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In the paper are presented the expressions for all network functions of common-ground, uniform passive ladders having, in general,
complex terminations at both their ends. The Elmore’s delay and rise times calculated for selected types of RLC ladders have
indicated their slight deviation from delay and rise times obtained according to their classical definitions. For common-ground,
integrating type RC ladder with voltage-step input, the Elmore’s delay- and rise-times are produced in closed-form, both for ladder
nodes and points. Furthermore, it is proposed a particular common-ground, uniform RLC ladder being amenable to application
as delay line for pulsed and analog input signals. For this ladder, the Elmore’s delay and rise times relating to their node voltages
are produced in a closed-form, enabling thus with the realization of artificial (a) pulse delay line with arbitrarily and independently
specified overall Elmore’s delay and rise times and (b) true delay line with arbitrarily specified delay time for frequency bounded
analog and/or pulsed input signals. In cases (a) and (b), precise procedures are formulated for calculation of ladder length and of
all its RLC parameters. The obtained results are illustrated with several practical examples and are, also, verified through pspice
simulation.

1. Introduction

Modeling of digitalMOS circuits byRC networks has become
a well-accepted practice for estimating delays [1–6]. In digital
integrated circuits, signal propagation delay through con-
ducting paths with distributed resistance and capacitance is
frequently a significant part of the total delay. These con-
ducting paths, or “interconnections,” can be modeled quite
accurately by nonuniform, branched RC ladder networks,
also known as “RC trees” [3]. Computationally simple bounds
for signal delay in linear RC tree networks were found in
[3] and have been used in several practical MOS timing
analyzers reported in [6], but certain circuits used in MOS
logic cannot bemodeled asRC trees since they contain one or
more closed loops of resistors, and these general RC networks

are being referred to as “RC meshes”. In these networks,
the time delay defined according to Elmore [7] is proved
to be the valid estimate, and this fact has been used in
[5] to advantage in an approach to MOS timing analysis of
general RC networks containing RC meshes. Simple closed-
form bounds for signal propagation delay in linear RC tree
models for MOS interconnections derived in [3] are, also,
valid for the more general class of linear networks known as
RC meshes, which are useful as models for portions of MOS
logic circuits that cannot be represented as RC trees [6].

Elmore’s delay is an extremely popular timing-
perfomance metric which is used at all levels of electronic
circuit design automation, particularly for RC tree analysis.
The widespread usage of this metric is mainly attributable
to its property of being a simple analytical function of
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circuit parameters, and its drawbacks are the uncertainty
of accuracy and restriction to being the estimate only for
the step-response delay. An extension of Elmore’s delay
definition has been proposed in [8] to accommodate the
effect of nonunit-step (slow) excitations and to handle
multiple sources of excitation, in order to show that delay
estimation for slow excitations is no harder than for the
unit-step input. In [9] it has been shown that this extension
of Elmore’s delay time offers a provision to deal with slow
varying excitations in timing analysis of MOS pass transistor
networks. In addition, in [10] it has been reported that
Elmore’s delay is an absolute upper bound on the actual
50% delay of an RC tree response. Also in [10], it has been
proved that this bound holds for input signals other than
steps and that actual delay asymptotically approaches to
Elmore’s delay as the input signal rise-time increases. It has
been emphasized in [11] that RC tree step responses always
are monotonic, and this is why Elmore’s definitions of both
delay and rise time [7] are applicable on complex RC tree
networks.

In this paperwewill firstly derive the general, closed-form
expressions for input and transfer functions of common-
ground, uniform, and passive ladders with complex double
terminations, making a distinction between the signal trans-
fer to ladder nodes and to its points. Then, simplifications of
the obtained results are produced for ladders with seven spe-
cific pairs of complex double terminations being interesting
from the practical point of view. Thereafter, for a uniform,
common-ground RLC ladder with (a) a relation between its
parameters resembling to analogous relation between per-
unit-length parameters of distortionless transmission line
and (b) symmetric, resistive double termination resembling
to characteristic impedance of distortionless line [12], it will
be shown that its Elmore’s delay and rise times for point
voltage transmittances can be efficiently calculated (but not in
the closed form) by using of the numerical scheme proposed
herein. In this case, we will see that the obtained numerical
values for Elmore’s times differ slightly from the delay and
rise times obtained according to their classical definitions and
by using pspice simulation when ladder is excited by a step
voltage.

For the integrating type of distributed RC impedance,
common-ground ladder as a model of two-wire line, it has
been suggested that it might be used as a true pulse delay line
[13], provided that, Schmitt triggers are used for reshaping
the delayed and edge-distorted transmitted signals. This type
of delay line with step-input excitation has already been
thoroughly investigated in [14]—where Elmore’s delay time is
given in closed form only for ladder nodes, and for Elmore’s
rise time is offered a conjecture relating to its lower bound
for overall network. Elmore’s rise times for all nodes of
integrating, RC open-circuited ladder are given in closed
form in [15] and the obtaining of Elmore’s delay and rise
times both for nodes and points is discussed to some extent in
[16]—for other types of open-circuited ladders. In this paper,
we are going to formulate the explicit closed-formexpressions
for Elmore’s delay and rise times both for the node and point
voltages of integrating open circuited, common-ground RC
ladder and will conclude that this type of network is not

recommendable for pulse delay line in its own right, since
Elmore’s rise time of each point voltage is not less than the
twice of its delay-time.

And finally, we will propose a type of uniform, common-
ground RLC ladder amenable for application as delay line
both for pulsed and/or analog input signals. Elmore’s delay
and rise times of this ladder relating to the node voltage
transmittances are produced in closed form, opening thus
with the following possibilities in ladder realization:

(i) for pulsed inputs, the overall Elmore delay and rise
times may be specified arbitrarily,

(ii) for pulsed inputs, theminimum ladder length (i.e., the
minimumnecessary number of sections) is calculated
straightforwardly by using only the overall Elmore
delay and rise times,

(iii) the ladder RL parameters are calculated uniquely
from the assumed nonminimal ladder length, overall
Elmore delay time, and the assumed capacitance
values,

(iv) for realization of true delay for pulsed and/or ana-
log input signals with arbitrary variation in time,
minimum ladder length is calculated from the spec-
ified true delay time (which asymptotically tends to
Elmore’s delay time when the number of sections
tends to infinity) and maximum frequency in the
spectrum of the signal being transmitted along the
ladder purporting to represent delay line. And again,
as in (iii), the ladder RL parameters are determined
from the ladder length, overall ladder true delay time
(being approximately equal to Elmore’s delay time),
and the assumed capacitance values. The previous
approach and obtained results are illustrated and
verified with realization examples of large true delay
time (=5 [ms]) for pulsed, sine, distorted sine, CAM,
FM; and chirp frequency and sweep amplitude input
signals.

Recall that in network synthesis the ladder topology is a
preferable one, since it has very low sensitivity to variations
of RLC parameters [16, 17].

2. Network Functions of Common-Ground,
Uniform, and Passive RLC Ladders

Consider a uniform, grounded, and passive RLC ladder in
Figure 1 with N identical sections, whose impedances 𝑍

1
=

𝑍
1
(𝑠) and 𝑍

2
= 𝑍
2
(𝑠) are positive real rational functions

in complex frequency 𝑠 = 𝜎 + 𝑗𝜔 (𝑗 := √−1). There on
are denoted the Laplace transforms 𝐸 = 𝐸(𝑠) of the voltage
excitation 𝑒 = 𝑒(𝑡), 𝑈

𝑘
= 𝑈
𝑘
(s) and 𝐼

𝑘
= 𝐼
𝑘
(s) of the point

voltages 𝑢
𝑘
= 𝑢
𝑘
(t) and currents 𝑖

𝑘
= 𝑖
𝑘
(t) (𝑘 = 0,𝑁), and

U
𝑚
=U
𝑚
(s) and 𝐼

𝑚
= 𝐼
𝑚
(s) of node voltages 𝑢

𝑚
= 𝑢
𝑚
(t) and

currents 𝑖
𝑚
= 𝑖
𝑚
(t) (𝑚 = 0,𝑁 − 1). The internal impedances

of the voltage excitation (voltage generator) and the load are
𝑍
𝑔
= 𝑍
𝑔
(s) and 𝑍

𝐿
= 𝑍
𝐿
(𝑠), respectively. All the initial

conditions associated to the network reactive (LC) elements
are assumed to be zero.
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Figure 1: The general, common-ground, uniform ladder with N sections.

For ladder in Figure 1, the mesh transform equations for
its 𝑛th section (𝑛 = 1,𝑁) read

(𝑍
1
+ 𝑍
2
) ⋅ 𝐼
𝑛−1

− 𝑍
2
⋅ 𝐼
𝑛
= 𝑈
𝑛−1

,

𝑍
2
⋅ 𝐼
𝑛−1

− (𝑍
1
+ 𝑍
2
) ⋅ 𝐼
𝑛
= 𝑈
𝑛
,

or in the recurrence form

[
𝑈
𝑛

𝐼
𝑛

] =
[
[
[

[

1 +
𝑍
1

Z
2

−(
Z2
1

Z
2

+ 2 ⋅ Z
1
)

−
1

Z
2

1 +
Z
1

Z
2

]
]
]

]

⋅ [
𝑈
𝑛−1

𝐼
𝑛−1

] .

(1)

The boundary values of voltages and currents in the set of
matrix difference equations (1) are (U

0
, I
0
) and (𝑈

𝑁
, 𝐼
𝑁
). For

𝑛 = 0,𝑁, from (1) it immediately follows taht

[
𝑈
𝑛

𝐼
𝑛

] =
[
[
[

[

1 +
Z
1

Z
2

−(
Z2
1

Z
2

+ 2 ⋅ Z
1
)

−
1

Z
2

1 +
Z
1

Z
2

]
]
]

]

𝑛

⋅ [
𝑈
0

𝐼
0

] ,

where 𝑈
0
= 𝐸 − 𝑍

𝑔
⋅ 𝐼
0
∧ 𝑈
𝑁
= 𝑍
𝐿
⋅ 𝐼
𝑁
.

(2)

Since the roots (say 𝜆
1
and 𝜆

2
) of the characteristic equation

corresponding to 2 × 2matrix appearing in (1),

det
{{{

{{{

{

[
[
[

[

1 +
Z
1

Z
2

−(
Z2
1

Z
2

+ 2 ⋅ Z
1
)

−
1

Z
2

1 +
Z
1

Z
2

]
]
]

]

− 𝜆 ⋅ U
2

}}}

}}}

}

= 𝜆
2
− 2 ⋅ (

Z
1

Z
2

+ 1) ⋅ 𝜆 + 1 = 0

(U
2
is 2 × 2 identity matrix) ,

(3)

satisfy the relations 𝜆
1
+ 𝜆
2
= 2 ⋅ (𝑍

1
/𝑍
2
+ 1) and 𝜆

1
⋅ 𝜆
2
=

1, then by taking for convenience 𝜆
1
:= exp(𝜏) and 𝜆

2
:=

exp(−𝜏), we obtain cosh(𝜏) = 1 + 𝑍
1
/𝑍
2
. By using Cayley-

Hamilton’s theorem we may put

[
[
[

[

1 +
Z
1

Z
2

−(
Z2
1

Z
2

+ 2 ⋅ Z
1
)

−
1

Z
2

1 +
Z
1

Z
2

]
]
]

]

𝑛

= 𝐴
0
⋅ U
2
+ 𝐴
1
⋅
[
[
[

[

1 +
Z
1

Z
2

−(
Z2
1

Z
2

+ 2 ⋅ Z
1
)

−
1

Z
2

1 +
Z
1

Z
2

]
]
]

]

,

(4)

where the “constants”𝐴
0
and𝐴

1
are determined from system

of equations [exp(𝜏)]𝑛 = 𝐴
0
+ 𝐴
1
⋅ exp(𝜏) and [exp(−𝜏)]𝑛 =

𝐴
0
+ 𝐴
1
⋅ exp(−𝜏), whose solution is 𝐴

0
= − sinh[(𝑛 − 1) ⋅

𝜏]/sinh(𝜏) and 𝐴
1
= sinh(𝑛 ⋅ 𝜏)/sinh(𝜏).

By substituting𝐴
0
and𝐴

1
in (4) and bearing inmind that

1 +
𝑍
1

𝑍
2

= cosh (𝜏) ,

−(
𝑍2
1

𝑍
2

+ 2 ⋅ 𝑍
1
) = 𝑍

2
− 𝑍
2
⋅ (

𝑍
1
+ 𝑍
2

𝑍
2

)

2

= 𝑍
2
⋅ [1 − cosh2 (𝜏)] = −𝑍

2
⋅ sinh2 (𝜏) ,

(5)

we finally obtain from (2) and (4) for 𝑛 = 0,𝑁 that

[
𝑈
𝑛

𝐼
𝑛

] =
[
[
[

[

1 +
𝑍
1

𝑍
2

−(
𝑍2
1

𝑍
2

+ 2 ⋅ 𝑍
1
)

−
1

𝑍
2

1 +
𝑍
1

𝑍
2

]
]
]

]

n

⋅ [
𝑈
0

𝐼
0

]

=
[
[
[

[

cosh (𝑛 ⋅ 𝜏) −𝑍
2
⋅ sinh (𝜏) ⋅ sinh (𝑛 ⋅ 𝜏)

−
sinh (𝑛 ⋅ 𝜏)
𝑍
2
⋅ sinh (𝜏)

cosh (𝑛 ⋅ 𝜏)
]
]
]

]

⋅ [
𝑈
0

𝐼
0

] .

(6)
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Since uniform ladder sections are electrically reciprocal,
then their characteristic impedance 𝑍

𝑐
and the quantity 𝑍

𝑐
⋅

sinh(𝜏) can easily be produced in the form

𝑍
𝑐
= 𝑍
2
⋅ sinh (𝜏) = √𝑍

1
⋅ (𝑍
1
+ 2 ⋅ 𝑍

2
),

𝑍
𝑐
⋅ sinh (𝜏) = 𝑍

2
⋅ sinh2 (𝜏)

= 𝑍
2
⋅ [cosh2 (𝜏) − 1] = 𝑍

1
⋅ (

𝑍
1

𝑍
2

+ 2) .

(7)

For the ladder depicted in Figure 1, the complete set of
the network immittance and voltage/current transmittance
functions can be produced, by using the relations (2), (6), and
(7):

𝐼
𝑛

𝐸
= ( cosh [(𝑁 − 𝑛) ⋅ 𝜏]

+
𝑍
𝐿

𝑍
𝑐

⋅ sinh [(𝑁 − 𝑛) ⋅ 𝜏])

× ( (𝑍
𝑔
+ 𝑍
𝐿
) ⋅ cosh (𝑁 ⋅ 𝜏)

+(𝑍
𝑐
+
𝑍
𝑔
⋅ 𝑍
𝐿

𝑍
𝑐

) ⋅ sinh (𝑁 ⋅ 𝜏))

−1

,

𝐼
𝑛

𝐼
0

= (𝑍
𝑐
⋅ cosh [(𝑁 − 𝑛) ⋅ 𝜏]

+𝑍
𝐿
⋅ sinh [(𝑁 − 𝑛) ⋅ 𝜏])

× (𝑍
𝑐
⋅ cosh (𝑁 ⋅ 𝜏) + 𝑍

𝐿
⋅ sinh (𝑁 ⋅ 𝜏))

−1

,

𝑈
𝑛

𝐸
= (𝑍
𝐿
⋅ cosh [(𝑁 − 𝑛) ⋅ 𝜏]

+𝑍
𝑐
⋅ sinh [(𝑁 − 𝑛) ⋅ 𝜏])

× ( (𝑍
𝑔
+ 𝑍
𝐿
) ⋅ cosh (𝑁 ⋅ 𝜏)

+(𝑍
𝑐
+
𝑍
𝑔
⋅ 𝑍
𝐿

𝑍
𝑐

) ⋅ sinh (𝑁 ⋅ 𝜏))

−1

,

𝑈
𝑛

𝑈
0

= (𝑍
𝐿
⋅ cosh [(𝑁 − 𝑛) ⋅ 𝜏]

+𝑍
𝑐
⋅ sinh [(𝑁 − 𝑛) ⋅ 𝜏])

× (𝑍
𝐿
⋅ cosh (𝑁 ⋅ 𝜏) + 𝑍

𝑐
⋅ sinh (𝑁 ⋅ 𝜏))

−1

,

𝑈
𝑛

𝐼
𝑛

= (𝑍
𝐿
⋅ cosh [(𝑁 − 𝑛) ⋅ 𝜏]

+𝑍
𝑐
⋅ sinh [(𝑁 − 𝑛) ⋅ 𝜏])

× (𝑍
𝑐
⋅ cosh [(𝑁 − 𝑛) ⋅ 𝜏]

+𝑍
𝐿
⋅ sinh [(𝑁 − 𝑛) ⋅ 𝜏])

−1

⋅ 𝑍
𝑐
, 𝑛 = 0,𝑁.

(8)

Since 𝑍
1
= 𝑍
𝑐
⋅ (sinh(𝜏)/[1 + cosh(𝜏)]) = 𝑍

𝑐
⋅ tanh(𝜏/2),

then the voltages and currents of impedances 𝑍
2
connecting

the middle nodes of ladder sections (𝑀
𝑚
) to common-node

𝑂 (Figure 1) are given as

𝑈


𝑚
=
𝑈
𝑚
+ 𝑈
𝑚+1

1 + cosh (𝜏)
,

𝐼


𝑚
=
𝑈
𝑚

𝑍
2

=
𝑈
𝑚
+ 𝑈
𝑚+1

𝑍
2
⋅ [1 + cosh (𝜏)]

=
𝑈
𝑚
+ 𝑈
𝑚+1

𝑍
1
+ 2 ⋅ 𝑍

2

,

𝑈
𝑚

𝐸
= ( (𝑍

𝐿
− 𝑍
1
) ⋅ cosh [(𝑁 − 𝑚) ⋅ 𝜏]

+ [𝑍
𝑐
− 𝑍
𝐿
⋅ tanh(𝜏

2
)]

⋅ sinh [(𝑁 − 𝑚) ⋅ 𝜏] )

× ( (𝑍
𝑔
+ 𝑍
𝐿
) ⋅ cosh (𝑁 ⋅ 𝜏)

+(𝑍
𝑐
+
𝑍
𝑔
⋅ 𝑍
𝐿

𝑍
𝑐

) ⋅ sinh (𝑁 ⋅ 𝜏))

−1

,

𝑚 = 0,𝑁 − 1,

𝑈
𝑚

𝑈
0

= ( (𝑍
𝐿
− 𝑍
1
) ⋅ cosh [(𝑁 − 𝑚) ⋅ 𝜏]

+ [𝑍
𝑐
− 𝑍
𝐿
⋅ tanh(𝜏

2
)]

⋅ sinh [(𝑁 − 𝑚) ⋅ 𝜏] )

× (𝑍
𝐿
⋅ cosh (𝑁 ⋅ 𝜏) + 𝑍

𝑐
⋅ sinh (𝑁 ⋅ 𝜏))

−1

.

(9)

Consider now the particular selection of {𝑍
𝑔
,𝑍
𝐿
} to

investigate the generation of (i) finite length, frequency-
selecting ladders with various input and transfer immittances
and voltage and current transmittances and (ii) specific
ladder which can take the role of finite pulse delay line
without pulse attenuation and with independently controlled
pulse delay and rise times in Elmore’s sense [7], calculable in
closed form. We will assume that impedances 𝑍

𝑔
and 𝑍

𝐿
are

rational positive real functions in s, so that they are realizable
by passive transformerless RLC networks [17]. All network
functions in (8) and (9) are real rational functions in s, except
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𝑈
𝑛
/𝐼
𝑛
, which must be rational, positive real function in s, since

it is the input immittance of RLC network.

Case A (𝑍
𝑔
-arbitrary ∧ 𝑍

𝐿
→ ∞ [Ω]) (open-circuited

ladder). From (8) and (9) it follows,

𝐼
𝑛

𝐸
=

sinh [(𝑁 − 𝑛) ⋅ 𝜏]

𝑍
𝑐
⋅ cosh (𝑁 ⋅ 𝜏) + 𝑍

𝑔
⋅ sinh (𝑁 ⋅ 𝜏)

,

𝐼
𝑛

𝐼
0

=
sinh [(𝑁 − 𝑛) ⋅ 𝜏]

sinh (𝑁 ⋅ 𝜏)
,

𝑈
𝑛

𝐸
=

cosh [(𝑁 − 𝑛) ⋅ 𝜏]

cosh (𝑁 ⋅ 𝜏) + (𝑍
𝑔
/𝑍
𝑐
) ⋅ sinh (𝑁 ⋅ 𝜏)

,

𝑈
𝑛

𝑈
0

=
cosh [(𝑁 − 𝑛) ⋅ 𝜏]

cosh (𝑁 ⋅ 𝜏)
,

𝑈
𝑛

𝐼
𝑛

= {cotanh [(𝑁 − 𝑛) ⋅ 𝜏]} ⋅ 𝑍𝑐, 𝑛 = 0,𝑁.

(10)

𝑈
𝑚

𝐸

=
cosh [(𝑁 − 𝑚) ⋅ 𝜏] − (𝑍1/𝑍𝑐) ⋅ sinh [(𝑁 − 𝑚) ⋅ 𝜏]

cosh (𝑁 ⋅ 𝜏) + (𝑍
𝑔
/𝑍
𝑐
) ⋅ sinh (𝑁 ⋅ 𝜏)

=
sinh [(𝑁 − 𝑚) ⋅ 𝜏] − sinh [(𝑁 − 𝑚 − 1) ⋅ 𝜏]

sinh (𝜏) ⋅ [cosh (𝑁 ⋅ 𝜏) + (𝑍
𝑔
/𝑍
𝑐
) ⋅ sinh (𝑁 ⋅ 𝜏)]

,

𝑈
𝑚

𝑈
0

=
cosh [(𝑁 − 𝑚) ⋅ 𝜏] − (𝑍1/𝑍𝑐) ⋅ sinh [(𝑁 − 𝑚) ⋅ 𝜏]

cosh (𝑁 ⋅ 𝜏)

=
sinh [(𝑁 − 𝑚) ⋅ 𝜏] − sinh [(𝑁 − 𝑚 − 1) ⋅ 𝜏]

sinh (𝜏) ⋅ cosh (𝑁 ⋅ 𝜏)
,

𝑚 = 0,𝑁 − 1.

(11)

Since we have cosh(𝜏) = 1 + 𝑍
1
/𝑍
2
, then by Property 2

(Appendix A), 𝑈
𝑛
/U
0
(𝑛 = 1,𝑁) (10) can be easily converted

into real rational function of 𝑍
1
/𝑍
2
or of s. Similarly, by

Property 3 (Appendix A), 𝐼
𝑚
/𝐼
0
(𝑚 = 1,𝑁 − 1) (10) can be,

also, easily converted into real rational function of 𝑍
1
/𝑍
2

or of s. When 𝑍
1
and 𝑍

2
are one-element-kind impedances,

the zeros and poles of both 𝑈
𝑛
/U
0
and 𝐼
𝑚
/I
0
can be easily

determined in the closed form. Since by Property 3 sinh[(𝑁−

𝑚) ⋅ 𝜏] and sinh[(𝑁 − 𝑚 − 1) ⋅ 𝜏] contain the same factor
sinh(𝜏) (𝑚 = 0,𝑁 − 1), then 𝑈

𝑚
/U
0
(𝑚 = 0,𝑁 − 1) (11) can

be, also, easily converted into real rational function, either of
𝑍
1
/𝑍
2
or of the complex frequency s.

Case B (𝑍
𝑔
= 𝑍
2
⋅ 𝑐𝑜𝑠ℎ(𝜏) = 𝑍

1
+𝑍
2
∧𝑍
𝐿
→ ∞ [Ω]). In this

case (10) and (11) simplify to

𝐼
𝑛

𝐸
=

sinh [(𝑁 − 𝑛) ⋅ 𝜏]

𝑍
2
⋅ sinh [(𝑁 + 1) ⋅ 𝜏]

,

𝐼
𝑛

𝐼
0

=
sinh [(𝑁 − 𝑛) ⋅ 𝜏]

sinh (𝑁 ⋅ 𝜏)
,

𝑈
𝑛

𝐸
=
cosh [(𝑁 − 𝑛) ⋅ 𝜏] ⋅ sinh (𝜏)

sinh [(𝑁 − 1) ⋅ 𝜏]
,

𝑈
𝑛

𝑈
0

=
cosh [(𝑁 − 𝑛) ⋅ 𝜏]

cosh (𝑁 ⋅ 𝜏)
,

𝑈
𝑛

𝐼
𝑛

= {cotanh [(𝑁 − 𝑛) ⋅ 𝜏]} ⋅ 𝑍𝑐, 𝑛 = 0,𝑁,

(12)

𝑈
𝑚

𝐸

=
2 ⋅ cosh [(𝑁 − 𝑚 − (1/2)) ⋅ 𝜏] ⋅ sinh (𝜏/2)

sinh [(𝑁 + 1) ⋅ 𝜏]

=
sinh [(𝑁 − 𝑚) ⋅ 𝜏] − sinh [(𝑁 − 𝑚 − 1) ⋅ 𝜏]

sinh [(𝑁 + 1) ⋅ 𝜏]
,

𝑈


𝑚

𝑈
0

=
cosh [(𝑁 − 𝑚 − (1/2)) ⋅ 𝜏]

cosh (𝜏/2) ⋅ cosh (𝑁 ⋅ 𝜏)

=
sinh [(𝑁 − 𝑚) ⋅ 𝜏] − sinh [(𝑁 − 𝑚 − 1) ⋅ 𝜏]

sinh (𝜏) ⋅ cosh (𝑁 ⋅ 𝜏)
,

𝑚 = 0.𝑁 − 1.

(13)

Case C (𝑍
𝑔
-arbitrary ∧𝑍

𝐿
= 0 [Ω] (short-circuited ladder))

From (8) and (9) it is obtained,

𝐼
𝑛

𝐸
=

cosh [(𝑁 − 𝑛) ⋅ 𝜏]

𝑍
𝑔
⋅ cosh (𝑁 ⋅ 𝜏) + 𝑍

𝑐
⋅ sinh (𝑁 ⋅ 𝜏)

,

𝐼
𝑛

𝐼
0

=
cosh [(𝑁 − 𝑛) ⋅ 𝜏]

cosh (𝑁 ⋅ 𝜏)
,

𝑈
𝑛

𝐸
=

sinh [(𝑁 − 𝑛) ⋅ 𝜏]

sinh (𝑁 ⋅ 𝜏) + (𝑍
𝑔
/𝑍
𝑐
) ⋅ cosh (𝑁 ⋅ 𝜏)

,

𝑈
𝑛

𝑈
0

=
sinh [(𝑁 − 𝑛) ⋅ 𝜏]

sinh (𝑁 ⋅ 𝜏)
,

𝑈
𝑛

𝐼
𝑛

= tanh [(𝑁 − 𝑛) ⋅ 𝜏] ⋅ 𝑍𝑐, 𝑛 = 0,𝑁,

(14)

𝑈
𝑚

𝐸

=
𝑍
𝑐
⋅ sinh [(𝑁 − 𝑚) ⋅ 𝜏] − 𝑍1 ⋅ cosh [(𝑁 − 𝑚) ⋅ 𝜏]

𝑍
𝑐
⋅ sinh (𝑁 ⋅ 𝜏) + 𝑍

𝑔
⋅ cosh (𝑁 ⋅ 𝜏)

=
cosh [(𝑁 − 𝑚) ⋅ 𝜏] − cosh [(𝑁 − 𝑚 − 1) ⋅ 𝜏]

sinh (𝜏) ⋅ [sinh (𝑁 ⋅ 𝜏) + (𝑍
𝑔
/𝑍
𝑐
) ⋅ cosh (𝑁 ⋅ 𝜏)]

,
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𝑈
𝑚

𝑈
0

=
sinh [(𝑁 − 𝑚) ⋅ 𝜏] − (𝑍1/𝑍𝑐) ⋅ cosh [(𝑁 − 𝑚) ⋅ 𝜏]

sinh (𝑁 ⋅ 𝜏)

=
cosh [(𝑁 − 𝑚) ⋅ 𝜏] − cosh [(𝑁 − 𝑚 − 1) ⋅ 𝜏]

sinh (𝜏) ⋅ sinh (𝑁 ⋅ 𝜏)
,

𝑚 = 0,𝑁 − 1.

(15)

According to Properties 2 and 3, respectively, 𝐼
𝑛
/I
0
(𝑛 = 1,𝑁)

and 𝑈
𝑚
/U
0
(𝑚 = 1,𝑁 − 1) (14) can be easily converted into

real rational functions, either of𝑍
1
/𝑍
2
or of the complex fre-

quency s. If𝑍
1
and𝑍

2
are one-element-kind impedances, the

zeros and poles of both 𝐼
𝑛
/I
0
and 𝑈

𝑚
/U
0
can be determined

straightforwardly in closed form.Now, since𝑍
𝑐
⋅sinh(𝜏)/𝑍

1
=

2 + 𝑍
1
/𝑍
2
and/or (1 + 𝑍

1
/𝑍
2
)
2
− sinh2(𝜏) = 1, it can be

seen from (15) that𝑈
𝑚
/U
0
(𝑚 = 0,𝑁 − 1) is, also, convertible

into real rational function, either of 𝑍
1
/𝑍
2
or of the complex

frequency 𝑠, by using of both Properties 2 and 3.

Case D (𝑍
𝑔
= 𝑍
2
⋅ 𝑐𝑜𝑠ℎ(𝜏) = 𝑍

1
+ 𝑍
2
∧ 𝑍
𝐿
= 0 [Ω]). From

(14) and (15) it readily follows that

𝐼
𝑛

𝐸
=

cosh [(𝑁 − 𝑛) ⋅ 𝜏]

𝑍
2
⋅ cosh [(𝑁 + 1) ⋅ 𝜏]

,

𝐼
𝑛

𝐼
0

=
cosh [(𝑁 − 𝑛) ⋅ 𝜏]

cosh (𝑁 ⋅ 𝜏)
,

𝑈
𝑛

𝐸
=
sinh [(𝑁 − 𝑛) ⋅ 𝜏] ⋅ sinh (𝜏)

cosh [(𝑁 + 1) ⋅ 𝜏]
,

𝑈
𝑛

𝑈
0

=
sinh [(𝑁 − 𝑛) ⋅ 𝜏]

sinh (𝑁 ⋅ 𝜏)
,

𝑈
𝑛

𝐼
𝑛

= tanh [(𝑁 − 𝑛) ⋅ 𝜏] ⋅ 𝑍𝑐, 𝑛 = 0,𝑁,

(16)

𝑈
𝑚

𝐸

=
cosh [(𝑁 − 𝑚) ⋅ 𝜏] − cosh [(𝑁 − 𝑚 − 1) ⋅ 𝜏]

cosh [(𝑁 + 1) ⋅ 𝜏]
,

𝑈


𝑚

𝑈
0

=
cosh [(𝑁 − 𝑚) ⋅ 𝜏] − cosh [(𝑁 − 𝑚 − 1) ⋅ 𝜏]

sinh (𝜏) ⋅ sinh (𝑁 ⋅ 𝜏)
,

𝑚 = 0,𝑁 − 1.

(17)

By using of Properties 2 and 3 and sinh2(𝜏) = (1 + 𝑍
1
/𝑍
2
)
2
−

1, it can be seen from (16) and (17) that the network functions
𝐼
𝑘
/I
0
(𝑘 = 1,𝑁), 𝑈

𝑚
/E (𝑚 = 0,𝑁 − 1), 𝑈

𝑛
/U
0
(𝑛 =

1,𝑁 − 1), 𝑈
𝑝
/E (𝑝 = 0,𝑁 − 1), and 𝑈

𝑞
/U
0
(𝑞 = 0,𝑁 − 1)

can be easily converted into real rational functions, either of
𝑍
1
/𝑍
2
or of the complex frequency 𝑠.

Case E (𝑍
𝑔
= 𝑍
𝐿
= 𝑍
1
). From (8) and (9), after using the

relations𝑍
𝑐
= 𝑍
2
⋅sinh(𝜏), 𝑍

1
= 𝑍
𝑐
⋅ tanh(𝜏/2), and cosh(𝜏) =

1 + 𝑍
1
/𝑍
2
, it can be easily obtained that

𝐼
𝑛

𝐸
= ( cosh [(𝑁 − 𝑛) ⋅ 𝜏]

+
𝑍
1

𝑍
𝑐

⋅ sinh [(𝑁 − 𝑛) ⋅ 𝜏])

× (2 ⋅ 𝑍
1
⋅ [ cosh (𝑁 ⋅ 𝜏)

+
𝑍
1
+ 𝑍
2

𝑍
𝑐

⋅ sinh (𝑁 ⋅ 𝜏)])

−1

=
sinh [(𝑁 − 𝑛 + 1) ⋅ 𝜏] − sinh [(𝑁 − 𝑛) ⋅ 𝜏]

2 ⋅ 𝑍
1
⋅ sinh [(𝑁 + 1) ⋅ 𝜏]

,

𝐼
𝑛

𝐼
0

=
cosh [(𝑁 − 𝑛) ⋅ 𝜏] + (𝑍1/𝑍𝑐) ⋅ sinh [(𝑁 − 𝑛) ⋅ 𝜏]

cosh (𝑁 ⋅ 𝜏) + (𝑍
1
/𝑍
𝑐
) ⋅ sinh (𝑁 ⋅ 𝜏)

=
cosh [(𝑁 − 𝑛 + 1) ⋅ 𝜏] + cosh [(𝑁 − 𝑛) ⋅ 𝜏]

cosh [(𝑁 + 1) ⋅ 𝜏] + cosh (𝑁 ⋅ 𝜏)
,

𝑈
𝑛

𝐸

=
cosh[(𝑁−𝑛)⋅𝜏]+(𝑍𝑐/𝑍1) ⋅ sinh [(𝑁−𝑛) ⋅ 𝜏]

2⋅[cosh(𝑁⋅𝜏) + ((𝑍
1
+𝑍
2
) /𝑍
𝑐
) ⋅ sinh (𝑁⋅𝜏)]

=
sinh [(𝑁 − 𝑛 + 1) ⋅ 𝜏] + sinh [(𝑁 − 𝑛) ⋅ 𝜏]

2 ⋅ sinh [(𝑁 + 1) ⋅ 𝜏]
,

𝑈
𝑛

𝑈
0

=
cosh [(𝑁 − 𝑛) ⋅ 𝜏] + (𝑍𝑐/𝑍1) ⋅ sinh [(𝑁 − 𝑛) ⋅ 𝜏]

cosh (𝑁 ⋅ 𝜏) + (𝑍
𝑐
/𝑍
1
) ⋅ sinh (𝑁 ⋅ 𝜏)

=
cosh [(𝑁 − 𝑛 + 1) ⋅ 𝜏] − cosh [(𝑁 − 𝑛) ⋅ 𝜏]

cosh [(𝑁 + 1) ⋅ 𝜏] − cosh (𝑁 ⋅ 𝜏)
,

𝑈
𝑛

𝐼
𝑛

=
cosh [(𝑁 − 𝑛) ⋅ 𝜏] + (𝑍𝑐/𝑍1) ⋅ sinh [(𝑁 − 𝑛) ⋅ 𝜏]

sinh [(𝑁 − 𝑛) ⋅ 𝜏] + (𝑍𝑐/𝑍1) ⋅ cosh [(𝑁 − 𝑛) ⋅ 𝜏]

⋅ 𝑍
𝑐

=
sinh [(𝑁 − 𝑛 + 1) ⋅ 𝜏] + sinh [(𝑁 − 𝑛) ⋅ 𝜏]

cosh [(𝑁 − 𝑛 + 1) ⋅ 𝜏] + cosh [(𝑁 − 𝑛) ⋅ 𝜏]

⋅ 𝑍
𝑐
, 𝑛 = 0,𝑁,

(18)
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𝑈
𝑚

𝐸
= (sinh [(𝑁 − 𝑚) ⋅ 𝜏])

× ( cosh (𝑁 ⋅ 𝜏) ⋅ sinh (𝜏)

+ (1 +
𝑍
1

𝑍
2

) ⋅ sinh (𝑁 ⋅ 𝜏))

−1

=
sinh [(𝑁 − 𝑚) ⋅ 𝜏]

sinh [(𝑁 + 1) ⋅ 𝜏]
,

𝑈


𝑚

𝑈
0

= (2 ⋅ sinh [(𝑁 − 𝑚) ⋅ 𝜏])

× ( cosh (𝑁 ⋅ 𝜏) ⋅ sinh (𝜏)

+ (2 +
𝑍
1

𝑍
2

) ⋅ sinh (𝑁 ⋅ 𝜏))

−1

=
2 ⋅ sinh [(𝑁 − 𝑚) ⋅ 𝜏]

sinh[(𝑁+1) ⋅ 𝜏]+sinh (𝑁 ⋅ 𝜏)
,

𝑚 = 0,𝑁 − 1.

(19)

Case F (𝑍
𝑔
= 𝑍
𝐿
= 𝑍
1
+ 2 ⋅ 𝑍

2
). From (8) and (9), after using

relations 𝑍
𝑐
= 𝑍
2
⋅ sinh(𝜏), 𝑍

1
= 𝑍𝑐 ⋅ tanh(𝜏/2), cosh(𝜏) =

1 + 𝑍
1
/𝑍
2
, and 𝑍

𝑐
⋅ sinh(𝜏)/(𝑍

1
+ 2𝑍
2
) = 𝑍

1
/𝑍
2
, it readily

follows that

𝐼
𝑛

𝐸
= ( cosh [(𝑁 − 𝑛) ⋅ 𝜏]

+
𝑍
1
+ 2 ⋅ 𝑍

2

𝑍
𝑐

⋅ sinh [(𝑁 − 𝑛) ⋅ 𝜏])

× (2 ⋅ (𝑍
1
+ 2 ⋅ 𝑍

2
)

⋅ [ cosh (𝑁 ⋅ 𝜏) +
𝑍
1
+ 𝑍
2

𝑍
𝑐

⋅ sinh (𝑁 ⋅ 𝜏)])

−1

=
sinh [(𝑁 − 𝑛 + 1) ⋅ 𝜏] + sinh [(𝑁 − 𝑛) ⋅ 𝜏]

2 ⋅ (𝑍
1
+ 2 ⋅ 𝑍

2
) ⋅ sinh [(𝑁 + 1) ⋅ 𝜏]

,

𝐼
𝑛

𝐼
0

= ( cosh [(𝑁 − 𝑛) ⋅ 𝜏]

+
𝑍
1
+ 2 ⋅ 𝑍

2

𝑍
𝑐

⋅ sinh [(𝑁 − 𝑛) ⋅ 𝜏])

× (cosh (𝑁 ⋅ 𝜏) +
𝑍
1
+ 2 ⋅ 𝑍

2

𝑍
𝑐

⋅ sinh (𝑁 ⋅ 𝜏))

−1

=
sinh [(𝑁 − 𝑛 + 1) ⋅ 𝜏] + sinh [(𝑁 − 𝑛) ⋅ 𝜏]

sinh [(𝑁 + 1) ⋅ 𝜏] + sinh (𝑁 ⋅ 𝜏)
,

𝑈
𝑛

𝐸
= ( cosh [(𝑁 − 𝑛) ⋅ 𝜏]

+
𝑍
𝑐

𝑍
1
+ 2 ⋅ 𝑍

2

⋅ sinh [(𝑁 − 𝑛) ⋅ 𝜏])

×(2 ⋅ [cosh (𝑁 ⋅ 𝜏) +
𝑍
1
+ 𝑍
2

𝑍
𝑐

⋅ sinh (𝑁 ⋅ 𝜏)])

−1

=
sinh [(𝑁 − 𝑛 + 1) ⋅ 𝜏] − sinh [(𝑁 − 𝑛) ⋅ 𝜏]

2 ⋅ sinh [(𝑁 + 1) ⋅ 𝜏]
,

𝑈
𝑛

𝑈
0

= ( cosh [(𝑁 − 𝑛) ⋅ 𝜏]

+
𝑍
𝑐

𝑍
1
+ 2 ⋅ 𝑍

2

⋅ sinh [(𝑁 − 𝑛) ⋅ 𝜏])

× (cosh (𝑁 ⋅ 𝜏) +
𝑍
𝑐

(𝑍
1
+ 2 ⋅ 𝑍

2
)
⋅ sinh (𝑁 ⋅ 𝜏))

−1

=
cosh [(𝑁 − 𝑛 + 1) ⋅ 𝜏] + cosh [(𝑁 − 𝑛) ⋅ 𝜏]

cosh [(𝑁 + 1) ⋅ 𝜏] + cosh (𝑁 ⋅ 𝜏)
,

𝑈
𝑛

𝐼
𝑛

= ( cosh [(𝑁 − 𝑛) ⋅ 𝜏]

+
𝑍
𝑐

𝑍
1
+ 2 ⋅ 𝑍

2

⋅ sinh [(𝑁 − 𝑛) ⋅ 𝜏])

× ( sinh [(𝑁 − 𝑛) ⋅ 𝜏 ]

+
𝑍
𝑐

(𝑍
1
+ 2 ⋅ 𝑍

2
)
⋅ cosh [(𝑁 − 𝑛) ⋅ 𝜏 ])

−1

⋅ 𝑍
𝑐

=
cosh [(𝑁 − 𝑛 + 1) ⋅ 𝜏] + cosh [(𝑁 − 𝑛) ⋅ 𝜏]

sinh [(𝑁 − 𝑛 + 1) ⋅ 𝜏] + sinh [(𝑁 − 𝑛) ⋅ 𝜏]
⋅ 𝑍
𝑐
,

𝑛 = 0,𝑁.

(20)
𝑈
𝑚

𝐸
= (cosh [(𝑁 − 𝑚) ⋅ 𝜏])

× ((
𝑍
1

𝑍
2

+ 2)

⋅ [cosh (𝑁 ⋅ 𝜏) +
𝑍
1
+ 𝑍
2

𝑍
𝑐

⋅ sinh (𝑁 ⋅ 𝜏)])

−1

=
sinh (𝜏) ⋅ cosh [(𝑁 − 𝑚) ⋅ 𝜏]

[1 + cosh (𝜏)] ⋅ sinh [(𝑁 + 1) ⋅ 𝜏]
,
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𝑈
𝑚

𝑈
0

=
2

(𝑍
1
/𝑍
2
) + 2

⋅
cosh [(𝑁 − 𝑚) ⋅ 𝜏]

cosh (𝑁 ⋅ 𝜏)+(𝑍
𝑐
/ (𝑍
1
+ 2 ⋅ 𝑍

2
)) ⋅ sinh (𝑁⋅𝜏)

=
2 ⋅ cosh [(𝑁 − 𝑚) ⋅ 𝜏]

cosh [(𝑁 + 1) ⋅ 𝜏] + cosh (𝑁 ⋅ 𝜏)
,

𝑚 = 0,𝑁 − 1.

(21)

Case G (𝑍
𝑔
= 𝑍
𝐿
= 𝑍
𝑐
= 𝑘 ⋅ 𝑍

1
(𝑘 > 1)). From (7)

it is easily obtained that 𝑍
2
= [(𝑘

2
− 1)/2] ⋅ 𝑍

1
, sinh(𝜏) =

2 ⋅𝑘/(𝑘2−1), cosh(𝜏) = (𝑘2+1)/(𝑘2−1), exp(𝜏) = (𝑘+1)/(𝑘−
1), and tanh(𝜏/2) = 1/𝑘. And from (8) and (9) it follows that

𝐼
𝑛

𝐸
=

1

2 ⋅ 𝑘 ⋅ 𝑍
1

⋅ (
𝑘 − 1

𝑘 + 1
)

𝑛

,

𝐼
𝑛

𝐼
0

=
𝑈
𝑛

𝑈
0

= (
𝑘 − 1

𝑘 + 1
)

𝑛

,

𝑈
𝑛

𝐸
=
1

2
⋅ (

𝑘 − 1

𝑘 + 1
)

𝑛

,

𝑈
𝑛

𝐼
𝑛

= 𝑍
𝑐
= 𝑘 ⋅ 𝑍

1
, 𝑛 = 0,𝑁,

(22)

𝑈
𝑚

𝐸
=
𝑘 − 1

2 ⋅ 𝑘
⋅ (

𝑘 − 1

𝑘 + 1
)

𝑚

,

𝑈
𝑚

𝑈
0

=
𝑘 − 1

𝑘
⋅ (

𝑘 − 1

𝑘 + 1
)

𝑚

, 𝑚 = 0,𝑁 − 1.

(23)

From (22) and (23) it can be seen that even when
emf e [with Laplace transform 𝐸 = 𝐸(𝑠)] is pulsed, the
node and point voltages with respect to common-ground
𝑂 (Figure 1) are reproduced faithfully and without delay
but with geometrically progressive amplitude attenuation,
regardless of the impedance 𝑍

1
.

It is clear that relations (7)–(9) offer many other pos-
sibilities for the selection of 𝑍

𝑔
, 𝑍
𝐿
, 𝑍
1
, and 𝑍

2
that lead

to generation of versatile ladders realizing different types of
frequency selective networks. An interesting one seems to
be the common-ground RLC ladder realizing (a) pulse delay
with independently selected Elmore’s delay and rise times
and/or (b) true delay for either pulsed or analog frequency
limited input signals. These topics will be considered in the
following section.

3. Elmore’s Delay and Rise Times for Selected
Types of Common-Ground, Uniform RLC
Ladders

Consider the ladder in Figure 1 having 𝑍
1
= 𝑅 + 𝐿 ⋅ 𝑠, 𝑌

2
=

1/𝑍
2
= 𝐺 + 𝐶 ⋅ 𝑠, and 𝑍

𝑔
= 𝑍
𝐿
= (𝐿/𝐶)

1/2. Suppose that

it holds the relation 𝛼 := 𝑅/𝐿 = 𝐺/𝐶, similar to the one
associated with per-unit-length parameters of distortionless
transmission line [18, 19]. Let us define the auxiliary parameter
𝛽 := 1/(𝐿 ⋅ 𝐶)

1/2, and let us recast the network voltage
transmittances describing the transfer of emf E to the ladder
points with voltages 𝑈

0
, 𝑈
1
, . . . , 𝑈

𝑁
(Figure 1)—in the form

suitable for calculating of Elmore’s delay and rise times [7]
(Appendix B). Firstly, we should observe that the following
holds:

𝑍
1

𝑍
2

= (
𝑠 + 𝛼

𝛽
)

2

,

𝑍
1

𝑍
𝐿

=
𝑍
𝐿

𝑍
𝑐

⋅ sinh (𝜏) = 𝑠 + 𝛼

𝛽
,

𝑍
𝑐

𝑍
𝐿

⋅ sinh (𝜏) = 𝑠 + 𝛼

𝛽
⋅ [(

𝑠 + 𝛼

𝛽
)

2

+ 2] ,

1

𝑍
𝑔
+ 𝑍
𝐿

⋅ (𝑍
𝑐
+
𝑍
𝑔
⋅ 𝑍
𝐿

𝑍
𝑐

) ⋅ sinh (𝜏)

=
𝑠 + 𝛼

2 ⋅ 𝛽
⋅ [(

𝑠 + 𝛼

𝛽
)

2

+ 3] ,

(24)

and then by using (8) and the Properties 2 and 3, let us express
the point voltage transmittances 𝑇

𝑛
(𝑠) = 𝑈

𝑛
/E (𝑛 = 0,𝑁 − 1)

and 𝑇
𝑁
(𝑠) = 𝑈

𝑁
/𝐸 in the following form:

𝑇
𝑛
(𝑠) = (

𝛽2

2
)

𝑛

⋅ ((𝑠 + 𝛼) ⋅

𝑁−𝑛

∏
𝑖=1

{(𝑠 + 𝛼)
2

+2 ⋅ 𝛽
2
⋅ sin2 [ 𝑖 ⋅ 𝜋

2 ⋅ (𝑁 − 𝑛)
]}

+ 𝛽 ⋅

𝑁−𝑛

∏
𝑗=1

{(𝑠 + 𝛼)
2

+2 ⋅ 𝛽
2
⋅ sin2 [

2 ⋅ 𝑗 − 1

4 ⋅ (𝑁 − 𝑛)
⋅ 𝜋]})

× ( (𝑠 + 𝛼) ⋅ [(𝑠 + 𝛼)
2
+ 3 ⋅ 𝛽

2
]

⋅

𝑁−1

∏
𝑖=1

[(𝑠 + 𝛼)
2
+ 2 ⋅ 𝛽

2
⋅ sin2 ( 𝑖 ⋅ 𝜋

2 ⋅ 𝑁
)] + 2 ⋅ 𝛽

⋅

𝑁

∏
𝑗=1

[(𝑠 + 𝛼)
2

+2 ⋅ 𝛽
2
⋅ sin2 (

2 ⋅ 𝑗 − 1

4 ⋅ 𝑁
⋅ 𝜋) ])

−1

,
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𝑇
𝑁
(𝑠) = (

𝛽2

2
)

𝑁

⋅ (2 ⋅ 𝛽)

× ( (𝑠 + 𝛼) ⋅ [(𝑠 + 𝛼)
2
+ 3 ⋅ 𝛽

2
]

⋅

𝑁−1

∏
𝑖=1

[(𝑠 + 𝛼)
2
+ 2 ⋅ 𝛽

2
⋅ sin2 ( 𝑖 ⋅ 𝜋

2 ⋅ 𝑁
)] + 2 ⋅ 𝛽

⋅

𝑁

∏
𝑗=1

[(𝑠 + 𝛼)
2

+2 ⋅ 𝛽
2
⋅ sin2 (

2 ⋅ 𝑗 − 1

4 ⋅ 𝑁
⋅ 𝜋)])

−1

.

(25)

As the calculation example of Elmore’s times, let us suppose
for this type of ladder that the specified parameters are𝑁 = 6,
𝑅 = 50 [Ω], 𝐿 = 10 [mH], 𝐺 = 5 [mS], and 𝐶 = 1 [𝜇F]. We
firstly calculate 𝑍

𝐿
= 𝑍
𝑔
= (𝐿/𝐶)

1/2
= 100 [Ω], 𝛼 = 5 ⋅ 103

[1/s], and 𝛽 = 104 [1/s], and then we recast 𝑇
𝑛
(𝑠) = 𝑈

𝑛
/E

(𝑛 = 0,𝑁 − 1) and 𝑇
𝑁
(𝑠) = 𝑈

𝑁
/E (25) in the following form:

𝑇
𝑛
(𝑠) = (

𝛽
2

2
)

𝑛

⋅ (𝐴
0
(𝑁, 𝑛) + 𝐴

1
(𝑁, 𝑛) ⋅ 𝑠 + 𝐴

2
(𝑁, 𝑛) ⋅ 𝑠

2

+ ⋅ ⋅ ⋅ + 𝐴
2𝑁−2𝑛+1

(𝑁, 𝑛) ⋅ 𝑠
2𝑁−2𝑛+1

)

× (𝐵
0
(𝑁) + 𝐵

1
(𝑁) ⋅ 𝑠 + 𝐵

2
(𝑁) ⋅ 𝑠

2

+ ⋅ ⋅ ⋅ + 𝐵
2𝑁+1

(𝑁) ⋅ 𝑠
2𝑁+1

)
−1

,

𝑇
𝑁
(𝑠) = (

𝛽2

2
)

𝑁

⋅ (2 ⋅ 𝛽) (𝐵
0
(𝑁) + 𝐵

1
(𝑁) ⋅ 𝑠 + 𝐵

2
(𝑁)

⋅ 𝑠
2
+ ⋅ ⋅ ⋅ + 𝐵

2𝑁+1
(𝑁) ⋅ 𝑠

2𝑁+1
)
−1

,

(26)

where all “A” and “B” coefficients are positive. To apply
Elmore’s definitions of delay and rise times (Appendix B) for
all points in the ladder with zero initial conditions (Figure 1)
and excited at 𝑡 = 0 with the step-voltage e with amplitude
𝐸 [V], wemust do the following.

(i) Firstly, check that the point voltages 𝑢
𝑘
= 𝑢
𝑘
(t) (𝑘 =

0,𝑁) have no overshoots, or eventually if they are
present, overshoots must be less than 5% of those
voltages steady state values [7]. For example, if we
have assumed for ladder with 𝑁 = 6 sections that
E = 10 [V], then its voltage step-responses 𝑢

𝑘
=

𝑢
𝑘
(𝑡)(𝑘 = 0, 6) and the node response 𝑢

0
as well,

obtained through pspice simulation and depicted in
Figures 2 and 3 in the interval 𝑡 ∈ [0, 750] [𝜇s],
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Figure 2: A set of voltage responses at the selected points of the
considered ladder (and at the𝑀

0
node).

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Time (𝜇s)

0
80

160

240
320
400
480
560

640
720

800

Vo
lta

ge
s (

m
V

)

u3

u4

u5
u6

Figure 3: Another set of voltage responses at the selected points of
the considered ladder.

reveal that Elmore’s definitions cannot be applied
for responses u

0
and 𝑢

0
, since the occurrence of

overshoots, whereas for all other point voltages 𝑢
𝑘
=

𝑢
𝑘
(t) (𝑘 = 1, 6), those definitions are applicable.

(ii) Secondly, calculate the coefficients A
0
(N,n), A

1
(N,n),

A
2
(N, n), B

0
(N), B

1
(N), and B

2
(N), so as to determine

the parameters a
1
(N,n), a

2
(N,n), b

1
(N), and b

2
(N)

of the normalized transfer functions 𝑇
𝑛
(s)/T
𝑛
(0)

(𝑛 = 0,𝑁 − 1) and T
𝑁
(s)/T
𝑁
(0) obtained from (26)

according to the relations

𝑇
𝑛
(𝑠)

𝑇
𝑛
(0)

= (1 + 𝑎
1
(𝑁, 𝑛) ⋅ 𝑠 + 𝑎

2
(𝑁, 𝑛) ⋅ 𝑠

2

+ ⋅ ⋅ ⋅ + 𝑎
2𝑁−2𝑛+1

(𝑁, 𝑛) ⋅ 𝑠
2𝑁−2𝑛+1

)

× (1 + 𝑏
1
(𝑁) ⋅ 𝑠 + 𝑏

2
(𝑁) ⋅ 𝑠

2

+ ⋅ ⋅ ⋅ + 𝑏
2𝑁+1

(𝑁) ⋅ 𝑠
2𝑁+1

)
−1

,

𝑇
𝑛
(0) := (

𝛽2

2
)

𝑛

⋅
𝐴
0
(𝑁, 𝑛)

𝐵
0
(𝑁)

,
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Table 1: Delay and rise times of the point voltages in the considered common-ground, uniform RLC ladder.

n 0 1 2 3 4 5 6
𝑎
1
[ms] 0.813 0.680 0.547 0.415 0.286 0.158 0

𝑎
2
[𝜇s] 0.323 0.225 0.145 0.082 0.037 0.010 0

𝑏
1
[ms] 0.804 0.804 0.804 0.804 0.804 0.804 0.804

𝑏
2
[𝜇s] 0.315 0.315 0.315 0.315 0.315 0.315 0.315

𝑇
𝐷
[ms]1 Not applicable 0.124 0.257 0.388 0.518 0.647 0.804

𝑇
𝑅
[ms]1 Not applicable 0.157 0.200 0.229 0.250 0.286 0.326

𝑇
𝐷𝑐

[ms]2 Not applicable 0.115 0.257 0.395 0.528 0.658 0.817
𝑇
𝑅𝑐
[ms]2 Not applicable 0.190 0.252 0.295 0.324 0.349 0.373

𝑢
𝑛
(∞) [V]3 5.999 2.999 1.498 0.747 0.370 0.178 0.075

1The times calculated according to Elmore’s definitions.
2The times obtained through pspice simulation according to the classical definitions of 𝑇𝐷𝑐 (“50%” delay time) and 𝑇𝑅𝑐 (“10%–90%” rise time).
3All data are related to the ladder with zero initial conditions.

𝑎
𝑖
:=

𝐴
𝑖
(𝑁, 𝑛)

𝐴
0
(𝑁, 𝑛)

[𝑖 = 0, (2𝑁 − 2𝑛 + 1) ; 𝑛 = 0, (𝑁 − 1)] ,

𝑏
𝑗
:=

𝐵
𝑗
(𝑁)

𝐵
0
(𝑁)

[𝑗 = 0, (2𝑁 + 1)] ,

𝑇
𝑁
(𝑠)

𝑇
𝑁
(0)

= (1) (1 + 𝑏
1
(𝑁) ⋅ 𝑠

+𝑏
2
(𝑁) ⋅ 𝑠

2
+ . . . + 𝑏

2𝑁+1
(𝑁) ⋅ 𝑠

2𝑁+1
)
−1

,

𝑇
𝑁
(0) :=

𝛽2𝑁+1

2𝑁−1 ⋅ 𝐵
0
(𝑁)

.

(27)

Calculation of coefficients 𝐴
0
(N, n),𝐴

1
(N, n), 𝐴

2
(N,

n), 𝐵
0
(N), 𝐵

1
(N), and 𝐵

2
(N) in (26) might be a

tedious task, especially when N is large, since these
coefficients are produced from (25) as cumbersome
expressions which cannot be put in the closed form.
So, we must resort to making of a numerical applica-
tion (say in MATHCAD) for automatic calculation of
𝐴
0
(N, n), 𝐴

1
(N, n), 𝐴

2
(N, n), 𝐵

0
(N), 𝐵

1
(N), 𝐵

2
(N),

𝑎
1
(N, n), 𝑎

2
(N, n), 𝑏

1
(N), 𝑏

2
(N), and Elmore’s times,

for any given set of input parameters {𝑁, 𝑛, 𝑅, 𝐿, 𝐶, 𝐺},
provided that the condition 𝑅/𝐿 = 𝐺/𝐶 is satisfied.

(iii) Calculate Elmore’s delay time (𝑇
𝐷
) and rise time (𝑇

𝑅
)

of any point step-voltage response having no over-
shoot, according to definitions (B.5) in Appendix B
and by using (27)

𝑇
𝐷
(𝑁, 𝑛) = 𝑏

1
(𝑁) − 𝑎

1
(𝑁, 𝑛) ,

𝑇
𝑅
(𝑁, 𝑛)

= √2 ⋅ 𝜋 ⋅ {𝑏2
1
(𝑁) − 𝑎2

1
(𝑁, 𝑛) + 2 ⋅ [𝑎

2
(𝑁, 𝑛) − 𝑏

2
(𝑁)]}.

(28)

For RLC ladder having 𝑁 = 6, 𝑅 = 50 [Ω], 𝐿 = 10 [mH],
𝐺 = 5 [mS], 𝐶 = 1 [𝜇F]—excited at 𝑡 = 0 by step emf 𝑒 with
amplitude E = 10 [V], the obtained results are summarized
in Table 1.

Another interesting ladder in Figure 1 is the onewith𝑍
1
=

𝑅+𝐿 ⋅ 𝑠, 𝑌
2
= 1/𝑍

2
= 𝐺+𝐶 ⋅ 𝑠,𝑍

𝑔
= 0[Ω], 𝑍

𝐿
= (𝐿/𝐶)

1/2, and
𝛼 := 𝑅/𝐿 = 𝐺/𝐶. Again, let it be 𝛽 := 1/(𝐿 ⋅ 𝐶)

1/2. By using
of (8) and Properties 2 and 3, the point voltage transmittances
𝑇
𝑛
(𝑠) = 𝑈

𝑛
/E (𝑛 = 0,𝑁 − 1) and 𝑇

𝑁
(𝑠) = 𝑈

𝑁
/E are obtained

as follows:

𝑇
𝑛
(𝑠) = (

𝛽2

2
)

𝑛

⋅ ((𝑠 + 𝛼) ⋅

𝑁−𝑛

∏
𝑖=1

{(𝑠 + 𝛼)
2
+ 2 ⋅ 𝛽

2

⋅ sin2 [ 𝑖 ⋅ 𝜋

2 ⋅ (𝑁 − 𝑛)
]}

+ 𝛽 ⋅

𝑁−𝑛

∏
𝑗=1

{(𝑠 + 𝛼)
2
+ 2 ⋅ 𝛽

2

⋅ sin2 [
2 ⋅ 𝑗 − 1

4 ⋅ (𝑁 − 𝑛)
⋅ 𝜋]})

× ((𝑠 + 𝛼) ⋅

𝑁

∏
𝑖=1

[(𝑠 + 𝛼)
2
+ 2 ⋅ 𝛽

2

⋅ sin2 ( 𝑖 ⋅ 𝜋

2 ⋅ 𝑁
)]

+ 𝛽 ⋅

𝑁

∏
𝑗=1

[(𝑠 + 𝛼)
2
+ 2 ⋅ 𝛽

2

⋅ sin2 (
2 ⋅ 𝑗 − 1

4 ⋅ 𝑁
⋅ 𝜋)])

−1

,
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𝑇
𝑁
(𝑠) = (

𝛽2

2
)

𝑁

⋅ (2 ⋅ 𝛽)

× ((𝑠 + 𝛼) ⋅

𝑁

∏
𝑖=1

[(𝑠 + 𝛼)
2
+ 2 ⋅ 𝛽

2

⋅ sin2 ( 𝑖 ⋅ 𝜋

2 ⋅ 𝑁
)]

+ 𝛽 ⋅

𝑁

∏
𝑗=1

[(𝑠 + 𝛼)
2
+ 2 ⋅ 𝛽

2

⋅ sin2 (
2 ⋅ 𝑗 − 1

4 ⋅ 𝑁
⋅ 𝜋)])

−1

.

(29)

In this case, Elmore’s delay and rise times can be cal-
culated in the similar way as it has been done in (25). The
specified set of parameters {𝑅, 𝐿, 𝐶, 𝐺,𝑁, 𝑛} provided that the
voltages of selected ladder points and/or nodes satisfy the
condition (i), Elmore’s times can be calculated by using (26)–
(29), but further consideration of this point will be left to the
reader.

Also, an interesting ladder is the one with 𝑍
1
= 𝑅/2, 𝑌

2
=

1/𝑍
2
= 𝐶 ⋅ 𝑠, 𝑍

𝑔
= 0 [Ω], and 𝑍

𝐿
→ ∞ [Ω](Figure 1),

which resembles to a delay line [13], but it does not truly
behave like it and rather may be used for generation of
delayed time markers with Elmore’s times expressible in the
closed form. To see this, let us produce the point voltage
transmittances 𝑇

𝑛
(𝑠) = 𝑈

𝑛
/E (𝑛 = 0,𝑁) and the node voltage

transmittances 𝑇
𝑚
(𝑠) = 𝑈

𝑚
/𝐸(𝑚 = 0,𝑁 − 1), by using (8),

(9), and Property 2 or Case A (10):

𝑇
𝑛
(𝑠) =

cosh [(𝑁 − 𝑛) ⋅ 𝜏]

cosh (𝑁 ⋅ 𝜏)
= (

1

𝑅 ⋅ 𝐶
)
𝑛

⋅ (

𝑁−𝑛

∏
𝑖=1

{𝑠 +
4

𝑅 ⋅ 𝐶

⋅ sin2 [ 2 ⋅ 𝑖 − 1

4 ⋅ (𝑁 − 𝑛)
⋅ 𝜋]})

× (

𝑁

∏
𝑗=1

[𝑠 +
4

𝑅 ⋅ 𝐶

⋅ sin2 (
2 ⋅ 𝑗 − 1

4 ⋅ 𝑁
⋅ 𝜋)]) ,

−1

𝑛 = 0,𝑁 − 1,

(30)

𝑇
𝑁
(𝑠) = (

1

𝑅 ⋅ 𝐶
)
𝑁

⋅ (2)(

𝑁

∏
𝑗=1

[𝑠 +
4

𝑅 ⋅ 𝐶

⋅ sin2 (
2 ⋅ 𝑗 − 1

4 ⋅ 𝑁
⋅ 𝜋)])

−1

,

𝑇


𝑚
(𝑠) =

2/ (𝑅 ⋅ 𝐶)

𝑠 + (4/ (𝑅 ⋅ 𝐶))
⋅ (𝑇
𝑚
+ 𝑇
𝑚+1

) , 𝑚 = 0,𝑁 − 1.

(31)

Observe that if 𝑠 → 0, then also 𝜏 → 0, and from
(30) and (31) it follows that 𝑈

𝑛
/𝐸 → 1 (𝑛 = 1,𝑁) and

𝑈
𝑚
/𝐸 → 1 (𝑚 = 0,𝑁 − 1). This is in obvious physical

agreement with the network behaviour in DC operating
regime. The previous conclusions could be, also, formally
verified by using Remark 1 (Appendix A) in calculation of
𝑇
𝑛
(𝑛 = 1,𝑁) and 𝑇

𝑚
(𝑚 = 0,𝑁 − 1) for 𝑠 = 0. If

excitation e(t) of the network with zero initial conditions is
step voltage at 𝑡 = 0 with amplitude 𝐸, then 𝐸 = 𝐸(𝑠) =

L{𝑒(𝑡)} = 𝐸/𝑠. From (30), (31), and Remark 1 we can,
also, easily see that 𝑢

𝑘
(0) = lim

𝑠→∞
[𝐸 ⋅ 𝑇
𝑘
(𝑠)] = 0 [V] and

𝑢
𝑘
(∞) = lim

𝑠→0
[𝐸 ⋅ 𝑇
𝑘
(𝑠)] = 𝐸 [V] (𝑘 = 1,𝑁). In this case

it can be shown that (i) the node and the point voltages are
strictly monotone in 𝑡 [11], so that Elmore’s definitions can be
applied leading to (ii) closed-form expressions of delay and
rise times for node voltages [15]. To illustrate the point (i)
let us consider the network in Figure 4 whereon capacitance
voltages are denoted with 𝑥

𝑖
= 𝑥
𝑖
(𝑡) (𝑖 = 1,𝑁). Let us

introduce notation 𝜒 := 𝑡/𝑅𝐶, 𝑥
𝑖
(𝑡) := 𝜉

𝑖
(𝜒), x(𝑡) =

[𝑥1(𝑡) 𝑥
2
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑁
(𝑡)]

T, 𝜉(𝜒) = [𝜉1(𝜒) 𝜉
2
(𝜒) ⋅ ⋅ ⋅ 𝜉

𝑁
(𝜒)]

T

(“T”-operation of matrix transposition), and 𝑒(𝑡) = 𝜀(𝜒).
For the ladder in Figure 4 the following system of state-space
equations can be written in 𝜒-domain:

𝑑𝜉 (𝜒)

𝑑𝜒
= A ⋅ 𝜉 (𝜒) + B ⋅ 𝜀 (𝜒) ,

A :=

[
[
[
[
[

[

−3 1 0 ⋅ ⋅ ⋅ 0

1 −2 1 ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 ⋅ ⋅ ⋅ 1 −2 1

0 ⋅ ⋅ ⋅ 0 1 −1

]
]
]
]
]

]

(𝑁 × 𝑁 real, symmetric, tridiagonal matrix) ,

(32)

B := [2 0 ⋅ ⋅ ⋅ 0]
T (𝑁 × 1 column vector), 𝜉(0) =

[0 0 ⋅ ⋅ ⋅ 0]
T [V] (𝑁 × 1 column vector of state initial

conditions).
Since the real symmetric𝑁×𝑁 regular tridiagonalmatrix

A is hyperdominant [17], then it is also positive definite
and both similar and congruent to diagonal matrix D =

diag(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑁
) [20], where 𝑑

𝑖
> 0 (𝑖 = 1,𝑁). So, there

exists an orthogonal matrix Q [20], such that −Q−1 ⋅ A ⋅

Q = −QT ⋅ A ⋅ Q = = D. If we introduce the coordinate
transformation 𝜉(𝜒) = Q ⋅ 𝜁(𝜒), then the vector differential
equation in 𝜉(𝜒) = [𝜉1(𝜒) 𝜉

2
(𝜒) ⋅ ⋅ ⋅ 𝜉

𝑁
(𝜒)] (32) takes on

the following coordinate decoupled form:
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e = u0 x1 = u0


u1 u2C C C

x2 = u1


xN = uN−1


uNuN−1

R/2 R/2 R/2 R/2 R/2 R/2
· · ·

· · ·

Figure 4: The common-ground, uniform, integrating RC ladder with N sections.

d𝜁 (𝜒)
d𝜒

= Q−1 ⋅ A ⋅Q ⋅ 𝜁 (𝜒) +Q−1 ⋅ B ⋅ 𝜀 (𝜒)

= −D ⋅ 𝜁 (𝜒) +Q−1 ⋅ B ⋅ 𝜀 (𝜒) ,

(33)
𝜁(0) = [0 0 ⋅ ⋅ ⋅ 0]

T (𝑁 × 1 column vector of the “trans-
formed” state-space initial conditions).

For𝑁 = 8, the matricesQ andDwith entries rounded up
to 3 decimal places are being obtained as

Q =

[
[
[
[
[
[
[
[
[
[

[

−0.497 0.478 −0.441 0.386 −0.317 0.235 −0.145 0.049

0.478 −0.317 0.049 0.235 −0.441 0.497 −0.386 0.145

−0.441 0.049 0.386 −0.478 0.145 0.317 −0.497 0.235

0.386 0.235 −0.478 −0.049 0.497 −0.145 −0.441 0.317

−0.317 −0.441 0.145 0.497 0.049 −0.478 −0.235 0.386

0.235 0.497 0.317 −0.145 −0.478 −0.386 0.049 0.441

−0.145 −0.386 −0.497 −0.441 −0.235 0.049 0.317 0.478

0.049 0.145 0.235 0.317 0.386 0.441 0.478 0.497

]
]
]
]
]
]
]
]
]
]

]

, (34)

D =

[
[
[
[
[
[
[
[
[
[

[

3.961 0 0 0 0 0 0 0

0 3.663 0 0 0 0 0 0

0 0 3.111 0 0 0 0 0

0 0 0 2.390 0 0 0 0

0 0 0 0 1.610 0 0 0

0 0 0 0 0 0.888 0 0

0 0 0 0 0 0 0.337 0

0 0 0 0 0 0 0 0.038

]
]
]
]
]
]
]
]
]
]

]

. (35)

Now, if we suppose that the excitation 𝑒(𝑡) = 𝜀(𝜒) is the step
voltage at 𝑡 = 0 with amplitude 𝐸 = 1 [V], then the unique
solution of the vector differential equation (32) is produced
in following form:

𝜉 (𝜒)

= Q ⋅

[
[
[
[
[
[
[
[
[
[

[

1 − 𝑒
−𝑑
1
⋅𝜒

𝑑
1

0 ⋅ ⋅ ⋅ 0

0
1 − 𝑒
−𝑑
2
⋅𝜒

𝑑
2

⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ d 0

0 ⋅ ⋅ ⋅ 0
1 − 𝑒−𝑑𝑁⋅𝜒

𝑑
𝑁

]
]
]
]
]
]
]
]
]
]

]

⋅Q−1 ⋅ B, wherefrom (as it was expected)

we obtain that

x (∞) = 𝜉 (∞) = −A−1 ⋅ B

= [1 1 ⋅ ⋅ ⋅ 1]
T
[V] (𝑁 × 1 column vector) .

(36)

The point voltages are obtained according to relations 𝑢
𝑗
(𝜒) =

[𝜉
𝑗
(𝜒) + 𝜉

𝑗+1
(𝜒)]/2 (𝑗 = 1,𝑁 − 1), and finally, for 𝑁 = 8,

we can produce by using (36) the closed form solutions of
point and node voltages (in [V]), as “𝜉” and “𝑢” functions of
normalized (i.e., dimensionless) “time” 𝜒 = 𝑡/𝑅𝐶:

𝜉
1
(𝜒) = 1 − 0.125 ⋅ 𝑒

−3.961⋅𝜒
− 0.125 ⋅ 𝑒

−3.663⋅𝜒

− 0.125 ⋅ 𝑒
−3.111⋅𝜒

− 0.125 ⋅ 𝑒
−2.390⋅𝜒

− 0.125 ⋅ 𝑒
−1.610⋅𝜒

− 0.125 ⋅ 𝑒
−0.888⋅𝜒

− 0.125 ⋅ 𝑒
−0.337⋅𝜒

− 0.125 ⋅ 𝑒
−0.038⋅𝜒

,

𝑢
1
(𝜒) = 1 − 0.002 ⋅ 𝑒

−3.961⋅𝜒
− 0.021 ⋅ 𝑒

−3.663⋅𝜒

− 0.555 ⋅ 𝑒
−3.111⋅𝜒

− 0.100 ⋅ 𝑒
−2.390⋅𝜒
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− 0.149 ⋅ 𝑒
−1.610⋅𝜒

− 0.194 ⋅ 𝑒
−0.888⋅𝜒

− 0.229 ⋅ 𝑒
−0.337⋅𝜒

− 0.247 ⋅ 𝑒
−0.038⋅𝜒

,

𝜉
2
(𝜒) = 1 + 0.120 ⋅ 𝑒

−3.961⋅𝜒
+ 0.083 ⋅ 𝑒

−3.663⋅𝜒

+ 0.0139 ⋅ 𝑒
−3.111⋅𝜒

− 0.076 ⋅ 𝑒
−2.390⋅𝜒

− 0.174 ⋅ 𝑒
−1.610⋅𝜒

− 0.264 ⋅ 𝑒
−0.888⋅𝜒

− 0.333 ⋅ 𝑒
−0.337⋅𝜒

− 0.370 ⋅ 𝑒
−0.038⋅𝜒

,

𝑢
2
(𝜒) = 1 + 0.005 ⋅ 𝑒

−3.961⋅𝜒
+ 0.035 ⋅ 𝑒

−3.663⋅𝜒

+ 0.061 ⋅ 𝑒
−3.111⋅𝜒

+ 0.039 ⋅ 𝑒
−2.390⋅𝜒

− 0.0584 ⋅ 𝑒
−1.610⋅𝜒

− 0.216 ⋅ 𝑒
−0.888⋅𝜒

− 0.380 ⋅ 𝑒
−0.337⋅𝜒

− 0.485 − 𝑒
−0.038⋅𝜒

,

𝜉
3
(𝜒) = 1 − 0.110 ⋅ 𝑒

−3.961⋅𝜒
− 0.0128 ⋅ 𝑒

−3.663⋅𝜒

+ 0.109 ⋅ 𝑒
−3.111⋅𝜒

+ 0.155 ⋅ 𝑒
−2.390⋅𝜒

+ 0.0572 ⋅ 𝑒
−1.610⋅𝜒

− 0.168 ⋅ 𝑒
−0.888⋅𝜒

− 0.428 ⋅ 𝑒
−0.337⋅𝜒

− 0.601 ⋅ 𝑒
−0.038⋅𝜒

,

𝑢
3
(𝜒) = 1 − 0.006 ⋅ 𝑒

−3.961⋅𝜒
− 0.0372 ⋅ 𝑒

−3.663⋅𝜒

− 0.013 ⋅ 𝑒
−3.111⋅𝜒

+ 0.085 ⋅ 𝑒
−2.390⋅𝜒

+ 0.126 ⋅ 𝑒
−1.610⋅𝜒

− 0.045 ⋅ 𝑒
−0.888⋅𝜒

− 0.404 ⋅ 𝑒
−0.337⋅𝜒

− 0.705 ⋅ 𝑒
−0.038⋅𝜒

,

𝜉
4
(𝜒) = 1 + 0.097 ⋅ 𝑒

−3.961⋅𝜒
− 0.0616 ⋅ 𝑒

−3.663⋅𝜒

− 0.135 ⋅ 𝑒
−3.111⋅𝜒

+ 0.016 ⋅ 𝑒
−2.390⋅𝜒

+ 0.196 ⋅ 𝑒
−1.610⋅𝜒

+ 0.0770 ⋅ 𝑒
−0.888⋅𝜒

− 0.380 ⋅ 𝑒
−0.337⋅𝜒

− 0.809 ⋅ 𝑒
−0.038⋅𝜒

,

𝑢
4
(𝜒) = 1 + 0.009 ⋅ 𝑒

−3.961⋅𝜒
+ 0.026 ⋅ 𝑒

−3.663⋅𝜒

− 0.047 ⋅ 𝑒
−3.111⋅𝜒

− 0.072 ⋅ 𝑒
−2.390⋅𝜒

+ 0.107 ⋅ 𝑒
−1.610⋅𝜒

+ 0.165 ⋅ 𝑒
−0.888⋅𝜒

− 0.291 ⋅ 𝑒
−0.337⋅𝜒

− 0.897 ⋅ 𝑒
−0.038⋅𝜒

,

𝜉
5
(𝜒) = 1 − 0.0780 ⋅ 𝑒

−3.961⋅𝜒
+ 0.115 ⋅ 𝑒

−3.663⋅𝜒

+ 0.041 ⋅ 𝑒
−3.111⋅𝜒

− 0.160 ⋅ 𝑒
−2.390⋅𝜒

+ 0.0193 ⋅ 𝑒
−1.610⋅𝜒

+ 0.253 ⋅ 𝑒
−0.888⋅𝜒

− 0.203 ⋅ 𝑒
−0.337⋅𝜒

− 0.986 ⋅ 𝑒
−0.038⋅𝜒

,

𝑢
5
(𝜒) = 1 − 0.009 ⋅ 𝑒

−3.961⋅𝜒
− 0.004 ⋅ 𝑒

−3.663⋅𝜒

+ 0.065 ⋅ 𝑒
−3.111⋅𝜒

− 0.056 ⋅ 𝑒
−2.390⋅𝜒

− 0.084 ⋅ 𝑒
−1.610⋅𝜒

+ 0.229 ⋅ 𝑒
−0.888⋅𝜒

− 0.080 ⋅ 𝑒
−0.337⋅𝜒

− 1.055 ⋅ 𝑒
−0.038⋅𝜒

,

𝜉
6
(𝜒) = 1 + 0.059 ⋅ 𝑒

−3.961⋅𝜒
− 0.123 ⋅ 𝑒

−3.663⋅𝜒

+ 0.0890 ⋅ 𝑒
−3.111⋅𝜒

+ 0.0470 ⋅ 𝑒
−2.390⋅𝜒

− 0.188 ⋅ 𝑒
−1.610⋅𝜒

+ 0.205 ⋅ 𝑒
−0.888⋅𝜒

+ 0.042 ⋅ 𝑒
−0.337⋅𝜒

− 1.125 ⋅ 𝑒
−0.038⋅𝜒

,

𝑢
6
(𝜒) = 1 + 0.011 ⋅ 𝑒

−3.961⋅𝜒
− 0.011 ⋅ 𝑒

−3.663⋅𝜒

− 0.026 ⋅ 𝑒
−3.111⋅𝜒

+ 0.094 ⋅ 𝑒
−2.390⋅𝜒

− 0.140 ⋅ 𝑒
−1.610⋅𝜒

+ 0.089 ⋅ 𝑒
−0.888⋅𝜒

+ 0.157 ⋅ 𝑒
−0.337⋅𝜒

− 1.172 ⋅ 𝑒
−0.038⋅𝜒

,

𝜉
7
(𝜒) = 1 − 0.036 ⋅ 𝑒

−3.961⋅𝜒
+ 0.101 ⋅ 𝑒

−3.663⋅𝜒

− 0.141 ⋅ 𝑒
−3.111⋅𝜒

+ 0.142 ⋅ 𝑒
−2.390⋅𝜒

− 0.0929 ⋅ 𝑒
−1.610⋅𝜒

− 0.0260 ⋅ 𝑒
−0.888⋅𝜒

+ 0.273 ⋅ 𝑒
−0.337⋅𝜒

− 1.220 ⋅ 𝑒
−0.038⋅𝜒

,

𝑢
7
(𝜒) = 1 − 0.012 ⋅ 𝑒

−3.961⋅𝜒
+ 0.031 ⋅ 𝑒

−3.663⋅𝜒

− 0.037 ⋅ 𝑒
−3.111⋅𝜒

+ 0.020 ⋅ 𝑒
−2.390⋅𝜒

+ 0.029 ⋅ 𝑒
−1.610⋅𝜒

− 0.130 ⋅ 𝑒
−0.888⋅𝜒

+ 0.342 ⋅ 𝑒
−0.337⋅𝜒

− 1.245 ⋅ 𝑒
−0.038⋅𝜒

,

𝜉
8
(𝜒) = 71 + 0.012 ⋅ 𝑒

−3.961⋅𝜒
− 0.0380 ⋅ 𝑒

−3.663⋅𝜒

+ 0.067 ⋅ 𝑒
−3.111⋅𝜒

− 0.102 ⋅ 𝑒
−2.390⋅𝜒

+ 0.152 ⋅ 𝑒
−1.610⋅𝜒

− 0.234 ⋅ 𝑒
−0.888⋅𝜒

+ 0.412 ⋅ 𝑒
−0.337⋅𝜒

− 1.270 ⋅ 𝑒
−0.038⋅𝜒

.

(37)
All “𝜉” and “𝑢” functions of 𝜒 are depicted in Figures 5

and 6 in the “time” interval 𝜒 ∈ [0, 120].
Assume thatΩ

0
= 4/(𝑅 ⋅𝐶) is normalizing frequency and

recast (30) and (31) in the following form by using Remark 1
(Appendix A):
𝑇
𝑛
(𝑠)

= (

𝑁−𝑛

∏
𝑖=1

{1 +
𝑠

Ω
0
⋅ sin2 [((2 ⋅ 𝑖 − 1) / (4 ⋅ (𝑁 − 𝑛))) ⋅ 𝜋]

})

× (

𝑁

∏
𝑗=1

[1 +
𝑠

Ω
0
⋅ sin2 (((2 ⋅ 𝑗 − 1) / (4 ⋅ 𝑁)) ⋅ 𝜋)

])

−1

,

𝑛 = 0,𝑁 − 1,

(38)
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Figure 5: 𝜉(𝜒) and 𝑢(𝜒) functions for the specified nodes and points
of ladder in Figure 4.
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Figure 6: 𝜉(𝜒) and 𝑢(𝜒) functions for the specified nodes and points
of ladder in Figure 4.

𝑇
𝑁
(𝑠)

=(1)×(

𝑁

∏
𝑗=1

[1 +
𝑠

Ω
0
⋅ sin2 (((2 ⋅ 𝑗 − 1) / (4 ⋅ 𝑁)) ⋅ 𝜋)

])

−1

,

𝑇


𝑚
(s) =

𝑇
𝑚
+ 𝑇
𝑚+1

2 ⋅ (1 + (𝑠/Ω
0
))
, 𝑚 = 0,𝑁 − 1.

(39)

The coefficients 𝑎
1
(𝑁, 𝑛), 𝑎

2
(𝑁, 𝑛), 𝑏

1
(𝑁), and 𝑏

2
(𝑁) (27)

necessary for calculation of 𝑇
𝐷
(𝑁, 𝑛) and 𝑇

𝑅
(𝑁, 𝑛) according

to Elmore’s definitions (28) are obtained for 𝑇
𝑛
(𝑠) (𝑛 =

1,𝑁 − 1) (38) in the following form (see Corollary 3 in
Appendix A):

𝑎
1
(𝑁, 𝑛) =

1

Ω
0

⋅

𝑁−𝑛

∑
𝑖=1

1

sin2 [((2 ⋅ 𝑖 − 1) / (4 ⋅ (𝑁 − 𝑛))) ⋅ 𝜋]

=
𝑅 ⋅ 𝐶

2
⋅ (𝑁 − 𝑛)

2
,

𝑏
1
(𝑁) =

1

Ω
0

⋅

𝑁

∑
𝑗=1

1

sin2 (((2 ⋅ 𝑗 − 1) / (4 ⋅ 𝑁)) ⋅ 𝜋)

=
𝑅 ⋅ 𝐶

2
⋅ 𝑁
2
,

(40)

𝑎
2
(𝑁, 𝑛) =

1

2 ⋅ Ω2
0

⋅

{{{

{{{

{

[

𝑁−𝑛

∑
𝑖=1

1

sin2 [((2 ⋅ 𝑖 − 1) / (4 ⋅ (𝑁 − 𝑛))) ⋅ 𝜋]
]

2

−

𝑁−𝑛

∑
𝑖=1

1

sin4 [((2 ⋅ 𝑖 − 1) / (4 ⋅ (𝑁 − 𝑛))) ⋅ 𝜋]

}}}

}}}

}

=
(𝑅 ⋅ 𝐶)

2

24
⋅ (𝑁 − 𝑛)

2
⋅ [(𝑁 − 𝑛)

2
− 1] ,

(41)

𝑏
2
(𝑁) =

1

2 ⋅ Ω2
0

⋅

{{{

{{{

{

[

𝑁

∑
𝑖=1

1

sin2 (((2 ⋅ 𝑖 − 1) / (4 ⋅ 𝑁)) ⋅ 𝜋)
]

2

−

𝑁

∑
𝑖=1

1

sin4 (((2 ⋅ 𝑖 − 1) / (4 ⋅ 𝑁)) ⋅ 𝜋)

}}}

}}}

}

=
(𝑅 ⋅ 𝐶)

2

24
⋅ 𝑁
2
⋅ (𝑁
2
− 1) ,

(42)

provided that 𝑎
1
(𝑁,𝑁) = 𝑎

2
(𝑁,𝑁) = 0, and finaly,

Elmore’s delay and rise times for point voltages 𝑢
𝑛
(𝑛 = 1,𝑁)

(Figure 4) are calculated in the closed form according to the
relations
𝑇
𝐷
(𝑁, 𝑛) = 𝑏

1
(𝑁) − 𝑎

1
(𝑁, 𝑛)

=
𝑅 ⋅ 𝐶

2
⋅ [𝑁
2
− (𝑁 − 𝑛)

2
] ,

(43)

𝑇
𝑅
(𝑁, 𝑛)

= √2⋅𝜋⋅{𝑏2
1
(𝑁)−𝑎2

1
(𝑁, 𝑛)+2⋅[𝑎

2
(𝑁, 𝑛)−𝑏

2
(𝑁)]}

= 𝑅 ⋅ 𝐶 ⋅ √
𝜋

6

⋅ √[𝑁2 − (𝑁 − 𝑛)
2
] ⋅ {2 ⋅ [𝑁2 + (𝑁 − 𝑛)

2
] + 1},

(44)
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whereas Elmore’s delay times T
𝐷
(N,m) and rise times T

𝑅
(N,

m) for node voltages u
𝑚
(𝑚 = 0,𝑁 − 1) (Figure 1) are

calculated by using (38) and (39):

𝑇


𝐷
(𝑁,𝑚) = 𝑏



1
(𝑁) − 𝑎



1
(𝑁,𝑚) ,

𝑇


𝑅
(𝑁,𝑚)

= √2 ⋅ 𝜋 ⋅ {𝑏2
1
(𝑁)−𝑎2

1
(𝑁,𝑚)+2 ⋅ [𝑎

2
(𝑁,𝑚)−𝑏

2
(𝑁)]} ,

(45)

where

𝑎


1
(𝑁,𝑚) =

𝑅 ⋅ 𝐶

4
⋅ [(𝑁 − 𝑚)

2
+ (𝑁 − 𝑚 − 1)

2
] ,

𝑏


1
(𝑁) =

1

Ω
0

⋅ [

[

1 +

𝑁

∑
𝑗=1

1

sin2 (((2 ⋅ 𝑗 − 1) / (4 ⋅ 𝑁)) ⋅ 𝜋)
]

]

=
𝑅 ⋅ 𝐶

4
⋅ (2𝑁
2
+ 1) ,

(46)

𝑎


2
(𝑁,𝑚) =

(𝑅 ⋅ 𝐶)
2

48

× {(𝑁 − 𝑚)
2
⋅ [(𝑁 − 𝑚)

2
− 1]

+ (𝑁 − 𝑚 − 1)
2
⋅ [(𝑁 − 𝑚 − 1)

2
− 1]} ,

(47)

𝑏


2
(𝑁) =

1

2 ⋅ Ω2
0

⋅
{

{

{

[1 +

𝑁

∑
𝑖=1

1

sin2 (((2 ⋅ 𝑖 − 1) / (4 ⋅ 𝑁)) ⋅ 𝜋)
]

2

− 1 −

𝑁

∑
𝑖=1

1

sin4 (((2 ⋅ 𝑖 − 1) / (4 ⋅ 𝑁)) ⋅ 𝜋)
}

}

}

=
(𝑅 ⋅ 𝐶)

2

24
⋅ 𝑁
2
⋅ (𝑁
2
+ 2) .

(48)

From (43) it follows that 𝑇
𝐷
(N, N)∝ 𝑁2 and from (44) that

𝑇
𝑅
(N, n) > 2 ⋅ 𝑇

𝐷
(N, n) (𝑛 = 1,𝑁), which does not qualify

this type of ladder for using as pulse delay line in its own
right. If in the ladder on Figure 4 𝑁 = 6, 𝑅 = 50 [Ω], and
𝐶 = 2 [nF] and e(t) is periodic pulse train with amplitude
10 [V], duty-cycle 50%, and period 100 [𝜇s], then excitation
e(t) and node voltages 𝑥

2
(𝑡) = 𝑢

1
(t), 𝑥
5
(𝑡) = 𝑢

4
(t), and point

voltageu
3
(t)—obtained by pspice simulation, are depicted on

Figure 7 in interval 𝑡 ∈ [0, 120][𝜇s].
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lta
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s (

V
)

e(t)

x2(t) = u1
(t)

u3(t)

x5(t) = u4
(t)

Figure 7: Some of the pspice simulation results for six segment
integrating ladder in Figure 4 with 𝑅 = 50 [Ω], 𝐶 = 2 [nF],
and pulse-train excitation e(t) with amplitude 10 [V], period 𝑇 =

100 [𝜇s], and duty-cycle 50%.

E

C C C C R

L L LL

R R R R
U

R R R R

U0
 U1

 UN−2


· · ·

· · ·
N capacitors

Figure 8: Common-ground, uniform ladder, which may play the
role of artificial delay line (ADL) for sufficiently large N.

Finally, consider that the ladder in Figure 8 is analogue to
the ladder in Figure 1. Assume 𝛼 = 𝑅/𝐿 = 1/(𝑅 ⋅ 𝐶) and

𝑍
𝑔
= 𝑍
1
=
1

2
⋅
𝑅 ⋅ 𝐿 ⋅ 𝑠

𝑅 + 𝐿 ⋅ 𝑠
=
𝑅

2
⋅

𝑠

𝑠 + 𝛼
,

Z
2
=

1

C ⋅ s
,

𝑍
𝐿
= 𝑍
1
+

1

1 + 𝑅 ⋅ 𝐶 ⋅ 𝑠

=
𝑅

2
⋅
𝑠 + 2𝛼

𝑠 + 𝛼
(𝑍
𝑔
+ 𝑍
𝐿
= 𝑅) .

(49)

In this case, from (7) we obtain

𝑍
𝑐
= √𝑍

1
⋅ (𝑍
1
+ 2 ⋅ 𝑍

2
) =

𝑅

2
⋅
𝑠 + 2𝛼

𝑠 + 𝛼
= 𝑍
𝐿
,

sinh (𝜏) =
𝑍
𝑐

𝑍
2

=
𝑠 ⋅ (𝑠 + 2𝛼)

2𝛼 ⋅ (𝑠 + 𝛼)
,

cosh (𝜏) = 1 +
𝑍
1

𝑍
2

=
(𝑠 + 𝛼)

2
+ 𝛼2

2𝛼 ⋅ (𝑠 + 𝛼)
.

(50)
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From (50) it is found that e−𝜏 = 𝛼/(s + 𝛼), and from (9) it
follows that

𝑇


𝑚
(𝑠) =

𝑈


𝑚

𝐸
=
𝑍
𝐿
− 𝑍
1

𝑍
𝐿
+ 𝑍
1

⋅ 𝑒
−𝑚⋅𝜏

=
𝛼

𝑠 + 𝛼
⋅ 𝑒
−𝑚⋅𝜏

= (
𝛼

𝑠 + 𝛼
)
𝑚+1

=
1

(1 + (𝑠/𝛼))
𝑚+1

(𝑚 = 0,𝑁 − 2) ,

(51)

𝑇 (𝑠) =
𝑈

𝐸
=
𝑈
𝑁−2

𝐸
⋅

𝑈

𝑈
𝑁−2

= 𝑇


𝑁−2
⋅

𝛼

𝑠 + 𝛼

=
1

(1 + (𝑠/𝛼))
𝑁−1

⋅
𝛼

𝑠 + 𝛼
=

1

(1 + (𝑠/𝛼))
𝑁
.

(52)

Relation (52) could have been produced in a less formal
way by observing that the ladder in Figure 8 is a constant
resistance network when 𝑅/𝐿 = 1/(𝑅 ⋅ 𝐶), since the
input impedances (denoted by dashed arrows) seen from the
pertinent pairs of nodes are all equal to R. If the ladder has
no initial conditions and if it is excited by unit-step voltage
𝑒(𝑡) at 𝑡 = 0 {𝐸 = 𝐸(𝑠) = L[𝑒(𝑡)] = 1/𝑠}, then for overall
step response 𝑢(𝑡) = L−1[𝑈(𝑠)] it holds that (a) 𝑢(0) =

lim
𝑠→∞

𝑠 ⋅ 𝑈(𝑠) = 0 [V], (b) 𝑢(∞) = lim
𝑠→0

𝑠 ⋅ 𝑈(𝑠) = 1 [V],
and (c) u(t) is a monotone increasing function in t (i.e., u(t)
has no overshoots) since we have

0 ≤ 𝑢 (𝑡) = L
−1
[(

𝛼

𝑠 + 𝛼
)
𝑁

⋅
1

𝑠
]

= 1 − 𝑒
−𝛼⋅𝑡

⋅

𝑁−1

∑
𝑘=0

(𝛼 ⋅ 𝑡)
𝑘

𝑘!
≤ 1,

𝑑𝑢 (𝑡)

𝑑𝑡
=
𝛼
𝑁 ⋅ 𝑒−𝛼⋅𝑡 ⋅ 𝑡𝑁−1

(𝑁 − 1)!
> 0, 𝑡 ≥ 0.

(53)

From (52) we obtain the “a” and “b” coefficients necessary for
calculation of Elmore’s delay time 𝑇

𝐷
and rise time 𝑇

𝑅
(B.5)

for the network in Figure 8:

𝑎
1
= 𝑎
2
= 0,

𝑏
1
=
𝑁

𝛼
, 𝑏

2
=
𝑁 ⋅ (𝑁 − 1)

2 ⋅ 𝛼2
,

𝑇
𝐷
= 𝑏
1
=
𝑁

𝛼
=
𝐿

𝑅
⋅ 𝑁 = 𝑁 ⋅ √𝐿 ⋅ 𝐶,

𝑇
𝑅
=
1

𝛼
⋅ √2𝜋 ⋅ 𝑁

= 𝑇
𝐷
⋅ √

2𝜋

𝑁
= √2𝜋 ⋅ 𝑁 ⋅ 𝐿 ⋅ 𝐶.

(54)

The procedure for determining the ladder parameters
when both Elmore’s times 𝑇

𝐷
and 𝑇

𝑅
are specified consists
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(726.2636 𝜇, 1000 m)

Figure 9: Realization of Elmore’s delay time 𝑇
𝐷
= 1 [ms] for pulse-

train input e(t) with amplitude 10 [V], period𝑇 = 10 [ms], and duty-
cycle 𝛿 = 0.6, by ladder in Figure 8 with 𝑁 = 20, 𝑅 = 10 [Ω], 𝐿 =

0.5[mH] , and 𝐶 = 5 [𝜇F]. The output is 𝑢(𝑡).

of the following three steps: (a) firstly, we calculate 𝑁 =

ant[2𝜋 ⋅ (𝑇
𝐷
/𝑇
𝑅
)
2
] + 1, and then from (54) we calculate the

actual rise time 𝑇Ract = 𝑇
𝐷
⋅ (2𝜋/𝑁)

1/2
< 𝑇
𝑅
(𝑇
𝐷
remains

unchanged), (b) assume C, and (c) calculate 𝑅 = (𝑇
𝐷
/𝑁)/𝐶

and 𝐿 = (𝑇
𝐷
/𝑁)
2/C. When solely Elmore’s delay time 𝑇

𝐷
is

specified and 𝑇
𝑅
is left unspecified, we arbitrarily select some

reasonably great N, so as to produce the sufficiently small 𝑇
𝑅

of the output u for the unit-step input and then follow the
steps (b) and (c).

But in the case when N is small and we want to realize
Elmore’s delay time 𝑇

𝐷
for pulse train with period T and

duty cycle 𝛿, it can be shown that one of the following
two conditions must be satisfied, in order to prevent severe
distortion of transmitted “pulses”: (i) 𝑇

𝐷
≤ (1 − 𝛿) ⋅ 𝑇/2,

when 𝛿 ≥ 1/2, or (ii) 𝑇
𝐷

≤ 𝛿 ⋅ 𝑇/2, when 𝛿 < 1/2. For
the ladder in Figure 8 with 𝑁 = 20, 𝑅 = 10 [Ω], 𝐿 = 0.5

[mH], and 𝐶 = 5 [𝜇F], excited by the pulse train e(t) with
amplitude 10 [V], period𝑇 = 10 [ms], and duty-cycle 𝛿 = 0.6,
the obtained results of pspice simulation in the time interval
𝑡 ∈ [0, 20] [ms] are depicted in Figure 9, whereon are plotted
the excitation e(t), voltage 𝑢

9
(t) of the 10th capacitor, and

the voltage u(t) of the 20th capacitor. Elmore’s delay and rise
times for voltage 𝑢

𝑚−1
of the mth capacitor (𝑚 = 1,𝑁 − 1)

(Figure 8) are, respectively, 𝑚 ⋅ √𝐿 ⋅ 𝐶 and √2𝜋 ⋅ 𝑚 ⋅ 𝐿 ⋅ 𝐶,
according to (54). For example, Elmore’s delay time of 𝑢

9
(𝑡)

is 10 ⋅ √𝐿 ⋅ 𝐶 = 0.5 [ms] and of u(t) is 20 ⋅ √𝐿 ⋅ 𝐶 = 1 [ms].
Both these values are slightly different from those obtained
according to the classical definition of delay time and they
are denoted in Figure 9 for comparison. In this case, Elmore’s
rise time for u obtained from (54) is𝑇

𝑅
= √𝜋/10 [ms]≈ 560.5

[𝜇s], whereas the classical rise time obtained from Figure 9 is
slightly different, 𝑇

𝑅𝑐
≈ 568.9[𝜇s].

Consider now the same ladder excited by the pulse train
e(t) with amplitude 10 [V], provided that the condition (i) is
violated by supposing that𝑇 = 2 [ms] and 𝛿 = 0.6.The results
of pspice simulation in the time interval 𝑡 ∈ [0, 5] [ms] are
depicted in Figure 10 and obviously exhibit a severe distortion
of “pulses” u being transmitted to the end of the ladder.
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Figure 10: Realization of Elmore’s delay time 𝑇
𝐷
= 1 [ms] for pulse-

train input e(t) with amplitude 10 [V], period 𝑇 = 2 [ms], and duty-
cycle 𝛿 = 0.6, by ladder in Figure 8 with 𝑁 = 20, 𝑅 = 10 [Ω], 𝐿 =

0.5 [mH], and 𝐶 = 5 [𝜇F]. The output is u(t).
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Figure 11: Realization of Elmore’s delay time 𝑇
𝐷
= 1 [ms] for pulse-

train input e(t) with amplitude 10 [V], period 𝑇 = 2 [ms], and duty-
cycle 𝛿 = 0.4, by ladder in Figure 8 with 𝑁 = 20, 𝑅 = 10 [Ω], 𝐿 =

0.5 [mH], and 𝐶 = 5 [𝜇F]. The output is u(t).

Consider again the same ladder excited by the pulse train
e(t) with amplitude 10 [V], provided that condition (ii) is
violated by supposing that 𝑇 = 2 [ms] and 𝛿 = 0.4. The
results of pspice simulation are depicted in Figure 11 in the
time interval 𝑡 ∈ [0, 5] [ms] and obviously exhibit a severe
distortion of “pulses” u being transmitted to the end of the
ladder.

And finally, consider the ladder in Figure 8 which should
realize Elmore’s delay time 𝑇

𝐷
= 5 [ms] and rise time

𝑇
𝑅
= 560.5 [𝜇s]. Let the excitation e(t) be the pulse-train

with amplitude 10 [V], period 𝑇 = 20 [ms], and duty-
cycle 𝛿 = 0.5. To avoid a severe distortion of output pulses
u(t), it is sufficient to follow the previously formulated steps
(a) ÷ (c). So, according to the step (a) we firstly calculate
𝑁 = 500. Then, in the step (b) we assume that, say, 𝐶 =

1 [𝜇F] and finally in the step (c) we calculate 𝑅 = 10

[Ω] and 𝐿 = 100 [𝜇H]. The time variations of e(t) and
u(t) obtained by pspice simulation are depicted in Figure 12
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(5.0086m, 5)

(4.7078m, 1)

Figure 12: Realization of Elmore’s delay time 𝑇
𝐷
= 5 [ms] and rise-

time𝑇
𝑅
= 560.5 [𝜇s] for pulse-train input 𝑒(𝑡)with amplitude 10 [V],

period 𝑇 = 20 [ms], and duty-cycle 𝛿 = 0.5, by ladder in Figure 8
with 𝑁 = 500, 𝑅 = 10 [Ω], 𝐿 = 100 [𝜇H], and 𝐶 = 1 [𝜇F]. The
output is u(t).

in the time interval 𝑡 ∈ [0, 40] [ms]. Therefrom, we find
the classical delay and rise times of the output voltage u(t),
𝑇
𝐷𝑐

≈ 5 [ms] and 𝑇
𝑅𝑐

≈ 575 [𝜇s], respectively. Both these
times are slightly different from the pertinent Elmore’s times
(54), whose obvious advantage is that are explicitly calculable
as functions of {𝑁, 𝑅, 𝐿, 𝐶} parameters of common-ground,
uniform RLC ladder (Figure 8).

In the previous examples, we have investigated Elmore’s
times of voltages at points and/or nodes in several character-
istic types of common-ground uniform RLC ladders excited,
either by step or by pulse-train emfs. In themost general case,
consider the realization of physical delay time 𝑇

𝐷
for arbitrary

excitation e(t) (i.e., true delay time), by using the RLC ladder
in Figure 8 (true delay line). If we presume for this network
that𝑁 → ∞, then from (52) and (54) it readily follows that

lim
𝑁→∞

𝑇 (𝑠) = lim
𝑁→∞

1

(1 + (𝑠/𝛼))
𝑁

= lim
𝑁→∞

[(1 +
𝑠 ⋅ 𝑇
𝐷

𝑁
)

𝑁/(𝑠⋅𝑇
𝐷
)

]

−𝑠⋅𝑇
𝐷

= 𝑒
−𝑠⋅𝑇
𝐷 ,

(55)

so that the overall network response becomes 𝑢(𝑡) =

L−1[𝑈(𝑠)] = L−1[𝑒−𝑠⋅𝑇𝐷 ⋅ 𝐸(𝑠)] = 𝑒(𝑡 − 𝑇
𝐷
) (i.e., u(t) is the

exact replica of the excitation e(t) delayed by the time𝑇
𝐷
). Let

us firstly introduce the notation

𝑧 :=
𝑠 ⋅ 𝑇
𝐷

𝑁
= (𝜎 + 𝑗 ⋅ 𝜔) ⋅

𝑇
𝐷

𝑁

=
𝜎 ⋅ 𝑇
𝐷

𝑁
+ 𝑗 ⋅

𝜔 ⋅ 𝑇
𝐷

𝑁
,

Re {𝑧} :=
𝜎 ⋅ 𝑇
𝐷

𝑁
,
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Figure 13: The plot of function |𝑓(𝑧)| in the 𝑧-region of interest.

Im {𝑧} :=
𝜔 ⋅ 𝑇
𝐷

𝑁
,

𝑓 (𝑧) := (1 + 𝑧)
1/𝑧

(56)

and then investigate the conditions under which the function
f (z) becomes close to the number e. It is obvious from (55)
that these conditions relate to certain restrictions in the span
of N, 𝜎, and 𝜔. Observe that 𝑓(𝑧) → 𝑒 when 𝑧 → 0. After
some manipulation, from (56) we easily obtain

𝑓 (𝑧)
 = 𝑒
(Im{𝑧}/(Re2{𝑧}+Im2{𝑧}))⋅𝑎 tan[Im{𝑧}/(1+Re{𝑧})]

⋅ ([1 + Re {𝑧}]2

+ Im2 {𝑧})
Re{𝑧}/(2⋅[Re2{𝑧}+Im2{𝑧}])

,

Arg [𝑓 (𝑧)] = Re {𝑧}
Re2 {𝑧} + Im2 {𝑧}

⋅ 𝑎 tan [ Im {𝑧}

1 + Re {𝑧}
]

−
Im (𝑧)

2 ⋅ [Re2 {𝑧} + Im2 {𝑧}]

⋅ ln ([1 + Re {𝑧}]2 + Im2 {𝑧}) ,

(57)

where Arg[f (z)] is expressed in radians and should be
multiplyed by 180/𝜋 to be expressed in [deg].

The function |𝑓(𝑧)| is depicted in Figure 13. From the
set of its associated numerical data it can be seen that for
Re{𝑧} = 0 we have |𝑓(𝑧)| = 2.7182 . . . when 0 ≤ Im{𝑧} ≤

2𝜋 ⋅ 10−3 and |𝑓(𝑧)| → 𝑒 when Im{𝑧} → 0. In other words,
for |𝑓(𝑧)| to be close to e, it is sufficient in this case to provide
that 2𝜋 ⋅𝑓max ⋅ 𝑇𝐷/𝑁 ≤ 2𝜋 ⋅ 10−3, where 𝑓max is the maximum
frequency in the spectrumof the signal e(t) being transmitted
through the RLC ladder in Figure 8 having almost true time
delay equal to Elmore’s delay time 𝑇

𝐷
, or 𝑁 ≥ 𝑓max ⋅ [𝑇𝐷],

where [𝑇
𝐷
] is delay time 𝑇

𝐷
expressed in [ms].

The function Arg[𝑓(𝑧)] [deg] is depicted in Figure 14.
From the set of its associated numerical data it can be seen
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Figure 14:The plot of function Arg[𝑓(𝑧)] in the z-region of interest.
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Figure 15: PSPICE verification of delay time 𝑇
𝐷

= 5 [ms] for
±10 [V]/20 [Hz] sine-wave input e(t).

that for Re{𝑧} = 0 we have −0.1799964 < Arg[𝑓(𝑧)] [deg]
≤ 0 when 0 ≤ Im{𝑧} ≤ 2𝜋 ⋅ 10−3 and Arg[𝑓(𝑧)] →

0 when Im{𝑧} → 0. For Arg[𝑓(𝑧)] ≤ 0 to be close to 0, say
to be |Arg[𝑓(𝑧)]| < 0.18 [deg], it is sufficient in this case also
to provide that 2𝜋⋅𝑓max ⋅𝑇𝐷/𝑁 ≤ 2𝜋⋅10−3or 𝑁 ≥ 𝑓max ⋅ [𝑇𝐷].

For properly selected N (i.e., 𝑇
𝐷
/𝑁 ≤ 1/(1000 ⋅ 𝑓max)),

the ladder parameters are found according to the previously
formulated steps (b) ÷ (c): arbitrarily select C and calculate
𝑅 = (𝑇

𝐷
/N )/C and 𝐿 = (𝑇

𝐷
/𝑁)
2
/𝐶.

As a final example, consider the ladder in Figure 8 with
parameters: 𝑁 = 500, 𝐶 = 1 [𝜇F], 𝑅 = 10 [Ω], 𝐿 =

100 [𝜇H], and the Elmore’s delay time 𝑇
𝐷

= 𝑁 ⋅ (𝐿/𝑅) =

𝑁 ⋅ √𝐿 ⋅ 𝐶 = 5 [ms]. Since condition 𝑓max ⋅ 𝑇𝐷/𝑁 ≤ 10
−3

is satisfied for 𝑓max ≤ 100 [Hz], then this ladder may be used
as true delay line for every input signal e(t) with maximum
spectral frequency up to 𝑓max, with output u(t) being almost
the replica of e(t) with no attenuation and virtually constant
delay 𝑇

𝐷
equal to Elmore’s delay time. The results for this

ladder excited by various input signals 𝑒(𝑡), produced by using
of PSPICE simulation, are depicted in Figures 15, 16, 17, 18 and
19. There on it may be noticed that the overall output voltage
of this ladder as of artificial delay-line (ADL) is represented
by𝑢(𝑡) ≈ 𝑒(𝑡−𝑇

𝐷
), with absolute error aer(𝑡) = 𝑢(𝑡)−𝑒(𝑡−𝑇

𝐷
).

In the paper [12] it is proved that by using distor-
tionless transmission line with resistive load equal to the
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Figure 16: PSPICE verification of delay time 𝑇
𝐷
= 5 [ms] for input

wave e(t) with period 𝑇 = 0.1 [s], linear frequency chirp 0 ÷ 100

[Hz], and linearly increasing amplitude 0 ÷ 10 [V].
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Figure 17: PSPICE results for transfer with delay 𝑇
𝐷

= 5 [ms]
of CAM input wave e(t) with carrier ±10 [V]/100 [Hz], modulation
index 𝑚 = 0.5, and the intelligence frequency 50 [Hz] within ADL
in Figure 8.
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Figure 18: PSPICE results for transfer with delay 𝑇
𝐷
= 5 [ms] of

FM input wave e(t) with carrier ±10 [V]/50 [Hz], modulation index
𝑚 = 2 and intelligence frequency 25 [Hz] within ADL in Figure 8.
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input wave e(t) with period 𝑇 = 0.1 [s], linear frequency chirp 0 ÷
100 [Hz], and linearly increasing amplitude 0 ÷ 10 [V] within ADL
in Figure 8.
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Figure 20: The amplitude-frequency characteristics of the consid-
ered ladder in the frequency range 𝑓 ∈ [0, 100] [Hz].

line characteristic impedance √𝐿/𝐶 (𝐿 and 𝐶 are per-
unit-length inductance and capacitance of line, resp.), even
a relativelly small signal delay 𝑇

𝐷
cannot be realistically

produced. For example, signal delay 𝑇
𝐷

= 5 [ms] can be
realized with lossless line having the constant parameters
𝐿

= 1.5 [𝜇H/m], 𝐶 = 18 [pF/m], and load resistance

(𝐿/𝐶)
1/2

= 500/√3 [Ω], at the distance 𝑑 = 𝑇
𝐷
⋅

(𝐿 ⋅ 𝐶)
−1/2

≈ 962.25 [km] from the line sending end,
but when distortionless line is lossy and terminated with
characteristic impedance (𝐿/𝐶)1/2, then besides the time
delay 𝑑 ⋅ (𝐿 ⋅ 𝐶)

1/2 at distance d, the signal attenuation
factor exp[𝑑 ⋅ (𝑅 ⋅ 𝐺)] (𝑅 and 𝐺 are the per-unit-length
resistance and conductance of the lossy line, resp.) must
be also taken into account [18]. Realization of pulse delay
𝑇
𝐷

= 5 [ms] with lumped RLC network in Figure 8 is
verified in Figure 12 and seems to be the more comfortable
approach than using lengthy distributed parameter networks.
In general, realization of any time delay 𝑇

𝐷
for signal with

maximum spectral frequency 𝑓max can be accomplished by
using the uniform ladder in Figure 8 with length N selected
according to the condition 𝑇

𝐷
/𝑁 ≤ 1/(1000 ⋅ 𝑓max). The

ladder parameters are calculated according to relations 𝑅 =

(𝑇
𝐷
/𝑁)/𝐶 and 𝐿 = (𝑇

𝐷
/𝑁)
2
/𝐶, where 𝐶 may be selected

arbitrarily.
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Figure 21: The phase-frequency characteristics of the considered
ladder in the frequency range 𝑓 ∈ [0, 100] [Hz].

Finally, in Figures 20 and 21 the results of PSPICE AC-
analysis are depicted with 1 [V] amplitude AC-input in the
entire frequency range [0, 100] [Hz] for network in Figure 8
with parameters 𝑁 = 500, 𝐶 = 1 [𝜇F], 𝑅 = 10 [Ω], and 𝐿 =

100 [𝜇H]. In Figure 20 we see that the amplitude-frequency
characteristics of the network are almost flat, and in Figure 21
we see that its phase-frequency characteristics are virtually
linear with slope −1.8 [deg/Hz]. Hence we conclude that the
network in Figure 8 may satisfactorily realize the time delay
𝑇
𝐷
for any input signal e(t) with spectrum in range 0 ÷ 100

[Hz].

4. Conclusions

In the paper, are derived general, closed-form expressions for
network functions of common-ground, uniform, and pas-
sive ladders with complex double terminations are derived,
making distinction in analysis between the signal transfer to
ladder nodes and to its points. The obtained results are then
simplified for ladders with seven specific pairs of complex
double terminations. Elmore’s delay and rise times calculated
for specific, important types of RLC ladders indicated slight
deviation fromdelay and rise times values obtained according
to their classical definitions.

For the common-ground, integrating RC ladder with step
input, Elmore’s delay and rise times are produced in closed
form, both for ladder nodes and ladder points. It has been
shown that this type of ladder could not be recommended as
pulse delay line in its own right, since its Elmore’s rise-times of
point voltages are not less than the twice of their delay times.

And finally, in this paper we have proposed a specific
type of common-ground, uniform RLC ladder amenable for
application as delay line, both for pulsed and analog input
signals. For this type of ladder, Elmore’s delay and rise times
relating to the node voltages are produced in the closed form,
which offers a possibility for realization of (a) the pulse delay
line with arbitrarily specified Elmore’s delay and rise times
and (b) the true delay line, both for pulsed and analog input
signals, with arbitrarily selected delay time. For both cases
(a) and (b), in the paper a procedure for the determination
of ladder length and calculation of all its RLC parameters
is specified. Recall that the ladder network topology is
preferable one in the network synthesis, since it has very low
sensitivity with respect to variations of RLC parameters. The
obtained results are illustratedwith several practical examples
and are verified through pspice simulation.

Appendices

A.

Property 1. If 𝑧 ∈ C (C-set of complex numbers), then
cos(𝑛 ⋅ 𝑧) is the 𝑛th order trigonometric polynomial in cos(z)
and sin(𝑛 ⋅ 𝑧) is the product of sin(z) and the (𝑛 − 1)th order
trigonometric polynomial in cos(z).

Proof. Let 𝑗 := √−1, and let us make the following binomial
expansion:

cos (𝑛 ⋅ 𝑧) + 𝑗 ⋅ sin (𝑛 ⋅ 𝑧)

= [cos (𝑧) + 𝑗 ⋅ sin (𝑧)]𝑛

=

𝑛

∑
𝑘=0

(
𝑛

𝑘
) ⋅ (𝑗)

𝑘

⋅ cos𝑛−𝑘 (𝑧) ⋅ sin𝑘 (𝑧)

=

𝑝≤𝑛/2

∑
𝑝=0

(−1)
𝑝
(
𝑛

2𝑝
) ⋅ cos𝑛−2𝑝 (𝑧) ⋅ sin2𝑝 (𝑧) + 𝑗

⋅

𝑞≤(𝑛−1)/2

∑
𝑞=0

(−1)
𝑞
(

𝑛

2𝑞 + 1
)

⋅ cos𝑛−2𝑞−1 (𝑧) ⋅ sin2𝑞+1 (𝑧) .

(A.1)

From (A.1) it readily follows that

cos (𝑛 ⋅ 𝑧) =

𝑝≤𝑛/2

∑
𝑝=0

(−1)
𝑝
(
𝑛

2𝑝
)

⋅ cos𝑛−2𝑝 (𝑧) ⋅ [1 − cos2 (𝑧)]
𝑝

,

sin (𝑛 ⋅ 𝑧) = sin (𝑧)

⋅

𝑞≤(𝑛−1)/2

∑
𝑞=0

(−1)
𝑞
(

𝑛

2𝑞 + 1
)

⋅ cos𝑛−2𝑝−1 (𝑧) ⋅ [1 − cos2 (𝑧)]
𝑞

.

(A.2)

Property 2. If 𝑧 ∈ C, then the following finite product
expansion holds:

cosh (𝑛 ⋅ 𝑧) = 2𝑛−1

⋅

𝑛

∏
𝑖=1

[cosh (𝑧) − cos(2𝑖 − 1
2𝑛

⋅ 𝜋)] .
(A.3)



Mathematical Problems in Engineering 21

Proof. According to Property 1, cos(𝑛 ⋅ 𝑧) is the 𝑛th order
polynomial in cos(z). Then we have

cos (𝑛 ⋅ 𝑧) = 𝐴 ⋅

𝑛

∏
𝑖=1

[cos (𝑧) − 𝜉
𝑖
] , 𝐴 is a constant (𝐴 ̸= 0) ,

𝜉i = cos(2𝑖 − 1
2𝑛

⋅ 𝜋) , 𝑖 = 1, 𝑛.

(A.4)

Now, consider the complex equation 𝑧2𝑛 = −1with roots 𝑧
𝑘
=

exp{±𝑗⋅[(2𝑘−1)/2𝑛]⋅𝜋} (𝑘 = 1, 𝑛).Then it holds the following
factorization:

𝑧
2𝑛
+ 1 =

𝑛

∏
𝑘=1

(𝑧 − 𝑒
𝑗⋅((2𝑘−1)/2𝑛)⋅𝜋

)

⋅ (𝑧 − 𝑒
−𝑗⋅((2𝑘−1)/2𝑛)⋅𝜋

)

=

𝑛

∏
𝑘=1

[𝑧
2
− 2 ⋅ 𝑧 ⋅ cos(2𝑘 − 1

2𝑛
⋅ 𝜋) + 1] .

(A.5)

For 𝑧 = 1, from (A.5) we obtain the identity∏𝑛
𝑘=𝑖

sin(((2𝑘 −
1)/4𝑛) ⋅ 𝜋) = √2/2𝑛. Then, for 𝑧 = 0, from (A.4) it firstly
follows that 1/𝐴 = ∏

𝑛

𝑖=1
[1 − cos(((2𝑖 − 1)/2𝑛) ⋅ 𝜋)] = 2

𝑛
⋅

[∏
𝑛

𝑖=1
sin(((2𝑖 − 1)/4𝑛) ⋅ 𝜋)]2 = 2𝑛 ⋅ (2/22𝑛) = 21−𝑛, or 𝐴 =

2𝑛−1, and then, upon substitution 𝑧 → 𝑗 ⋅ 𝑧, also in (A.4), the
following implication is obtained:

cos (𝑛 ⋅ 𝑧) = 2
𝑛−1

⋅

𝑛

∏
𝑖=1

[cos (𝑧) − cos(2𝑖 − 1
2𝑛

⋅ 𝜋)]

𝑧→𝑗⋅𝑧

⇒ cosh (𝑛 ⋅ 𝑧) = 2
𝑛−1

⋅

𝑛

∏
𝑖=1

[cosh (𝑧) − cos(2𝑖 − 1
2𝑛

⋅ 𝜋)]

(A.6)

Property 3. If 𝑧 ∈ C, then the following finite product
expansion holds:

sinh (𝑛 ⋅ 𝑧) = 2
𝑛−1

⋅ sinh (𝑧)

⋅

𝑛−1

∏
𝑘=1

[cosh (𝑧) − cos(𝑘 ⋅ 𝜋
𝑛

)] .
(A.7)

Proof. According to Property 1, sin(𝑛 ⋅ 𝑧) is the product of
sin(z) and a polynomial in cos(z) of order 𝑛−1.Then we have

Sin (𝑛 ⋅ 𝑧) = 𝐵 ⋅ sin (𝑧)

⋅

𝑛−1

∏
𝑖=1

[cos (𝑧) − 𝜁
𝑖
] , 𝐵 is a constant (𝐵 ̸= 0) ,

𝜁
𝑖
= cos(𝑖 ⋅ 𝜋

𝑛
) , 𝑖 = 1, 𝑛 − 1.

(A.8)

Now, consider the complex equation 𝑧
2𝑛 = 1 with roots

𝑧 = ±1 and 𝑧
𝑘
= exp[±𝑗 ⋅ (𝑘 ⋅ 𝜋/𝑛)] (𝑘 = 1, 𝑛 − 1). Then

the following factorization holds:

𝑧
2𝑛
− 1 = (𝑧

2
− 1) ⋅

𝑛−1

∏
𝑘=1

(𝑧 − 𝑒
𝑗⋅(𝑘⋅𝜋/𝑛)

) ⋅ (𝑧 − 𝑒
−𝑗⋅(𝑘⋅𝜋/𝑛)

)

= (𝑧
2
− 1) ⋅

𝑛−1

∏
𝑘=1

[𝑧
2
− 2 ⋅ 𝑧 ⋅ cos(𝑘 ⋅ 𝜋

𝑛
) + 1] ,

(A.9)

wherefrom, for 𝑧 = 1, we obtain the identity ∏𝑛
𝑘=1

sin(𝑘 ⋅
𝜋/2𝑛) = √𝑛/2

𝑛−1.Then, for 𝑧 = 0, from (A.8) it firstly follows
taht 𝑛/𝐵 = ∏𝑛−1

𝑖=1
[1−cos(𝑖⋅𝜋/𝑛)] = 2𝑛−1⋅[∏𝑛

𝑖=1
sin(𝑖 ⋅ 𝜋/2𝑛)]2 =

2
𝑛−1

⋅ (𝑛/2
2𝑛−2

) = 𝑛 ⋅ 2
1−𝑛 or 𝐵 = 2

𝑛−1, and then, upon
substitution 𝑧 → 𝑗 ⋅𝑧, also in (A.8), the following implication
is obtained:

sin (𝑛 ⋅ 𝑧) = 2𝑛−1 ⋅ sin (𝑧) ⋅
𝑛−1

∏
𝑖=1

[cos (𝑧) − cos(𝑖 ⋅ 𝜋
𝑛
)]
𝑧→𝑗⋅𝑧

⇒

sinh (𝑛 ⋅ 𝑧) = 2𝑛−1 ⋅ sinh (𝑧) ⋅
𝑛−1

∏
𝑖=1

[cosh (𝑧) − cos(𝑖 ⋅ 𝜋
𝑛
)] .

(A.10)

Remark 1. From proofs of Properties 2 and 3, we explicitly
emphasize the following two identities having been obtained
in passing

𝑛

∏
𝑘=1

sin(2𝑘 − 1
4𝑛

⋅ 𝜋) =
√2

2𝑛
,

𝑛

∏
𝑘=1

sin(𝑘 ⋅ 𝜋
2𝑛

) =
√𝑛

2𝑛−1
.

(A.11)

Property 4. If 𝑥 ∈ R (R-set of real numbers), then the
following identity holds:

2
𝑛−1

⋅

𝑛−1

∏
𝑘=0

sin(𝑥 + 𝑘 ⋅ 𝜋

𝑛
) = sin (𝑛 ⋅ 𝑥) . (A.12)

Proof. Theroots of the polynomial 𝑧2𝑛−2⋅[cos(2⋅𝑛⋅𝑥)]⋅𝑧𝑛+1 =
0 are exp[𝑗 ⋅ (±2 ⋅𝑥+2⋅𝑘 ⋅𝜋/𝑛)] (𝑘 = 0, 𝑛 − 1), and they can be
written in the following form: 𝑧

𝑘
= exp[𝑗 ⋅ (2 ⋅ 𝑥 + 2 ⋅ 𝑘 ⋅ 𝜋/𝑛)]

and 𝑧∗
𝑘
= exp[−𝑗 ⋅ (2 ⋅ 𝑥 + 2 ⋅ 𝑘 ⋅ 𝜋/𝑛)] = exp{𝑗 ⋅ [−2 ⋅ 𝑥 + 2 ⋅

(𝑛 − 𝑘) ⋅ 𝜋/𝑛]} (𝑘 = 0, 𝑛 − 1). The considered polynomial has
the following factorization:

𝑧
2𝑛
− 2 ⋅ [cos (2 ⋅ 𝑛 ⋅ 𝑥)] ⋅ 𝑧𝑛 + 1

=

𝑛−1

∏
𝑘=0

(𝑧 − 𝑧
𝑘
) ⋅ (𝑧 − 𝑧

∗

𝑘
)

=

𝑛−1

∏
𝑘=0

[𝑧
2
− 2 ⋅ cos(2 ⋅ 𝑥 + 2 ⋅ 𝑘 ⋅ 𝜋

𝑛
) ⋅ 𝑧 + 1] ,

(A.13)
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wherefrom for 𝑧 = 1 it follows that

|sin (𝑛 ⋅ 𝑥)| = 2𝑛−1 ⋅


𝑛−1

∏
𝑘=0

sin(𝑥 + 𝑘 ⋅ 𝜋

𝑛
)



. (A.14)

It is easy to see that if sin(𝑛 ⋅ 𝑥) ≥ 0 {⇔ 𝑥 ∈ [2 ⋅ 𝑚 ⋅ 𝜋, 2 ⋅

𝑚 ⋅ +𝜋/𝑛], 𝑚 ∈ N (N is the set of natural numbers)}, then
sin(𝑥 + 𝑘 ⋅ 𝜋/𝑛) ≥ 0, for 𝑘 = 0, 𝑛 − 1. And the opposite, if
sin(𝑛 ⋅𝑥) < 0 [⇔ 𝑥 ∈ (2⋅𝑚⋅𝜋+𝜋/𝑛, 2 ⋅𝑚⋅𝜋+2𝜋/𝑛), 𝑚 ∈

N], then, for 𝑘 = 0, 𝑛 − 2, we see that it holds sin(𝑥+𝑘⋅𝜋/𝑛) >

0 and for 𝑘 = 𝑛−1 it holds sin(𝑥+𝑘⋅𝜋/𝑛) < 0. Hence, we have
proved that modulus signs can be lifted on both sides of the
relation (A.14) and therefrom the relation (A.12) follows.

Corollary 2. At its regular points, the function 𝑓(𝑥) (x ∈ R)

is equal to zero:

𝑓 (𝑥) =

𝑛−1

∑
𝑘=0

1

sin2 (𝑥 + (𝑘 ⋅ 𝜋/𝑛))

−
𝑛2

sin2 (𝑛 ⋅ 𝑥)
.

(A.15)

Proof. By differentiating (A.12) in x we easily obtain that in
regular points of f (x) it holds that

2
𝑛−1

⋅

𝑛−1

∏
𝑘=0

sin(𝑥 + 𝑘 ⋅ 𝜋

𝑛
)

⋅ [

𝑛−1

∑
𝑘=0

cotan(𝑥 + 𝑘 ⋅ 𝜋

𝑛
)] = 𝑛 ⋅ cos (𝑛 ⋅ 𝑥) ,

or
𝑛−1

∑
𝑘=0

cotan(𝑥 + 𝑘 ⋅ 𝜋

𝑛
) = 𝑛 ⋅ cotan (𝑛 ⋅ 𝑥) ,

(A.16)

and by differentiating in x the second relation in (A.16),
(A.15) immediately follows. Observe that the statement of this
corollary also holds if in (A.14) k runs from 1 to n (instead
from 0 to 𝑛 − 1).

Corollary 3. The following two identities hold:

𝑛

∑
𝑘=1

1

sin2 (((2 ⋅ 𝑘 − 1) / (4 ⋅ 𝑛)) ⋅ 𝜋)
= 2 ⋅ 𝑛

2
,

𝑛

∑
𝑘=1

1

sin4 (((2 ⋅ 𝑘 − 1) / (4 ⋅ 𝑛)) ⋅ 𝜋)
=
4

3
⋅ 𝑛
2
⋅ (2 ⋅ 𝑛

2
+ 1) .

(A.17)

Proof. If in (A.15) of Corollary 3 we make the substitution
𝑛 → 2 ⋅ 𝑛, then let k runs from 1 to 2 ⋅ 𝑛, and finally select

𝑥 = −𝜋/(4 ⋅ 𝑛), the relation (A.15) is being transformed into
the following form:

2𝑛

∑
𝑘=1

1

sin2 (((2 ⋅ 𝑘 − 1) / (4 ⋅ 𝑛)) ⋅ 𝜋)
= 4 ⋅ 𝑛

2

Since the 𝑘th and the (2𝑛−𝑘+1)th entries are equal ∀𝑘= 1,2𝑛
→

𝑛

∑
𝑘=1

1

sin2 (((2 ⋅ 𝑘 − 1) / (4 ⋅ 𝑛)) ⋅ 𝜋)
= 2 ⋅ 𝑛

2
,

(A.18)

and thus with the first of relations in (A.17) is proved. Now,
suppose that in (A.15) k runs from 1 to n, and differentiate
this relation twice. As a result, after some manipulations, it is
obtained that

𝑛

∑
𝑘=1

1

sin4 (𝑥 + (𝑘 ⋅ 𝜋/𝑛))

=
𝑛2

sin2 (𝑛 ⋅ 𝑥)
⋅ [

𝑛2

sin2 (𝑛 ⋅ 𝑥)
+
2

3
⋅ (1 − 𝑛

2
)] .

(A.19)

If in (A.19) we make the substitution 𝑛 → 2 ⋅ 𝑛, let k runs
from 1 to 2 ⋅ 𝑛, select 𝑥 = −𝜋/(4 ⋅ 𝑛), and finally use the same
arguments as in (A.18), we immediately obtain the second of
relations in (A.17).

B.

Let T(s) be the voltage transfer function of linear, lumped
electrical network with zero initial conditions, and let T](s)
be its normalized form T(s)/T(0):

𝑇 (𝑠) = 𝑇 (0) ⋅
1 + 𝑎
1
⋅ 𝑠 + 𝑎

2
⋅ 𝑠2 + ⋅ ⋅ ⋅ + 𝑎

𝑖
⋅ 𝑠𝑖

1 + 𝑏
1
⋅ 𝑠 + 𝑏

2
⋅ 𝑠2 + ⋅ ⋅ ⋅ + 𝑏

𝑗
⋅ 𝑠𝑗

,

𝑇] (𝑠) =
1 + 𝑎
1
⋅ 𝑠 + 𝑎

2
⋅ 𝑠2 + ⋅ ⋅ ⋅ + 𝑎

𝑖
⋅ 𝑠𝑖

1 + 𝑏
1
⋅ 𝑠 + 𝑏

2
⋅ 𝑠2 + ⋅ ⋅ ⋅ + 𝑏

𝑗
⋅ 𝑠𝑗

,

(B.1)

where usually it holds that 𝑗 > 𝑖, since for most lumped
physical systems the number of poles in transfer function
is larger than the number of zeros. The normalized unit-
step response 𝑢](𝑡) of this network and its normalized
impulse response ℎ](𝑡) are related through relations ℎ](𝑡) =
𝑑𝑢](𝑡)/𝑑𝑡 = L−1{𝑇](𝑠)} and 𝑢](𝑡) = L−1{𝑇](𝑠)/𝑠}. In the
absence of the initial conditions [⇔ 𝑢](0) = 0] we have
𝑢](∞) = 𝑇](0) = 1. Convenient definitions of delay time
(𝑇
𝐷
) and rise time (𝑇

𝑅
) of a network (or other physical
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systems), applicable only when its step response ismonotonic
(nonovershooting), originate from Elmore [7]:

𝑇
𝐷
:= ∫
∞

0

𝑡 ⋅ ℎ] (𝑡) ⋅ 𝑑𝑡,

𝑇
𝑅
:= √2𝜋 ⋅ ∫

∞

0

(𝑡 − 𝑇
𝐷
)
2

⋅ ℎ] (𝑡) ⋅ 𝑑𝑡

= √2𝜋 ⋅ √∫
∞

0

𝑡2 ⋅ ℎ] (𝑡) ⋅ 𝑑𝑡 − 𝑇
2

𝐷
,

∫
∞

0

ℎ] (𝑡) ⋅ 𝑑𝑡 = 𝑢] (∞) − 𝑢] (0)

= 𝑇] (0) − 𝑇] (∞) = 1.

(B.2)

In many practical situations it has been noticed that, when
the unit-step response of network, or system, hasaovershoot
less than 5% of its steady-state unity value, (B.2) will still be
holding and the obtained results will be in close agreement
with those produced by using the conventional definitions of
delay and rise times [7]. Since 𝑇](𝑠) = L{ℎ](𝑡)}, then from
Elmore’s definitions (B.2) it is obtained that

𝑇] (𝑠) = ∫
∞

0

ℎ] (𝑡) ⋅ 𝑒
−𝑠⋅𝑡

⋅ 𝑑𝑡

= ∫
∞

0

ℎ] (𝑡) ⋅

∞

∑
𝑘=0

(−1)
𝑘
⋅
(𝑠 ⋅ 𝑡)
𝑘

𝑘!
⋅ 𝑑𝑡

= ∫
∞

0

ℎ] (𝑡) ⋅ 𝑑𝑡 − 𝑠 ⋅ ∫
∞

0

𝑡 ⋅ ℎ] (𝑡) ⋅ 𝑑𝑡 +
𝑠
2

2

⋅ ∫
∞

0

𝑡
2
⋅ ℎ] (𝑡) ⋅ 𝑑𝑡 − ⋅ ⋅ ⋅

= 1 − 𝑠 ⋅ 𝑇
𝐷
+
𝑠2

2
⋅ (

𝑇
2

𝑅

2𝜋
+ 𝑇
2

𝐷
) − ⋅ ⋅ ⋅ ,

(B.3)

and after the application of the long division on 𝑇](𝑠) in (B.1)
it follows that

𝑇] (𝑠) = 1 − (𝑏
1
− 𝑎
1
) ⋅ 𝑠

+ (𝑏
2

1
− 𝑎
1
⋅ 𝑏
1
+ 𝑎
2
− 𝑏
2
) ⋅ 𝑠
2
+ ⋅ ⋅ ⋅ .

(B.4)

Finally, from (B.3) and (B.4) we easily identify Elmore’s times
as functions of only the coefficients 𝑎

1
, 𝑎
2
, 𝑏
1
, and 𝑏

2
[19]:

𝑇
𝐷
= 𝑏
1
− 𝑎
1
,

𝑇
𝑅
= √2 ⋅ 𝜋 [𝑏2

1
− 𝑎2
1
+ 2 ⋅ (𝑎

2
− 𝑏
2
)] .

(B.5)
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