, 𝑌̃
(𝑛)
) + 𝐶
22
𝜁
(𝑛)
. (41b)

Definition 9. Method (4a), (4b), and (4c) with an interpola-
tion procedure is said to be 𝐷-convergent of order 𝑝 if the
global error satisfies a bound of the form

󵄩󵄩󵄩󵄩󵄩
𝐻 (𝑡
𝑛
) − 𝑦
(𝑛)󵄩󵄩󵄩󵄩󵄩

≤ 𝜌
1
(𝑡
𝑛
) (

󵄩󵄩󵄩󵄩󵄩
𝐻 (𝑡
0
) − 𝑦
(0)󵄩󵄩󵄩󵄩󵄩

+max
𝑘≤0

󵄩󵄩󵄩󵄩󵄩
𝑌 (𝑡
𝑘
) − 𝑦
(𝑘)󵄩󵄩󵄩󵄩󵄩

+ ℎ
𝑝
) ,

𝑛 ≥ 1, ℎ ∈ (0, ℎ
0
] ,

(42)

where𝐻(𝑡) is defined by

𝐻(𝑡) = (𝑦 (𝑡 + ℎ) , 𝑦 (𝑡)) ∈ 𝐶
2𝑟𝑁

,

𝑌 (𝑡) = (𝑦 (𝑡 + 𝑐
1
ℎ) , . . . , 𝑦 (𝑡 + 𝑐

𝑠
ℎ) ,

𝑦 (𝑡 − ℎ + 𝑐
1
ℎ) , . . . , 𝑦 (𝑡 − ℎ + 𝑐

𝑠
ℎ)) ∈ 𝐶

2𝑠𝑁
.

(43)

𝜌
1
(𝑡) and ℎ

0
depend on𝑀

𝑖
, 𝛼, 𝛽, 𝛾, and 𝜏.

Definition 10. TSRK method (4a), (4b), and (4c) is said to
be algebraically stable if there exist a real symmetric, positive
definite 2𝑟 × 2𝑟matrix 𝐺 and a nonnegative diagonal 2𝑠 × 2𝑠
matrix𝐷 such that the matrix

𝑀 = [
𝐺 − 𝐶

𝑇

22
𝐺𝐶
22

𝐶
𝑇

12
𝐷 − 𝐶

𝑇

22
𝐺𝐶
21

𝐷𝐶
12
− 𝐶𝑇
21
𝐺𝐶
22

𝐷𝐶
11
+ 𝐶𝑇
11
𝐷 − 𝐶𝑇

21
𝐺𝐶
21

] (44)

is nonnegative definite.

Definition 11. TSRK method (4a), (4b), and (4c) is said to be
diagonally stable if there exist an 2𝑠×2𝑠 diagonalmatrix𝑄 > 0

such that the matrix 𝑄𝐶
11
+ 𝐶𝑇
11
𝑄 is positive definite.

Remark 12. The concepts of algebraic stability and diagonal
stability of TSRK method are the generalizations of cor-
responding concepts of Runge-Kutta methods. Although it
is difficult to examine these conditions, many results have
been found; in particular, there exist algebraically stable and
diagonally stable multistep formulas of arbitrarily high order
(cf. [31]).

Definition 13. TSRK method (4a), (4b), and (4c) is said to
have generalized stage order𝑃 if𝑃 is the largest integer which
possesses the following properties.

For any given problem (1) and ℎ ∈ [0, ℎ
0
], there exists an

abstract function𝐻ℎ(𝑡),

𝐻
ℎ

(𝑡) = (𝐻
ℎ

1
(𝑡) ,𝐻

ℎ

2
(𝑡)) ∈ 𝐶

2𝑁
, (45)

such that
󵄩󵄩󵄩󵄩󵄩
𝐻 (𝑡) − 𝐻

ℎ

(𝑡)
󵄩󵄩󵄩󵄩󵄩
≤ 𝑝
1
ℎ
𝑝
,

󵄩󵄩󵄩󵄩󵄩
Δ
ℎ

(𝑡)
󵄩󵄩󵄩󵄩󵄩
≤ 𝑝
1
ℎ
𝑝+1

,

󵄩󵄩󵄩󵄩󵄩
𝛿
ℎ

(𝑡)
󵄩󵄩󵄩󵄩󵄩
≤ 𝑝
1
ℎ
𝑝+1

,

(46)

where the maximum step size ℎ
0
> 0 and the constant 𝑝

1

depend only on the method and the bounds 𝑀
𝑖
, Δℎ(𝑡), and

𝛿ℎ(𝑡); they are defined by;

𝑌 (𝑡) = ℎ𝐶
11
𝑌
󸀠

(𝑡) + 𝐶
12
𝐻
ℎ

(𝑡) + Δ
ℎ

(𝑡) , (47a)

𝐻
ℎ

(𝑡 + ℎ) = ℎ𝐶
21
𝑌
󸀠

(𝑡) + 𝐶
22
𝐻
ℎ

(𝑡) + 𝛿
ℎ

(𝑡) . (47b)

The function 𝑌󸀠(𝑡) is defined by

𝑌 (𝑡) = (𝑦
󸀠
(𝑡 + 𝑐
1
ℎ) , . . . , 𝑦

󸀠
(𝑡 + 𝑐
𝑠
ℎ) ,

𝑦
󸀠
(𝑡 − ℎ + 𝑐

1
ℎ) , . . . , 𝑦

󸀠
(𝑡 − ℎ + 𝑐

𝑠
ℎ)) ∈ 𝐶

2𝑠𝑁
.

(48a)

In particular when𝐻(𝑡) = 𝐻ℎ(𝑡), generalized stage order
is called stage order.

4.2. D-Convergence and Proofs. In this section, we focus on
the error analysis of TSRK method for (1). For the sake of
simplicity, we always assume that all constants ℎ

𝑖
, 𝛾
𝑖
, 𝑑
𝑖
, and
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𝐿
𝑖
are dependent only on the method, some of the bounds

𝑀
𝑖
, and the parameters 𝛼, 𝛽, 𝛾, and 𝜏.
First, we give a preliminary result which will later be used

several times. For any 𝑌, 𝑌, 𝑌̃, 𝑍, 𝑍, 𝑍 ∈ 𝐶2𝑠𝑁 for 𝑌(𝑛), 𝑌(𝑛),
𝑌̃(𝑛), 𝑍(𝑛), 𝑍

(𝑛)

, 𝑍(𝑛), and 𝜁, 𝜛 ∈ 𝐶2𝑁 for 𝜁(𝑛+1), 𝜛(𝑛+1) where
𝜛(𝑛+1) = (𝑧(𝑛+1), 𝑧(𝑛)). Define Δ̃ and 𝛿 by

Δ̃ = 𝑌 − 𝑍 − ℎ𝐶
11
(𝐹 (𝑡, 𝑌, 𝑌, 𝑌̃) − 𝐹 (𝑡, 𝑍, 𝑍, 𝑍)) , (49a)

𝛿 = 𝜁 − 𝜛 − ℎ𝐶
21
(𝐹 (𝑡, 𝑌, 𝑌, 𝑌̃) − 𝐹 (𝑡, 𝑍, 𝑍, 𝑍)) . (49b)

Theorem 14. Suppose that method (4a), (4b), and (4c) is
diagonally stable.Then there exist constants ℎ

1
,𝑝
2
, and𝑝

3
such

that

‖𝑌 − 𝑍‖ ≤ 𝑝
2
(
󵄩󵄩󵄩󵄩󵄩
Δ̃
󵄩󵄩󵄩󵄩󵄩
+ ℎ

󵄩󵄩󵄩󵄩󵄩
𝑌 − 𝑍

󵄩󵄩󵄩󵄩󵄩
+ ℎ

󵄩󵄩󵄩󵄩󵄩
𝑌̃ − 𝑍

󵄩󵄩󵄩󵄩󵄩
) , ℎ ∈ (0, ℎ

1
] ,

(50a)

󵄩󵄩󵄩󵄩𝜁 − 𝜛
󵄩󵄩󵄩󵄩 ≤ 𝑝
3
(
󵄩󵄩󵄩󵄩󵄩
Δ̃
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝛿
󵄩󵄩󵄩󵄩󵄩
+ ℎ

󵄩󵄩󵄩󵄩󵄩
𝑌 − 𝑍

󵄩󵄩󵄩󵄩󵄩
+ ℎ

󵄩󵄩󵄩󵄩󵄩
𝑌̃ − 𝑍

󵄩󵄩󵄩󵄩󵄩
) ,

ℎ ∈ (0, ℎ
1
] .

(50b)

Proof. Since the method (4a), (4b), and (4c) is diagonally
stable, there exists a positive definite diagonal matrix 𝑄 such
that the matrix 𝐸 = 𝑄𝐶

11
+ 𝐶𝑇
11
𝑄 is positive definite.

Therefore, the matrix 𝐶
11
is obviously nonsingular, and there

exists an 𝑙 > 0 which depends only on the method such that
the matrix

𝐸
𝑙
= 𝐶
−𝑇

11
𝐸𝐶
11
− 2𝑙𝑄 (51)

is also positive definite.
Define

𝑊 = 𝑌 − 𝑍, 𝑊 = 𝑌 − 𝑍, 𝑊̃ = 𝑌̃ − 𝑍, (52a)

𝐾
1
= ℎ (𝐹 (𝑡, 𝑌, 𝑌, 𝑌̃) − 𝐹 (𝑡, 𝑍, 𝑌, 𝑌̃)) , (52b)

𝐾
2
= ℎ (𝐹 (𝑡, 𝑍, 𝑌, 𝑌̃) − 𝐹 (𝑡, 𝑍, 𝑍, 𝑌̃)) , (52c)

𝐾
3
= ℎ (𝐹 (𝑡, 𝑍, 𝑍, 𝑌̃) − 𝐹 (𝑡, 𝑍, 𝑍, 𝑍)) . (52d)

Then

Δ̃ = 𝑊 − 𝐶
11
(𝐾
1
+ 𝐾
2
+ 𝐾
3
) , (53a)

𝛿 = 𝜁 − 𝜛 − 𝐶
21
(𝐾
1
+ 𝐾
2
+ 𝐾
3
) . (53b)

Using (2), (6), (53a), and (53b), we have, for ℎ𝛼 ≤ 𝑙,

0 ≤ ⟨𝑊, 2𝑙𝑄𝑊⟩ + 2Re ⟨𝐾
1
, −𝑄𝑊⟩

= − ⟨𝑊, 𝐸
𝑙
𝑊⟩ + 2Re ⟨𝑊,𝑄 (𝐶

−1

11
− 𝐾
1
)⟩

≤ − 𝜆
𝑙
‖𝑊‖
2
+ 2Re ⟨𝑊,𝑄 (𝐶

−1

11
Δ̃ + 𝐾

2
+ 𝐾
3
)⟩

≤ − 𝜆
𝑙
‖𝑊‖
2
+ 2

󵄩󵄩󵄩󵄩󵄩
𝑄𝐶
−1

11

󵄩󵄩󵄩󵄩󵄩 ‖
𝑊‖

󵄩󵄩󵄩󵄩󵄩
Δ̃
󵄩󵄩󵄩󵄩󵄩

+ 2ℎ𝛽 ‖𝑄‖ ‖𝑊‖
󵄩󵄩󵄩󵄩󵄩
𝑊
󵄩󵄩󵄩󵄩󵄩
+ 2ℎ𝛾 ‖𝑄‖ ‖𝑊‖

󵄩󵄩󵄩󵄩󵄩
𝑊̃
󵄩󵄩󵄩󵄩󵄩
,

(54)

where 𝜆
𝑙
is the minimum eigenvalue of 𝐸

𝑙
. Therefore,

‖𝑌 − 𝑍‖ ≤ 𝑝
1
(
󵄩󵄩󵄩󵄩󵄩
Δ̃
󵄩󵄩󵄩󵄩󵄩
+ ℎ

󵄩󵄩󵄩󵄩󵄩
𝑌 − 𝑍

󵄩󵄩󵄩󵄩󵄩
+ ℎ

󵄩󵄩󵄩󵄩󵄩
𝑌̃ − 𝑍

󵄩󵄩󵄩󵄩󵄩
) , ℎ ∈ (0, ℎ

1
] ,

(55)

where

𝑝
1
=

2

𝜆
𝑙

max (󵄩󵄩󵄩󵄩󵄩𝑄𝐶
−1

11

󵄩󵄩󵄩󵄩󵄩
, 𝛽 ‖𝑄‖ , 𝛾 ‖𝑄‖) , (56a)

ℎ
1
=
{

{

{

1 𝛼 ≤ 0,

min(1, 𝑙
𝛼
) 𝛼 > 0.

(56b)

From (50a), (56a), and (56b), it follows that

󵄩󵄩󵄩󵄩𝜁 − 𝜛
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝛿 + 𝐶
21
𝐶
−1

11
(𝑊 − Δ̃)

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝛿
󵄩󵄩󵄩󵄩󵄩
+ 𝑝
1
ℎ
󵄩󵄩󵄩󵄩󵄩
𝐶
21
𝐶
−1

11

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝑊
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑊̃
󵄩󵄩󵄩󵄩󵄩
)

+ (1 + 𝑝
1
)
󵄩󵄩󵄩󵄩󵄩
𝐶
21
𝐶
−1

11

󵄩󵄩󵄩󵄩󵄩
⋅
󵄩󵄩󵄩󵄩󵄩
Δ̃
󵄩󵄩󵄩󵄩󵄩

≤ 𝑝
3
(
󵄩󵄩󵄩󵄩󵄩
Δ̃
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝛿
󵄩󵄩󵄩󵄩󵄩
+ ℎ

󵄩󵄩󵄩󵄩󵄩
𝑌 − 𝑍

󵄩󵄩󵄩󵄩󵄩
+ ℎ

󵄩󵄩󵄩󵄩󵄩
𝑌̃ − 𝑍

󵄩󵄩󵄩󵄩󵄩
) ,

ℎ ∈ (0, ℎ
1
] ,

(57)

where 𝑝
3
= max{1, (1 + 𝑝

2
)‖𝐶
21
𝐶−1
11
‖}, which completes the

proof of Theorem 14.

Consider the compact form of (9a), (9b), and (9c):

𝑍
(𝑛)

= ℎ𝐶
11
𝐹 (𝑡
𝑛
, 𝑍
(𝑛)
, 𝑍
(𝑛)

, 𝑍
(𝑛)
) + 𝐶
12
𝜛
(𝑛)
, (58a)

𝜛
(𝑛+1)

= ℎ𝐶
21
𝐹(𝑡
𝑛
, 𝑍
(𝑛)
, 𝑍
(𝑛)

, 𝑍
(𝑛)
) + 𝐶
22
𝜛
(𝑛)
, (58b)

where

𝑍
(𝑛)

= (𝑍
(𝑛)

1
, . . . , 𝑍

(𝑛)

𝑠
, 𝑍
(𝑛−1)

1
, . . . , 𝑍

(𝑛−1)

𝑠
) ∈ 𝐶
2𝑠𝑁

,

𝑍
(𝑛)

= (𝑍
(𝑛)

1
, . . . , 𝑍

(𝑛)

𝑠
, 𝑍
(𝑛−1)

1
, . . . , 𝑍

(𝑛−1)

𝑠
) ∈ 𝐶

2𝑠𝑁
,

𝑍
(𝑛)

= (𝑍
(𝑛)

1
, . . . , 𝑍

(𝑛)

𝑠
, 𝑍
(𝑛−1)

1
, . . . , 𝑍

(𝑛−1)

𝑠
) ∈ 𝐶
2𝑠𝑁

,

𝜛
(𝑛+1)

= (𝑧
(𝑛+1)

, 𝑧
(𝑛)
) ∈ 𝐶
2𝑁
.

(59)

Theorem 15. Suppose that the method (4a), (4b), and (4c) is
algebraically stable for the matrices 𝐺 and 𝐷. Then for (41a),
(41b), (58a), and (58b) we have

󵄩󵄩󵄩󵄩󵄩
𝜁
(𝑛+1)

− 𝜛
(𝑛+1)󵄩󵄩󵄩󵄩󵄩

2

𝐺
≤
󵄩󵄩󵄩󵄩󵄩
𝜁
(𝑛)
− 𝜛
(𝑛)󵄩󵄩󵄩󵄩󵄩

2

𝐺

+ 𝑝
4
ℎ (

󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑛)
− 𝑍
(𝑛)󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑛−𝑚)

− 𝑍
(𝑛−𝑚)󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑌̃
(𝑛)
− 𝑍
(𝑛)󵄩󵄩󵄩󵄩󵄩

2

) ,

(60)



Mathematical Problems in Engineering 9

where 𝑝
4
= ‖𝐷‖ ⋅ max{(2𝛼 + 𝛽 + 𝛾), 𝛽, 𝛾}, ‖ ⋅ ‖ is a norm on

𝐶2𝑠𝑁defined by

‖𝑈‖
𝐺
= ⟨𝑈, 𝐺𝑈⟩

1/2
= (

2𝑠

∑
𝑖,𝑗=1

𝑔
𝑖𝑗
⟨𝑢
𝑖
, 𝑢
𝑗
⟩)

1/2

,

𝑈 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

2𝑠
) ∈ 𝐶
2𝑠𝑁

, 𝑢
𝑖
∈ 𝐶
𝑁
.

(61)

Proof. Define 𝑢(𝑛) = 𝜁(𝑛) − 𝜛(𝑛). We get from (52a), (52b),
(52c), and (52d) that

𝐾
(𝑛)

= ℎ (𝐹 (𝑡
𝑛
, 𝑌
(𝑛)
, 𝑌
(𝑛)

, 𝑌̃
(𝑛)
) − 𝐹 (𝑡

𝑛
, 𝑍
(𝑛)
, 𝑍
(𝑛)

, 𝑍
(𝑛)
)) ,

𝑊
(𝑛)

= 𝐶
11
𝐾
(𝑛)
+ 𝐶
12
𝑢
(𝑛)
,

𝑢
(𝑛+1)

= 𝐶
21
𝐾
(𝑛)
+ 𝐶
22
𝑢
(𝑛)
.

(62)

With algebraic stability, the matrix

𝑀 = [
𝐺 − 𝐶𝑇

22
𝐺𝐶
22

𝐶𝑇
12
𝐷 − 𝐶𝑇

22
𝐺𝐶
21

𝐷𝐶
12
− 𝐶𝑇
21
𝐺𝐶
22

𝐷𝐶
11
+ 𝐶𝑇
11
𝐷 − 𝐶𝑇

21
𝐺𝐶
21

] (63)

is nonnegative definite. As in [32], we have

⟨𝑢
(𝑛+1)

, 𝐺𝑢
(𝑛+1)

⟩ − ⟨𝑢
(𝑛)
, 𝐺𝑢
(𝑛)
⟩ − 2Re ⟨𝑊(𝑛), 𝐷𝐾(𝑛)⟩

= − ⟨⟨𝑢
(𝑛)
, 𝐾
(𝑛)
⟩ ,𝑀⟨𝑢

(𝑛)
, 𝐾
(𝑛)
⟩⟩ ≤ 0.

(64)

Using (2), we further obtain

⟨𝑢
(𝑛+1)

, 𝐺𝑢
(𝑛+1)

⟩

≤ ⟨𝑢
(𝑛)
, 𝐺𝑢
(𝑛)
⟩ + 2Re ⟨𝑊(𝑛), 𝐷𝐾(𝑛)⟩

≤ ⟨𝑢
(𝑛)
, 𝐺𝑢
(𝑛)
⟩ + 2Re ⟨𝑊(𝑛), 𝐷𝐾(𝑛)

1
⟩

+ 2Re ⟨𝑊(𝑛), 𝐷𝐾(𝑛)
2
+ 𝐷𝐾

(𝑛)

3
⟩

≤ ⟨𝑢
(𝑛)
, 𝐺𝑢
(𝑛)
⟩ + 2ℎ𝛼 ⟨𝑊

(𝑛)
, 𝐷𝑊
(𝑛)
⟩

+ 2ℎ𝛽
󵄩󵄩󵄩󵄩󵄩
𝐷
1/2
𝑊
(𝑛)󵄩󵄩󵄩󵄩󵄩

⋅
󵄩󵄩󵄩󵄩󵄩󵄩
𝐷
1/2
𝑊
(𝑛)󵄩󵄩󵄩󵄩󵄩󵄩

+ 2ℎ𝛾
󵄩󵄩󵄩󵄩󵄩
𝐷
1/2
𝑊
(𝑛)󵄩󵄩󵄩󵄩󵄩

⋅
󵄩󵄩󵄩󵄩󵄩
𝐷
1/2
𝑊̃
(𝑛)󵄩󵄩󵄩󵄩󵄩

≤ ⟨𝑢
(𝑛)
, 𝐺𝑢
(𝑛)
⟩ + 2ℎ𝛼 ⟨𝑊

(𝑛)
, 𝐷𝑊
(𝑛)
⟩

+ ℎ𝛽(‖𝐷‖ ⋅
󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)󵄩󵄩󵄩󵄩󵄩

2

+ ‖𝐷‖ ⋅
󵄩󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)󵄩󵄩󵄩󵄩󵄩󵄩

2

)

+ ℎ𝛾 (‖𝐷‖ ⋅
󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)󵄩󵄩󵄩󵄩󵄩

2

+ ‖𝐷‖ ⋅
󵄩󵄩󵄩󵄩󵄩
𝑊̃
(𝑛)󵄩󵄩󵄩󵄩󵄩

2

)

≤ ⟨𝑢
(𝑛)
, 𝐺𝑢
(𝑛)
⟩ + (2ℎ𝛼 + ℎ𝛽 + ℎ𝛾) ‖𝐷‖ ⋅

󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛)󵄩󵄩󵄩󵄩󵄩

2

+ ‖𝐷‖ (ℎ𝛽
󵄩󵄩󵄩󵄩󵄩
𝑊
(𝑛−𝑚)󵄩󵄩󵄩󵄩󵄩

2

+ ℎ𝛾
󵄩󵄩󵄩󵄩󵄩
𝑊̃
(𝑛)󵄩󵄩󵄩󵄩󵄩

2

)

(65)

which gives (60). The proof is completed.

In the following, we assume that the method (4a), (4b),
and (4c) has generalized stage order 𝑃; that is, there exists a
function𝐻ℎ(𝑡) such that (46) holds. For any 𝑛 > 0, we define
𝑌̂(𝑛) and 𝑦(𝑛+1) by

𝑌̂
(𝑛)
ℎ𝐶
11
𝐹(𝑡
𝑛
, 𝑌̂
(𝑛)
, 𝑌 (𝑡
𝑛
− 𝜏) ,

̂̃
𝑌
(𝑛)

) + 𝐶
12
𝐻
ℎ
(𝑡
𝑛
) ,

(66a)

𝑦
(𝑛+1)

ℎ𝐶
21
𝐹(𝑡
𝑛
, 𝑌̂
(𝑛)
, 𝑌 (𝑡
𝑛
− 𝜏) ,

̂̃
𝑌
(𝑛)

) + 𝐶
22
𝐻
ℎ
(𝑡
𝑛
) ,

(66b)

where

̂̃
𝑌
(𝑛)

= (𝑓 (𝑡
𝑛
+ 𝑐
1
ℎ − 𝜏, 𝑌

(𝑛)

1
, 𝑌
(𝑛+1)

1
, 𝐻
ℎ

1
(𝑡
𝑛
+ 𝑐
1
ℎ − 𝜏)) ,

𝑓 (𝑡
𝑛
+ 𝑐
2
ℎ − 𝜏, 𝑌

(𝑛)

2
, 𝑌
(𝑛+1)

2
, 𝐻
ℎ

1
(𝑡
𝑛
+ 𝑐
2
ℎ − 𝜏)) , . . . ,

𝑓 (𝑡
𝑛
+ 𝑐
𝑠
ℎ − 𝜏, 𝑌

(𝑛)

𝑠
, 𝑌
(𝑛+1)

𝑠
, 𝐻
ℎ

1
(𝑡
𝑛
+ 𝑐
𝑠
ℎ − 𝜏)) ,

𝑓 (𝑡
𝑛
+ 𝑐
1
ℎ − ℎ − 𝜏, 𝑌

(𝑛−1)

1
, 𝑌
(𝑛)

1
,

𝐻
ℎ

1
(𝑡
𝑛
+ 𝑐
1
ℎ − ℎ − 𝜏) ) , . . . ,

𝑓 (𝑡
𝑛
+ 𝑐
𝑠
ℎ− ℎ− 𝜏, 𝑌

(𝑛−1)

𝑠
, 𝑌
(𝑛)

𝑠
, 𝐻
ℎ

1
(𝑡
𝑛
+ 𝑐
𝑠
ℎ− ℎ −𝜏))) .

(67)

Theorem 16. Suppose that the method (4a), (4b), and (4c) is
diagonally stable and its generalized stage order is𝑃.Then there
exist constants 𝑝

5
and ℎ

2
such that

𝑛

∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑘)

− 𝑌 (𝑡
𝑘
− 𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑝
4
(

𝑛

∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩
𝜁
(𝑘)
− 𝐻
ℎ
(𝑡
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝑛ℎ
(𝑝+1)

+ 𝑛ℎ
(V+𝜇+1)

+

0

∑
𝑘=−𝑚+1

󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑘)
− 𝑌 (𝑡

𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

) , ℎ ∈ (0, ℎ
2
] .

(68)

Proof. It follows from (6) that

󵄩󵄩󵄩󵄩󵄩󵄩
𝑌
𝑗

(𝑘)

− 𝑦 (𝑡
𝑘
+ 𝑐
𝑗
ℎ − 𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

V

∑
𝑖=−𝜇

𝐿̃
𝑖
(𝛿) (𝑌

𝑗

(𝑘−𝑚+𝑖)
− 𝑦 (𝑡

𝑘−𝑚+𝑖
+ 𝑐
𝑗
ℎ))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

V

∑
𝑖=−𝜇

𝐿̃
𝑖
(𝛿) 𝑦 (𝑡

𝑘−𝑚+𝑖
+ 𝑐
𝑗
ℎ) − 𝑦 (𝑡

𝑘−𝑚
+ 𝑐
𝑗
ℎ + 𝛿ℎ)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

.

(69)
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From the remainder estimation of Lagrange interpolation
formula, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

V

∑
𝑖=−𝜇

𝐿̃
𝑖
(𝛿) 𝑦 (𝑡

𝑘−𝑚+𝑖
+ 𝑐
𝑗
ℎ) − 𝑦 (𝑡

𝑘−𝑚
+ 𝑐
𝑗
ℎ + 𝛿ℎ)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀
𝜇+V+1ℎ

𝜇+V+1
.

(70)

Using Cauchy inequality, we further obtain

󵄩󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑘)

− 𝑌 (𝑡
𝑘
− 𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 2𝑠 (𝜇 + V + 2)(𝐿̃
2

0

V

∑
𝑖=−𝜇

󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑘−𝑚+𝑖)

− 𝑌 (𝑡
𝑘−𝑚+𝑖

)
󵄩󵄩󵄩󵄩󵄩

2

+𝑀
𝜇+V+1ℎ

(V+𝜇+1)
) ,

(71)

where 𝐿̃2
0
= max

−𝜇≤𝑖≤V Sup
𝑥∈[0,1]

|𝐿̃
𝑖
(𝑥)|. Hence, there exists a

constant 𝑑
1
such that

𝑛

∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑘)

− 𝑌 (𝑡
𝑘
− 𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑑
1
(

𝑛

∑
𝑘=−𝜇−𝑚+1

󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑘)
− 𝑌 (𝑡

𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝑛ℎ
2(𝜇+V+1)

) .

(72)

On the other hand, a combination of (41a) and (47a) leads to

𝑌
(𝑘)
− 𝑌 (𝑡

𝑘
)

= ℎ𝐶
11
(𝐹 (𝑡
𝑘
, 𝑌
(𝑘)
, 𝑌
(𝑘)

, 𝑌̃
(𝑘)
)

−𝐹 (𝑡
𝑘
, 𝑌 (𝑡
𝑘
) , 𝑌 (𝑡

𝑘
− 𝜏) , 𝑌̃ (𝑡

𝑘
− 𝜏)) )

+ 𝐶
12
(𝑦
(𝑘−1)

− 𝐻
ℎ
(𝑡
𝑘
− ℎ)) − Δ

ℎ
(𝑡
𝑘
) .

(73)

It follows fromTheorem 14 that

󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑘)
− 𝑌 (𝑡

𝑘
)
󵄩󵄩󵄩󵄩󵄩

= 𝑝
2
{
󵄩󵄩󵄩󵄩󵄩
𝐶
12
(𝑦
(𝑘−1)

− 𝐻
ℎ
(𝑡
𝑘
− ℎ) − Δ

ℎ
(𝑡
𝑘
))
󵄩󵄩󵄩󵄩󵄩

+ℎ
󵄩󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑘)

− 𝑌 (𝑡
𝑘
− 𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩
+ ℎ

󵄩󵄩󵄩󵄩󵄩
𝑌̃
(𝑘)
− 𝑌̃ (𝑡

𝑘
− 𝜏)

󵄩󵄩󵄩󵄩󵄩
} ,

(74)

which on substitution into (72) gives
𝑛

∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑘)

− 𝑌 (𝑡
𝑘
− 𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑑
1
(𝑝
2

1
ℎ
2

𝑛

∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑘)

− 𝑌 (𝑡
𝑘
− 𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 𝑝
2

1
ℎ
2

𝑛

∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩
𝑌̃
(𝑘)
− 𝑌̃ (𝑡

𝑘
− 𝜏)

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑝
2

1

󵄩󵄩󵄩󵄩𝐶12
󵄩󵄩󵄩󵄩
2

𝑛

∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑘−1)

− 𝐻
ℎ
(𝑡
𝑘−1

)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝑝
2

1

󵄩󵄩󵄩󵄩𝐶12
󵄩󵄩󵄩󵄩
2󵄩󵄩󵄩󵄩󵄩
Δ
ℎ
(𝑡
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

+𝑛ℎ
2(𝜇+V+1)

+

0

∑
𝑘=−𝜇−𝑚+1

󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑘)
− 𝑌 (𝑡

𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

) .

(75)

Therefore, there exist 𝑝
4
and ℎ

2
such that (68) holds. The

proof of Theorem 16 is completed.

Theorem 17. Suppose that method (4a), (4b), and (4c) is
algebraically stable and diagonally stable and its generalized
stage order is 𝑝. Then the method with interpolation procedure
(6) is𝐷-convergent of order at leastmin{𝑝, 𝜇 + V + 1}.

Proof. In view of (41a), (41b), (66a), and (66b), it follows from
Theorem 15 that
󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛)
− 𝑦
(𝑛)󵄩󵄩󵄩󵄩󵄩

2

𝐺

≤ 𝑝
3
ℎ (

󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑛)
− 𝑌̂
(𝑛)󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑛)

− 𝑌(𝑡
𝑛
− 𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑌̃
(𝑛)
− 𝑌̃ (𝑡

𝑛
− 𝜏)

󵄩󵄩󵄩󵄩󵄩

2

) +
󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛−1)

− 𝐻
ℎ
(𝑡
𝑛−1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
.

(76)
UsingTheorem 14, we have

󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑛)
− 𝑌̂
(𝑛)󵄩󵄩󵄩󵄩󵄩

≤ 𝑝
1
{
󵄩󵄩󵄩󵄩𝐶12

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛−1)

− 𝐻
ℎ
(𝑡
𝑛−1

)
󵄩󵄩󵄩󵄩󵄩

+ℎ
󵄩󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑛)

− 𝑌 (𝑡
𝑛
− 𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩
+ ℎ

󵄩󵄩󵄩󵄩󵄩
𝑌̃
(𝑛)
− 𝑌̃ (𝑡

𝑛
− 𝜏)

󵄩󵄩󵄩󵄩󵄩
} ,

ℎ ∈ (0, ℎ
1
] ,

(77)
which on substitution into (76) gives
󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛)
− 𝑦
(𝑛)󵄩󵄩󵄩󵄩󵄩

2

𝐺

≤ 𝑝
3
ℎ (1 + 2𝑝

2

1
ℎ
2
) (1 + 2𝑠𝑟

2
𝑞
2
)

×
󵄩󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑛)

− 𝑌 (𝑡
𝑛
− 𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩

2

+ (1 +
2ℎ𝑝
3
𝑝2
1

󵄩󵄩󵄩󵄩𝐶12
󵄩󵄩󵄩󵄩
2

𝜆
2

)

×
󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛−1)

− 𝐻
ℎ
(𝑡
𝑛−1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
, ℎ ∈ (0, ℎ

1
] ,

(78)
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where 𝜆
2
is the minimum characteristic value of 𝐺. On the

other hand,

󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛)
− 𝐻
ℎ
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
≤
󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛)
− 𝑦
(𝑛)󵄩󵄩󵄩󵄩󵄩

2

𝐺
+
󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛)
− 𝐻
ℎ
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

+ 2
󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛)
− 𝑦
(𝑛)󵄩󵄩󵄩󵄩󵄩𝐺

󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛)
− 𝐻
ℎ
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩𝐺

≤ (1 + ℎ)
󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛)
− 𝑦
(𝑛)󵄩󵄩󵄩󵄩󵄩

2

𝐺

+ (1 +
1

ℎ
)
󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛)
− 𝐻
ℎ
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
.

(79)

In view of (47a), (47b), (48a), (66a), and (66b), the applica-
tion of Theorem 14 leads to
󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛)
− 𝐻
ℎ
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝑝
2
(
󵄩󵄩󵄩󵄩󵄩
Δ
ℎ
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝛿
ℎ
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩
) , ℎ ∈ (0, ℎ

0
] ,

(80)

which gives

󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛)
− 𝐻
ℎ
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≤ 𝜆
1
𝑝
2

1
(
󵄩󵄩󵄩󵄩󵄩
Δ
ℎ
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝛿
ℎ
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩
)
2

, ℎ ∈ (0, ℎ
0
] ,

(81)

where 𝜆
1
denotes the maximum eigenvalue of the matrix 𝐺.

A combination of (46) and (76)–(81) leads to

󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛)
− 𝐻
ℎ
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≤ (1 + ℎ𝛾
1
)
󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛−1)

− 𝐻
ℎ
(𝑡
𝑛−1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

+ 𝛾
2
ℎ
󵄩󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑛)

− 𝑌 (𝑡
𝑛
− 𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 𝛾
3
ℎ
2𝑝+1

, ℎ ∈ (0, ℎ
3
] ,

(82)

where

ℎ
3
= min {ℎ

0
, ℎ
1
} ≤ 1,

𝛾
1
= 1 +

4𝑝
3
𝑝2
1

󵄩󵄩󵄩󵄩𝐶12
󵄩󵄩󵄩󵄩
2

𝜆
2

,

𝛾
2
= 2𝑝
3
(1 + 2𝑝

2

1
) (1 + 2𝑠𝑟

2
𝑞
2
) ,

(83)

𝛾
3
= 8𝜆
1
𝑝
2

0
𝑝
2

2
. (84)

Therefore,

󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛)
− 𝐻
ℎ
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≤
󵄩󵄩󵄩󵄩󵄩
𝑦
(0)
− 𝐻
ℎ
(𝑡
0
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

+ ℎ

𝑛

∑
𝑖=1

(𝛾
1

󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑖−1)

− 𝐻
ℎ
(𝑡
𝑖−1
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
+ 𝛾
2

󵄩󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑖)

− 𝑌 (𝑡
𝑖
− 𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩

2

)

+ 𝛾
3
𝑡
𝑛
ℎ
2𝑝
, ℎ ∈ (0, ℎ

3
] .

(85)

ConsideringTheorem 16, we further obtain

󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛)
− 𝐻
ℎ
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≤
󵄩󵄩󵄩󵄩󵄩
𝑦
(0)
− 𝐻
ℎ
(𝑡
0
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
+ ℎ (𝛾

1
+ 𝛾
2
𝑝
4
)

×

𝑛−1

∑
𝑖=0

󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑖)
− 𝐻
ℎ
(𝑡
𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
+ 𝛾
3
𝑡
𝑛
ℎ
2𝑝

+ 𝛾
2
𝑝
4
𝑡
𝑛
(ℎ
2(𝑝+1)

+ ℎ
2(𝜇+V+1)

) + 𝑝
4
𝛾
2
ℎ

×

0

∑
𝑘=−𝜇−𝑚+1

󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑘)
− 𝑌 (𝑡

𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

, ℎ ∈ (0, ℎ
0
] ,

(86)

where ℎ
0

= min{ℎ
2
, ℎ
3
} ≤ 1. Using discrete Bellman

inequality, we have

󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛)
− 𝐻
ℎ
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
≤ (

󵄩󵄩󵄩󵄩󵄩
𝑦
(0)
− 𝐻
ℎ
(𝑡
0
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
+ 𝑝
4
𝛾
2
ℎ

×

0

∑
𝑘=−𝜇−𝑚+1

󵄩󵄩󵄩󵄩󵄩
𝑌
(𝑘)
− 𝑌 (𝑡

𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

+ (𝛾
3
+ 𝛾
2
𝑝
4
) 𝑡
𝑛
ℎ
2𝑝
+ 𝛾
2
𝑝
4
𝑡
𝑛
ℎ
2(𝜇+V+1)

)

× exp ((𝛾
1
+ 𝛾
2
𝑝
4
) 𝑡
𝑛
) , ℎ ∈ (0, ℎ

0
] .

(87)

Considering ‖𝐻(𝑡) − 𝐻ℎ(𝑡
𝑛
)‖ ≤ 𝑝

0
ℎ𝑝, we obtain

󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛)
− 𝐻 (𝑡

𝑛
)
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛)
− 𝐻
ℎ
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐻
ℎ
(𝑡
𝑛
) − 𝐻 (𝑡

𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑛)
− 𝐻
ℎ
(𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩
+ 𝑝
0
ℎ
𝑝
.

(88)

Considering (87) and (88), we can easily conclude that
method (4a), (4b), and (4c) with interpolation procedure (6)
is𝐷-convergent of order at least min{𝑝, 𝜇 + V + 1}. The proof
is completed.

5. Numerical Experiments

Consider the following nonlinear neutral delay differential
equations:

𝑦
󸀠

(𝑡)

= −𝑦 (𝑡) + 0.9 cos (𝑦 (𝑡 − 1) + 𝑦󸀠 (𝑡 − 1))

+ cos (𝑡) 𝑒−𝑡 − 0.9 cos (cos (𝑡 − 𝜏) 𝑒−(𝑡−𝜏)) , 10 ≥ 𝑡 ≥ 0

𝑦 (𝑡) = 𝑒
−𝑡 sin (𝑡) , −1 ≤ 𝑡 ≤ 0,

(89)
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Figure 1: The numerical solution of (92) for (89) with ℎ = 0.1.

Table 1: Convergence order of two-step Runge-Kutta methods for
system (89).

𝑚 5 10 20 40
Convergence order 4.0012 3.9880 3.9864 3.9860

and its perturbed problem

𝑧
󸀠

(𝑡)

= −𝑧 (𝑡) + 0.9 cos (𝑧 (𝑡 − 1) + 𝑧󸀠 (𝑡 − 1)) + cos (𝑡) 𝑒−𝑡

− 0.9 cos (cos (𝑡 − 𝜏) 𝑒−(𝑡−𝜏)) , 10 ≥ 𝑡 ≥ 0,

𝑧 (𝑡) = 𝑒
−𝑡 sin (𝑡) + 0.2, −1 ≤ 𝑡 ≤ 0.

(90)

We can calculate 𝛼 = −1, 𝛽 = 0.9, 𝛾 = 0.9, and 𝑞 = 0.
Equation (89) has a unique true solution:

𝑦 (𝑡) = 𝑒
−𝑡 sin (𝑡) , 𝑡 ≥ −1. (91)

Apply the two-step Runge-Kutta method induced by the
GL method in [12]

2√15 − 7 8 − 2√15

𝜃 𝜃

𝑎11 𝑎12 𝑎21 𝑎22

𝑏1 𝑏2

𝑐1 𝑐2

𝑏̃1 𝑏̃2

0.47790690818421

0.95532987568936 0.79063681672548

0.443166749171141.59379439197950

1 1

0.87165188291653 −0.08663699023763 0.50361252124048

(92)

to (89) and (90), 𝑌̃(𝑛)
𝑗

is computed by the Lagrange interpola-
tion procedure with 𝑛 = 5 (see Figures 1 and 2 and Table 1).

It is obvious that the correspondingmethod forNDDEs is
stable and convergent, and the convergence order ismin{4, 5}.

6. Conclusions

In this paper we gave the stability and convergence results
of two-step Runge-Kutta methods with linear interpolation
procedure for solving nonlinearNDDEs (1). First, we gave the
definitions of (𝑘, 𝑙)-algebraically stable, algebraically stable
and diagonally stable. Then we proved that if a TSRK
method is (𝑘, 𝑙)-algebraically stable, 𝑘 < 1 and 𝑑

𝑗
> 0

𝑗 = 1, 2, . . . , 𝑠, then the method with linear interpolation
procedure is weak GAR(𝑙)-stable. We also proved that if
a TSRK is algebraically stable and diagonally stable and
its generalized stage order is 𝑝, then the method with
interpolation procedure is 𝐷-convergent of order at least
min{𝑝, 𝜇 + V + 1}.

We believe that the results presented in this paper can
be extended to other general NDDEs. However, it is difficult
to extend these results to more general neutral functional
differential equations. Results extending the results presented
in this paper to more general neutral functional differen-
tial equations and other delay differential equations such
as delay integral differential equations will be discussed
elsewhere.
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Figure 2: The numerical solution of (92) for (90) with ℎ = 0.1.
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