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This study presents transient aspects of light wave propagation connected with spatial coherence. It is shown that reflection and
refraction phenomena involve spatial patterns which are created within a certain transient time interval. After this transient time
interval, these patterns act like a memory, determining the wave vector for subsequent sets of reflected/refracted waves. The validity
of this model is based on intuitive aspects regarding phase conservation of energy for waves reflected/refracted by multiple centers

in a certain material medium.

1. Introduction

As it is known, the study of light wave propagation phenom-
ena as reflection and refraction at the interface between two
different media is based on wavefronts generated by multiple
centers of reflection/refraction situated on this interface.
These wavefronts correspond to surfaces over which the light
wave has a constant phase. Usually, a wavefront is represented
by the surface over which the wave has a maximum value (the
crest of a wave).

The direction of propagation for the wave (which is also
the direction of the wave vector, usually denoted by k) is
always perpendicular to the surface of the wavefront at each
point. Thus, the wavefronts of a point source (emitting in
all spatial directions) are spheres, and the wave propagates
radially outward the radius of a sphere being perpendicular
to the circumference at each point.

According to Huygens’ principle for propagation of light,
each point on a certain wavefront acts as a point source that
emits spherical wavelets. These wavelets propagate with the
speed of light in the medium and generate the total wavefront
at a later time as the envelope that encloses all of these
wavelets. This corresponds to the tangent line that joins the
front surface for each of them.

However, we must take into account the fact that each
center of reflection/refraction (usually represented by an

infinitely small spatial area of the interface) should be
considered also as emitting spherical energy waves in all
directions. For an oblique incidence of a plane wave, a certain
center of reflection/refraction will be the first one which
emits wavelets with the speed of light specific to that material
medium. Until it interacts with the wavefront generated by
another center of reflection/refraction, we should consider
that the energy received from the incident wave is radiated
along all spatial directions. After these first two wavelets
interact, it can be considered that they create a wavefront
with a greater radius of curvature along the main direction
of reflection/refraction, resulting a lower-divergence beam.
However, a significant amount of energy will still be radiated
in all spatial directions. The same aspect can be noticed by
analyzing the interaction of each newly created wavefront
with previously reflected/refracted wavelets. The radius of
curvature is lowered, but supplementary amounts of energy
are still radiated in all spatial directions (not just along the
main axis of reflection/refraction) by these new wavefronts.
If the lowering of beam divergence is not a prevailing
phenomenon, the reflected/refracted wave would vanish very
quickly.

Moreover, the assumption regarding the constant phase
shift (r for electric field E, e.g.) for reflected/refracted wave
in surface point is also questionable, since the interface is



far from being perfectly smooth and perfectly conductive. A
certain transient time interval for creating the electrostatic
equilibrium is always required. As a consequence, local phase
shifts for reflected/refracted wave cannot be avoided within
this local mathematical model. According to the standard
propagation theory of waves, these could generate multiple
local waves propagating in all spatial directions. Thus, the
energy of reflected/refracted wave would be dissipated in a
large solid angle (corresponding to a high divergence of the
light beam) and directionality would be lost within a very
short length interval.

For this reason, a complete analysis of phenomena on
such transient time intervals should be based on a global
analysis of interface and wavefront aspects. Spatial coherence
should be taken into consideration.

As a consequence, a certain amount of energy is lost
during this transient time interval. A deeper analysis of this
model (for the stationary regime) requires a certain memory
of previous interaction and a certain spatial coherence to be
taken into account, as will be shown in the next paragraphs.

2. Periodical Effect of Momentum
Space Patterns

As it is known, quantum theory uses either position or
momentum space for representing states and evolution of
particles and their associated fields. A preliminary analysis
of reflection/refraction phenomena is based on classical
electromagnetic field, which corresponds in fact to the wave
function associated to a photon (the electric field E, magnetic
field B, vector potential A, and scalar potential V being
the main quantities used). This wave function can explain
basic aspects in wave theory of light as reflection/refraction
working within position space.

However (as it has been shown in the introduction), this
theory working within position representation is suitable just
for idealized cases (such as a perfectly smooth interface).
It can be argued that light consists of photons which are
packets of energy that primarily interact with interface
atoms. Through this interaction, the energy of the photon
is absorbed by collectivised electrons of the solid crystalline
lattice, and the photon ceases to exist. Usually, the electron
will quickly return to a lower energy state by emitting a
photon. Since the photons are reemitted, not reflected or
refracted, each photon behaves more like a point source—
as if the light was originating right there. At a later time,
these emitted spherical waves generate the total wavefront
as the envelope that encloses all these point-source waves.
The effect of interface nonuniformities could be considered as
vanishing by drawing a tangent line as a global approximation
through the front surface for each point-source wave. Yet
there is no valid argument regarding a minimum value for the
radii of curvature of this tangent line. Theoretically, it could
be very small, and thus the global tangent line could consist
of a lot of local curves with significant curvatures which are
joined together. This way a lot of divergent light beams could
be created along the reflected/refracted trajectory, and the
energy would disappear very quickly.
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A better argument regarding the perfectly smooth
approximation for reflection/refraction theory could con-
sist in the fact that photons usually interact with collec-
tivised electrons of the solid crystalline lattice before being
reemitted. These electrons could be considered as moving
tangents to the interface since sudden changes of trajectory
could generate significant electromagnetic field (accelera-
tions being involved). This picture is supported also by
quantum physics, since the associated wave function for the
collectivised electrons is represented in position for large
space intervals, the influence of local nonuniformities being
decreased. Thus, a tangent line local radii of curvature greater
than a certain value can be drawn, and a better directionality
for reflected/refracted wave can be obtained.

However, this explanation does not take into account the
phase shift between the incident and the reemitted wave for
different points of the interface. A complete analysis based
on quantum theory should consider that waves reemitted
from different points of the interface are part of the wave-
train corresponding to a certain photon; the probability of
detecting a reflected/refracted photon is determined by the
coherent plane-wave compounding method (it is well known
that a particle interferes just with itself). There is no valid
argument for the assumption regarding the constant phase
shift between the local incident wave and the corresponding
local reemitted wave in each interface point. The wave
function for collectivised electrons of the crystal lattice is far
from being constant in space-time along this interface. For
this reason, space correlations for the incident wave-train and
the reemitted wave-train should be taken into account.

It is useful to mention that a certain kind of spatial
coherence can be noticed within classical electromagnetic
theory, since the reflection on a perfectly conductive (metal-
lic) interface requires the electric field E to vanish on this
surface. For this, a certain transient time interval necessary
for creating the electrostatic equilibrium is required.

As a consequence, local phase shifts for reflected/
refracted wave cannot be avoided within any local mathemat-
ical model. According to the standard propagation theory of
waves, these could generate multiple local waves propagating
along spatial directions which differ from the main reflec-
tion/refraction axis. Thus, the energy of reflected/refracted
wave would be dissipated in a large solid angle (correspond-
ing to a high divergence of the light beam) and directionality
would be lost within a very short length interval. Thus the use
of spatial coherence (based on nonlocal aspects) is justified. A
harder task is to add some transient time considerations into
a model based mainly on spatial correlations.

Analyzing the hypothesis of constant wave shift for the
reflected/refracted wave in any point of the interface, we can
observe that incident waves (parts of the associated wave
corresponding to a certain photon—according to quantum
mechanics) for first time interact with spatially extended
functions/patterns defined on the interface material medium
(crystal lattice with specific quantum functions for collec-
tivised electrons and for phonons—quanta corresponding to
spatially extended vibrations). This could suggest that lattice
quantum functions interact in a global manner with parts
of the incident wave on a large spatial area of the interface,
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a certain correlation between phase of reflected/refracted
wave being noticed even for surface points separated by
possible crystal defects. This implies that a kind of support
wave is generated on this interface, which acts upon reflect-
ing/refracting points and correlates the phase of reemitted
waves by interface points situated at great distance.

This aspect regarding space correlations achieved
within a very short time interval for nonadjacent spatial
intervals which interact with wavefronts (part of the
reflected/refracted wave) becomes a key issue if we consider
that reflected/refracted wave can undergo diffraction at a
later time. The requirement of constant phase shift for parts
of the associated wave generated by points or edges of a
diffraction grating is still valid—yet the points or edges of
such a diffraction grating are nonadjacent and cannot be
correlated by any surface quantum wave functions. So, the
support waves previously mentioned should propagate with
high speed in space in order to regroup the wavefronts into
a light beams with certain directionality, so as the diffracted
wave doesnot vanish within a short time interval after
interaction with the diffraction grating.

For connecting nonadjacent spatial areas, the position
space representation for associated wave function is no more
recommended. However, the associated wave corresponds to
the same photon (defined on a certain wavelength interval
and on a certain three-dimensional wave vector interval).
This implies that the use of momentum space representation
is suitable for interconnecting these nonadjacent space inter-
vals where a certain material medium interacts with parts
of the same incident or reflected/refracted wave-train (an
example being the case of a later diffraction when a limited
number of high-intensity directions are created). With a
certain periodicity, this momentum representation becomes
active and generates momentum (wave vector) values. For
nonadjacent space intervals, the phase correlation within this
momentum representation should be achieved through high-
speed propagating support waves. The momentum values
generated when this representation is active represents the
base for wave propagation on subsequent time intervals,
when the position representation becomes active.

We must check whether such high speed support waves
can be considered using the standard wave equation. As it
is known, the homogeneous wave equation in free space (in
a space-time point without any sources) in one dimension
(when movement is restricted along the Ox-axis) is repre-
sented by

¢ 10
¢ _19¢ )
ox*  v*or?
where v corresponds to the wave velocity. The standard

mathematical solution is represented by

¢ (x,1) = Py (x —vt) + P, (x +v1), (2)

where ¢ f(x — vt) corresponds to the forward wave (which
moves towards x = +00 as time t increases) and ¢, (x+vt) cor-
responds to the reverse wave (which moves towards x = —co
as time f increases).

The three-dimensional homogeneous wave equation in
free space (in a space-time point without any sources) is
represented by

’¢ 0% ¢ _10% 3)

ox*  0y* 0z2 2 ot?
For spherical coordinates, considering that the wave function
¢ is invariant under rotations (the case when spherical waves
are emitted from a certain point in space or are convergent
towards a central point), the wave equation for ¢ (depending
only on distance r to this central point and time) can be
written as
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The standard mathematical solutions for this case are
1 1
¢ (r,t) = ;(/)d (r—vt) + ;gbc (r+vt), (5)

where ¢,(r — vt) corresponds to a divergent wave (which
moves from a certain point outwards along all radial direc-
tions as time t increases) and ¢.(x + vt) corresponds to
a convergent wave (which moves from all radial directions
towards a certain point as time f increases).

However, these standard solutions are not suitable for
our purpose. Their velocity is limited by the v parameter
of the wave equation. Yet we can notice that the three-
dimensional homogeneous wave equation admits solutions
under the following form:

¢ (x,y,2,t) =ax+by +cx +dt +e, (6)

where quantities a, b, ¢, d, e are constant values. This corre-
sponds to a time-dependent plane equation—a plane which
moves in the three-dimensional space. Let us suppose that ¢
equals e in the origin, at the zero moment of time (this means
X = y =z =1t = 0). At this zero moment of time, this value
corresponds also (according to standard analytical geometry)
to a spatial plane defined by the following:

ax+by+cx+0d+e=e, (7)

which means that
ax+by+cx=0 (8)

(the spatial origin being included in this plane). At a later time
t, the same value e could be noticed for ¢ in a plane defined
by the following:

e=ax+by+cx+dt+e, 9)
which means

ax+by+cx+dt =0. (10)

At this time moment ¢, the distance from spatial origin to this
plane (parallel to the plane defined at zero moment, since



quantities a, b, ¢ corresponding to a vector normal to the
plane do not vary in time) equals

D= 0a +0b + 0c + (dt)| _ dt an
Va2 + b + ¢ Va2 + 02 + &1
This can be also written as
D d
== |, (12)
t Va? + b + ¢

which means that the plane on which ¢ equals e passing
through origin at zero time moment which moves with
velocity
d

in space. The propagation velocity depends only on a, b, ¢, d
constants. Since there is no restriction regarding the choice
for these constant values, it results that (unlike standard
solutions of wave equation) these polynomials can be rep-
resented as constant values propagating in space-time with
any velocity (this physical quantity being no more correlated
to the wave equation). Since the velocity has no more an
upper limit, these polynomials can be put in correspondence
with the high-speed support wave requested for performing
practically an instant correlation between different non-
adjoining space intervals interacting with the same associated
wave (the values in momentum space representation being
the same).

w=—=
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3. Conclusions

This study has presented transient aspects of light wave
propagation connected with spatial coherence. It has been
shown that reflection and refraction phenomena involve
spatial patterns which are created within a certain tran-
sient time interval. After this transient time interval, these
patterns (connected to spatial coherence) act like a certain
memory, determining the wave vector for subsequent sets of
reflected/refracted waves. The validity of this model is based
on the study of wavefronts generated by multiple centers
of reflection/refraction situated on the interface—the total
wavefront at a later time being the envelope that encloses
all of these wavelets. Analyzing the hypothesis of constant
wave shift for the reflected/refracted wave in any point of the
interface, it is shown that this should be connected with a
nonlocal mathematical model which takes into account

(i) that incident waves (parts of the associated wave
corresponding to a certain photon—according to
Quantum Mechanics) the first time interaction with
spatially extended functions/patterns defined on the
interface material medium (crystal lattice with spe-
cific quantum functions for collectivised electrons
and for phonons—quanta corresponding to spatially
extended vibrations);

(ii) that these kinds of spatially extended functions
are generated also for nonadjacent spatial inter-
vals which interact with wavefronts (part of the
reflected/refracted wave) at a later time.
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The first aspect is not surprising (since a spatially
extended wave function for the interface can be easily be
defined using quantum considerations). However, the second
is a novel aspect which implies the use of momentum space
representation for defining the same values for parts of the
same reflected/refracted associated wave-train in nonadja-
cent space intervals (an example being the case of a later
diffraction).

This extended spatial model can explain why minor
different local shifts do not appear, since (according to
standard wave propagation theory) these could lead to mul-
tiple local waves propagating along spatial directions which
differ to the main reflection/refraction axis. Thus, the entire
reflected/refracted wave would be dissipated in a large solid
angle (corresponding to a high divergence of the light beam)
and directionality would be lost within a very short length
interval.

The mathematical aspects are based on first order polyno-
mials satisfying the wave equation. Unlike standard solutions
of wave equation, these polynomials can be represented as
constant values propagating in space-time with any velocity
(this physical quantity being no more correlated to the
wave equation). Since the velocity has no more upper limit,
these polynomials can be put in correspondence with certain
support waves able to perform practically an instant phase
correlation between different non-adjoining space intervals
interacting with the same associated wave. This correlation
should be achieved within momentum space representation
for the associated wave, since within this representation all
values corresponding to the same wave-train are the same in
nonadjacent space intervals.

These linear functions differ from time dynamics based
on temporal coherence (as presented in [1]). Being constant
values propagating in space time, they can be put in corre-
spondence with traveling wavelets inside a certain material
medium as in [2, 3]. The difference consists in the fact that
these functions correspond to linear space-time functions
which are active with a certain periodicity. Phase aspects of
quantum interactions were also presented in [4], without any
spatial correlations to be mentioned. A nonlinear model for
creating spatial patterns (using nonlinear equations) has been
presented in [5]. Scale spatial aspects were also presented
in [6], in opposition to temporal noise aspects generating
uncorrelation presented in [7, 8] by the same group of
researchers.
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