
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 684615, 7 pages
http://dx.doi.org/10.1155/2013/684615

Research Article
Content-Based Image Retrial Based on Hadoop

DongSheng Yin and DeBo Liu

School of Information Science and Technology, Sun Yat-sen University, Guangzhou 510000, China

Correspondence should be addressed to DongSheng Yin; yindsh@mail.sysu.edu.cn

Received 9 July 2013; Accepted 22 August 2013

Academic Editor: Ming Li

Copyright © 2013 D. Yin and D. Liu. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Generally, time complexity of algorithms for content-based image retrial is extremely high. In order to retrieve images on large-scale
databases efficiently, a new way for retrieving based on Hadoop distributed framework is proposed. Firstly, a database of images
features is built by using Speeded Up Robust Features algorithm and Locality-Sensitive Hashing and then perform the search on
Hadoop platform in a parallel way specially designed. Considerable experimental results show that it is able to retrieve images based
on content on large-scale cluster and image sets effectively.

1. Introduction

Content-based image retrieval (CBIR) is a long-term hotspot
in computer vision and information retrieval and there
are many mature theories on this topic. For example, an
algorithm proposed in early time by using multiresolution
wavelet decompositions [1] had achieved favorable results
in searching images that are similar in content or structure.
And scale invariant feature transform (SIFT) [2], published
in 1999, was able to be stable with light, noise, and small
perspective change in a sense. But SIFT was so complex
that it cost too much time and this led to several other
improvements, such as principle component analysis SIFT
(PAC-SIFT) [3] which speed up featurematching by reducing
the dimension of image features and fast approximated
SIFT [4, 5] which speed up by using an integral image
and an integral orientation histogram. Another considerable
algorithm on CBIR is speededup robust features (SURF) [6]
and it is stable and fast enough to gain excellent results on
region of computer vision such as object recognition and 3D
reconstruction. SURF is also involved from SIFT but faster
and announced to be more robust than SIFT when coming to
image transformation.

Normally, CBIR has two steps, the feature extraction
which mainly affects the quality of searching, and the fea-
ture matching, which mainly affects the efficiency. Usually,
features are in high dimension, so matching features means

searching in high-dimension. There are many ways to search
high dimension space such as linear scanning, tree searching,
vector quantization, and hashing. Among these methods,
hashing is the easiest way to keep time complexityO(1) as well
as designing as a fuzzy search method. Details about hashing
will be discussed later.

Even features matching is optimized via hashing; due to
the huge amount of information of CBIR, time complexity
is still too high, preventing it from being widely used.
Particularly in the age of explosive expansion in information,
the stand-alone method for CBIR is becoming harder and
harder to fulfill the load of storage and computing brought
by data explosion. Hadoop [7] is an open-source software
framework for reliable, scalable, distributed computing. It
enables large datasets processing distributedly across clusters
using simple programming models. It is widely used by IT
companies like Yahoo!.

In this paper, image features extraction and matching are
combined with three techniques, SURF, LSH, and Hadoop
distributed platform, intending to migrate computing to
cluster with multiple nodes and improve the efficiency of
CBIR significantly. The rest of the paper is organized as fol-
lows. Section 2 discusses related algorithms and techniques.
Architecture of implementation of such method is discussed
in Section 3. Section 4 presents our experimental results and
analysis. Finally, the conclusions are drawn in Section 5, with
a brief description of future work.

2 Mathematical Problems in Engineering

2. CBIR Algorithms and Hadoop Introduction

2.1. Speeded-Up Robust Features. The SURF algorithm is
divided into two stages: the interest points’ detection and
feature description. In the first stage, integral images and fast
Hessian matrix is used for detection of image features. In the
second stage, a reproducible orientation of each interest point
is fixed first, then constructing a square region aligned with
the selected orientation and extracting the SURF descriptor
with 64 dimensions from this region. Steps are as follow [6].

(1) Scale Spaces Analysis. Image pyramids are built by
repeatedly Gaussian blur and subsampling.

(2) Interest Points Locating. The maximum of the deter-
minant of the Hessian matrix is calculated first.
Then, nonmaximum suppression in a 3 × 3 × 3
neighborhood to the image is applied, scale and image
space interpolation are taken.

(3) Orientation Assignment. Haar-wavelet responses in 𝑥

and 𝑦 direction in a circular neighborhood around
the interest point is calculated. A dominant orienta-
tion is estimated and it is now invariant to rotation.

(4) Descriptor Extraction. A square region centered
around the interest point is constructed and oriented
along the orientation selected. Then, the region is
split into 4 × 4 square subregions and the sum of
wavelet response in horizontal and vertical direction
of each subregion is calculated. After normalization,
a descriptor in 64 dimensions is obtained.

SURF is improved from SIFT both are based on robust
points (or interest points) which are not sensitive to transfor-
mation, brightness, and noise but is less complex and more
efficient than SIFT due to the smaller number and lower
dimension of descriptors. Anopen-source libraryOpenSURF
(http://www.mathworks.com/matlabcentral/fileexchange/2-
8300)written byDirk-JanKroom for SURFdescriptor extrac-
tion is used in this paper.

2.2. Locality Sensitive Hashing. It is mentioned previously
that SURF descriptors are in 64 dimensions and matching
features means searching in high dimension. Among the four
regularly searchingmethods, locality sensitive hashing (LSH)
[8] is the fastest way for indexing and could be faster than
other three methods for several orders of magnitude in huge-
scale searching. In addition, LSH is based on probability
and is more suitable for nonprecise searching. LSH was
first introduced by Indyk and Motwani for nearest neighbor
search [9]. The main idea is to hash vectors using several
hash functions and make sure that for each hashing, the
vectors with smaller distances between each other are more
likely to collide in probability than that with longer distances.
Different hash functions could be designed for different
metrics such as Euler distance.

A family of functions can be defined as follows [10].
A familyH = {ℎ : 𝑠 → 𝑈} is said to be locality sensitive

if, for any 𝑞, function 𝑝(𝑡) = 𝑃𝑟H[ℎ(𝑞) = ℎ(V) : 𝑞 − V = 𝑡]

decreases strictly as 𝑡 increases. That is, the probability of the

collision of 𝑞 and V decreases as the distance between them
increases.

Stable distribution is one of the most important methods
for LSH function implementation. And Gaussian distribu-
tion, one kind of famous stable distribution, is used for LSH
function design frequently.

Given 𝑘, 𝐿,𝑤, suppose that𝐴 is an 𝑘×𝑑Gaussian matrix,
𝐴
𝑖
represents the 𝑖 row of 𝐴, 𝑏 ∈ R𝑘 is a random vector, and

𝑏
𝑖
∈ [𝑤], 𝑥 ∈ R𝑑; then the hash code of 𝑥 can be represented

as

𝑔 (𝑥) = (ℎ
1 (
𝑥) , . . . , ℎ𝑘 (

𝑥)) , (1)

ℎ
𝑖 (
𝑥) =

𝐴
𝑖
𝑥 + 𝑏
𝑖

𝑤

, 𝑖 ∈ [𝑘] , (2)

𝑔(𝑥) is the concatenation of 𝑘 hash codes, and it is regularly
designed as normal hash function to obtain the final scalar
index, such as the following one recommended by Andoni
and Indyk in one of his LSH library [10]:

𝑔 (𝑥) = 𝑓 (𝑎
1
, . . . , 𝑎

𝑘
)

= ((

𝑘

∑

𝑖=1

𝑟
󸀠

𝑖
𝑎
𝑖
) mod 𝑝𝑟𝑖𝑚𝑒) mod 𝑡𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒,

(3)

in which 𝑟
󸀠

𝑖
is a random integer, 𝑝𝑟𝑖𝑚𝑒 equals (2

32
− 5),

𝑡𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒 represents the size of hash table, usually equals to
|𝑃|, the size of searching space.

𝑏
𝑖
in (2) is a random factor, and because it can be noticed

that𝐴 itself is random already, so just set 𝑏
𝑖
= 0. Denominator

𝑤 in (2) represents a segment mapping such that the similar
values in numerator can be hashed into the same code for the
purpose of neighbor searching and its value represents the
segment size. In this paper, we chose 𝑤 = 0.125.

There are two more parameters that should be deter-
mined; 𝑘 for the number of hash codes should be calculated
by each hash function and𝐿 for the number of hash functions.
From the fact that two similar vectors will collide with the
probability greater than or equal to (1 − 𝛿) when applying
LSH, we get some conditions that 𝑘 and 𝐿 should satisfy.

Suppose that the distance of a query 𝑞 and its neighbor V
is less than a constant 𝑅, and let 𝑝

𝑅
= 𝑝(𝑅); then

𝑃𝑟
𝑔∈G [𝑔 (𝑞) = 𝑔 (V)] ≥ 𝑝

𝑘

𝑅
. (4)

And for all 𝐿 hash tables, the probability that 𝑞 and V does not
collide is no more than (1 − 𝑝

𝑘

𝑅
)

𝐿

; that is

1 − (1 − 𝑝
𝑘

𝑅
)

𝐿

≥ 1 − 𝛿. (5)

We get better performance if there are less hash tables. So let
𝐿 be the minimum possible integer and there is

𝐿 = floor
log 𝛿

log (1 − 𝑝
𝑘

𝑅
)

. (6)

Now 𝐿 is a function of 𝑘.
According to Andoni and Indyk [10], the best value of 𝑘

or 𝐿 should be tested by sampling. Experimental results of
Corel1K image set testing show that 𝑘 prefer 5, and let the
value of 𝐿 be 7 from (6).

Mathematical Problems in Engineering 3

2.3. Hadoop. Hadoop is mainly compose of Hadoop dis-
tributed file system (HDFS), MapReduce, and HBase. HDFS
is a distributed file system using by Hadoop while HBase
is a distributed NoSQL database. And MapReduce is a kind
of simple but powerful programming model for parallelly
processing large dataset. The operation of MapReduce con-
tains two steps: the map step that outputting ⟨key, value⟩
pairs after processing the input data and the reduce step
that collecting and processing the ⟨key, value⟩ pairs coming
from the map step with the same key. Figure 1 shows how
MapReduce works.

3. System Design

3.1. Overall Design. The overall design of this system is
as in Figure 2. Among all the modules, Feature Extraction
and Feature Matching are the most time consuming. And
Matlab is used as auxiliary because there are too many
image processing and matrix operations. The workflows are
as follow.

(1) Image preprocessing, including image scaling and
graying (notice that SURF is based on gray images and
is nonsensitive with image scaling).

(2) SURF extraction: multiple vectors in 64 dimensions
are obtained.

(3) Hashing: hashing each feature from last step using (2)
and (3), and 7 hash codes are obtained.

(4) Feature matching: for each hash codes from last step,
search corresponding hash table for match features
using MapReduce then results are collected and
sorted.

(5) Output results.

3.2. Parallelization Design for Feature Matching. In this mod-
ule, candidate matching features for each feature of input
image are searched and candidate similar images are selected
according tomatching counts. For simplicity, two features are
considered to be similar if their hash codes collide. In this
step, the input is the feature set and several hash codes for
each feature, and the output is the list of candidate similar
images. This is the most time-consuming part of the whole
system and is implemented by MapReduce.

Suppose ⟨𝐾,𝑉⟩ represents Key-Value pair inMapReduce;
then workflow of query in parallel is shown as Figure 3.

The feasibility of this parallelization is based on two facts.

(1) All splits are pairwise independent. That is, there are
no relationships between any two splits.The format of
features description is the same as the value ofmapper
input. Each line contains information about a feature’s
hash codes and image id to which it belongs and
features are independent. So splits based on line break
can be processed independently and concurrently.

(2) Results from all mappers will be collected by reducer.
In addition, the number of reducers is set to one;
thus, all parallel processing output will be counted

and sorted in single reducer. Eventually, retrial results
are unrelated to the way the descriptions split.

Suppose that 𝑁 represents set of 𝑛 job servers, 𝑁
𝑖

represents the 𝑖th job server, and 𝑡
𝑖
equals to the time 𝑁

𝑖

finishes its task; then the total time for the whole cluster to
finish its searching assignment is

𝑇 = max {𝑡
1
, . . . , 𝑡

𝑛
} . (7)

As the cluster is designed to be isomorphic, so in the case
of overall task remains constant, the minimum of total time
should be

𝑇min = 𝑡
1
= ⋅ ⋅ ⋅ = 𝑡

𝑛
; (8)

that is, it will take the cluster the least time as long as the sizes
of all splits are the same. What should be pointed out here
is that, due to the independence of each split, actually 𝑡

𝑖
is

related to𝑁
𝑖
and its real task. So, only the elements that could

be controlled are discussed here.
If the size of description file before splitting is Size (MB),

the split size is seg (MB), then

seg =

Size
𝑛

> 64?64 :

Size
𝑛

. (9)

Meaning that the task is averagely split first, and every job
server gets a split with the size of seg = Size/𝑛. At this time,
the task is balanced in all nodes, and 𝑇 will get its minimum
value. If seg is larger than 64 (MB), which is HDFS default
block size, itmay cost extra effort due to cross block accessing.
At this time

Size = 𝑘 ∗ 64 + tail, (10)

where 𝑘 is integer and tail is less than 64MB. That is, a
description file with size Size is split into 𝑘 + 1 parts, with 𝑘

parts size 64MB, one part size tail. These 𝑘 + 1 parts then
will be assigned to job servers by Hadoop job tracker. In
later section, it can be seen that such segmentation strategy
which combines all compute resource and features ofHadoop
framework into thinking is simple and highly efficient.

3.3. Data Structure. There are three kinds of data in the
system: the image set, the features, and the hash tables. The
image set is stored in the OS file system and the other two
are stored in HBase built on HDFS, the Hadoop file system.
HBase does not support SQL query, so primary keys or range
of primary keys are needed. Details are as follow.

(1) Image Set. Images are stored as normal image files
such bmp files in the local file system, named start
from 1 incrementally.

(2) SURF Features Table. Normally, there are hundreds of
features for each image, so invert index is better for
features storage. The pattern is in this form:

(𝐼𝑚𝑎𝑔𝑒𝐼𝑑 𝑖key, 𝐹𝑙𝑜𝑎𝑡, 𝐹𝑙𝑜𝑎𝑡, . . .) (11)

𝐼𝑚𝑎𝑔𝑒𝐼𝑑 represents the identifier of an image in the
local file system while 𝑖 represents the 𝑖th features of
image 𝐼𝑚𝑎𝑔𝑒𝐼𝑑. Followings are 64 floats, representing
a vector in 64 dimensions.

4 Mathematical Problems in Engineering

Split 0 Map
Sort

Split 1 Map

Split 2 Map

Part 0Reduce

Part 1

Copy

Merge

Reduce

Input
HDF S Output

HDFS

HDFS
replication

HDFS
replication

Figure 1: The MapReduce programming model.

Input Preprocessing Feature
extraction

HashingHBase

Feature
matchingOutput

Figure 2: Overall design. Preprocessing, Feature Extraction and
Hashing are mainly matrix operations and are implemented as
Matlab scripts for the purpose of speeding up and convenience.

(3) Hash Table. The hash table is used for neighbor
searching. That is, select a hash code of a specific
feature as key and query the corresponding value.
There are 7 hash tables according to LSH in this paper,
so the storage form is similar to SURF features table
for the purpose of reducing database connections.
That is,

(Hashcode 𝑖key, 𝐼𝑚𝑎𝑔𝑒𝐼𝑑 𝑗
1
, . . . , 𝐼𝑚𝑎𝑔𝑒𝐼𝑑 𝑗

𝑘
) (12)

𝐻𝑎𝑠ℎ𝑐𝑜𝑑𝑒 represents a hash value while 𝑖 represents
the 𝑖th hash function and 𝑖 = 1, . . . , 7; for example,
55555 3 represents that the hash value of the third
hash function is 55555. And 𝐼𝑚𝑎𝑔𝑒𝐼𝑑 𝑗

𝑘
is a key in

SURF features table.

4. Experiment and Analysis

4.1. Accuracy. Precision and recall are the main criteria for
evaluating content-based image retrieval algorithms. Because

Table 1: Example for feature matching.

Input Outputs Matches Feature number Percentage

118

118 256 267 99.25
159 86 267 32.21
472 79 267 29.59
127 70 267 26.22
199 70 267 26.22

the primary focus of this system is the design and implemen-
tation of distributed computing and for fuzzy searching in
large-scale image database, recall is less meaningful, so only
the precision is selected and tested.

As mentioned previously, SURF is robust to revolution
and small change of perspective, so Corel image database
is used for fully testing the precision of the system. Corel
image database contains 10 kinds of images, each of 100
images, a total of 1000 images, including human, landscape,
and architecture.

Results show that the percentage of the 6 returning results
that are similar to the input image is 60.4%, as shown in
Figure 4.

Here, two images are considered similar to each other if
at least 30 pairs of features are matched, and the more they
match, the more similar those two images are. As in Table 1,
there are 5 outputs for image with ID “118.” Among them, the
most similar one is “159” except “118” itself, with 86 matches
in total 267 features.

In addition, CBIR algorithms are related to specific image
database in a considerable sense, so the result in the paper is
just for reference.

4.2. Experimental Environment. The topology of the sys-
tem deploying environment is as in Figure 5. The physical
machines are listed in Table 2. The configurations of virtual
machines are listed in Table 3 and the software environments
are listed in Table 4. As shown, there are 11 physical machines,
containing 1 master and 30 slaves and HBase Region Servers
which are all virtual machines.

Mathematical Problems in Engineering 5

Images

Begin

Features’ description

Mapper

Count collisions and sort

Further
processing

Split

Parallel
processing

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

⟨offset, image id: feature id h1· · · h7⟩

Search HBase for collision of hi

Output ⟨image id, candidate image id⟩

Reducer input ⟨image id, candidate image id list⟩

Reducer output ⟨image id, candidate image id count⟩

Figure 3: Parallel processing model.

Figure 4: Typically, 6 images that are most similar to the input one
will be shown.

4.3. Results and Analysis. In the system, 30million features of
159955 images are recorded.The size of data, including scaled
images, features, and hash codes, is up to 9.93GB.

Controller

Job server Switch

Figure 5: Topology of system deploying environment. 11 servers are
connect with a switch.

Efficiency testing is divided into two parts: the feature
extraction and feature matching. Feature extraction is tested
in single node as its algorithm is not distributed and feature

6 Mathematical Problems in Engineering

Table 2: Physical machines configurations.

Type CPU Memory Number

Controller Intel Core i7 2600
4 × 3.4GHZ 16GB 1

Job Server Intel Xeon E3-1235
4 × 3.2GHZ 32GB 10

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

4 8 12 16

Ti
m

e (
s)

Image numbers in database (10 thousand)

Timing test in cluster of different scale

1
5
10
15

20
25
30

Figure 6: Time spent for feature matching. Legends from 1 to 30
indicate the number of nodes in a cluster.

matching is tested in cluster of different scale (single node,
five nodes to thirty nodes increasing by 5 nodes a time),
respectively.

Extracting the features of all the 159955 JPEG images with
the resolution less than or equal to 256∗256 in the Controller
takes about 180 minutes, in speed of about 14.8 images per
second. Extracted features will be written into database, so
this extraction operation only has to be done for one time.

Results of feature matching of 31993 input images whose
features have been extracted are shown in Table 5 and
Figure 6.

Table 5 shows that, when there are 40 thousand images
in the database, it costs 3227 seconds for single node to
accomplish the job while only 125 seconds for thirty nodes
and the ratio is almost 25.8. Other scales of database are
similar. In addition, with 160 thousand images in database,
the system can match features as fast as 0.006 second per
image.

Figure 6 shows that, in a specific database, consuming
time is reducing linearly as the number of nodes increases.
That is, the performance of the system is increasing linearly
as the number of nodes increases.

Another viewof the results shown inTable 5 is in Figure 7.
The abscissa represents the nodes of a cluster, and the ordinate
is the ratio of cost time in single node and in corresponding

1.00

4.97

9.55

13.66

17.47

21.64

25.44

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

Ra
tio

Number of nodes

160 thousand

Figure 7: Ratio of performance improvement with 160 thousand
images in database.

Number of nodes: 30

120
130
140
150
160
170
180
190

Ti
m

e (
s)

4 6 8 10 12 14 16
Number of images (10 thousand)

Figure 8: Time spent increases logarithmically as data in database
growths when there are 30 nodes running in a cluster.

scale of cluster. For example, 9.55 means that the time cost
in single node is 9.55 times of that in cluster of 10 nodes.
FromFigure 7, it can be confirmed that, in a specific database,
the performance of the system increases almost linearly as
the number of nodes increases which indicates that the
system is able to accomplish the jobs distributedly by calling
all the nodes in the cluster efficiently and fully prove the
system’s availability and excellent expansibility in distributed
environment. Other cases are similar.

Time consumed for different databases in cluster of 30
nodes is shown in Figure 8. It can be seen that the time cost
is increased logarithmically as database growths, indicating
that the system has strong suitability and advantage in
performance for large-scale database. Other cases are similar.

To conclude, especially from the analysis of Figures 6–8,
it can be seen that the system has two major advantages.

(1) It can be expanded quite easily as the performance of
the system is increasing linearly with the increasing in
the number of nodes. Adding nodes means speeding
up.

Mathematical Problems in Engineering 7

Table 3: Virtual machines configurations.

Role Belongs to Frequency Memory Number Network
Master Controller 5.0GHz 8GB 1 l Gbps Switch
Slave Job Server 3.0GHz 4GB 3 × 10

Table 4: Virtual machines software environment.

OS Hadoop HBase JDK
Centos 6.3 Hadoop-1.0.1 HBase-0.92.1 1.6.0 22

Table 5: Time (second) spent for feature matching.

Nodes 10 thousand
4 8 12 16 Average

1 3227 3933 4347 4630 4034.25
5 713 819 883 931 836.5
10 335 423 461 485 426
15 243 287 317 339 296.5
20 188 220 247 265 230
25 152 183 198 214 186.75
30 125 153 171 182 157.75
1 : 30 25.82 25.71 25.42 25.44 25.60

(2) Time cost is increased logarithmically as database
grows. So, it will perform better against larger
database.

The system designed is able to take full advantage of
distributed architecture, making the searching rate increased
almost linearly as the number of nodes grows to achieve the
goal of fast content-based image retrial.

5. Conclusion

In this paper, a method for content-based image retrial
under distributed framework is proposed and discussed from
theory and implementation. Experimental results show that
it is able to retrieve images based on content on large-
scale image sets effectively. Distributed framework and large
scale of data are the main focus of the system. It is rather
significant to solve the severe problems of huge amount of
computing and storage by combining the traditional CBIR
with distributed computing to gain higher efficiency. In
addition, the system is remaining to be improved such as the
following:

(1) Make Improvement on CBIR Algorithms. CBIR is a
complexity technique. So, in the context of getting
an acceptable result, only one algorithm is used to
simplify. Other image processing techniques could
be applied to improve both the precision and per-
formance. Techniques such as the affine invariant
features extraction method in [11, 12] which can be
used for object classification both in database building
and parallel searching stages may speed up the whole
process by indexing images to different category.

(2) System Optimization and Real-Time Enhancement.
Optimization can be done by optimizingHadoop and
HBase. But as it takes a long time for Hadoop jobs to
start up and be scheduled, it is not suitable for real-
time processing. Other distributed computing model
such as Twitter Storm (http://storm-project.net/)
stream computing can be considered.

References

[1] W. Niblack, R. Barber, W. Equitz et al., “QBIC project: querying
images by content, using color, texture, and shape,” in Storage
and Retrieval for Image and Video Databases, pp. 173–187,
February 1993.

[2] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60, no.
2, pp. 91–110, 2004.

[3] Y. Ke and R. Sukthankar, “PCA-SIFT: a more distinctive
representation for local image descriptors,” in Proceedings of
the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR ’04), pp. II506–II513, July 2004.

[4] M. Grabner, H. Grabner, and H. Bischof, “Fast Approximated
SIFT,” in Proceedings of the Asian Conference on Computer
Vision, pp. 918–927, Hyderabad, India, 2006.

[5] B. Smith, “An approach to graphs of linear forms,” unpublished.
[6] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-

Up Robust Features (SURF),” Computer Vision and Image
Understanding, vol. 110, no. 3, pp. 346–359, 2008.

[7] T. White, Hadoop: The Definitive Guide, O’Reilly Media, 2009.
[8] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in

high dimension via hashing,” in Proceedings of the International
Conference on Very Large Databases, 1999.

[9] P. Indyk and R. Motwani, “Approximate nearest neighbors:
towards removing the curse of dimensionality,” in Proceedings
of the 30th Annual ACM Symposium on Theory of Computing,
pp. 604–613, Dallas, Tex, USA, May 1998.

[10] A. Andoni and P. Indyk, “E2LSH 0. 1 User Manual,” June 2005.
[11] J. Yang, M. Li, Z. Chen, and Y. Chen, “Cutting affine moment

invariants,” Mathematical Problems in Engineering, vol. 2012,
Article ID 928161, 12 pages, 2012.

[12] J. Yang, G. Chen, and M. Li, “Extraction of affine invariant
features using fractal,” Advances in Mathematical Physics, vol.
2013, Article ID 950289, 8 pages, 2013.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

