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The motor speed of a buck power converter and DC motor coupled system is controlled by means of a quasi-sliding scheme. The
fixed point inducting control technique and the zero average dynamics strategy are used in the controller design. To estimate the
load and friction torques an online estimator, computed by the least mean squares method, is used. The control scheme is tested
in a rapid control prototyping system which is based on digital signal processing for a dSPACE platform. The closed loop system
exhibits adequate performance, and experimental and simulation results match.

1. Introduction

Permanent Magnet DC (PMDC) motors are currently used
as variable speed drive systems for aerospace, automotive,
industrial, and automation applications because of their high
power density and low maintenance cost [1]. However, the
proper functioning of these systems has important challenges
related to modeling, dynamical analysis, control, and imple-
mentation aspects. Nonlinear phenomena as bifurcations and
chaos have been observed in many classes of motor drive
systems. Therefore, uncertainties and disturbances should be
tackled [2].

Sliding mode control appears to be effective for PMDC
motor control, since it is widely reported as a powerful
approach for robust control issues [3, 4]. It is fast andmakes it
possible to tackle the effect of both unknown varying param-
eters and disturbances. The basic idea of the sliding control
method is to design a control law so that the trajectories
of the tracking error and its time derivatives converge to a
properly defined manifold called sliding surface and remain

therein.The tracking problem is translated into enforcing the
dynamical system to converge towards the sliding surface,
defined by 𝑠(𝑡) = 0, where 𝑠(𝑡) is a linear function of the
tracking error and its time derivatives. The sliding surface
is rendered attractive and invariant by the control law. A
common assumption is that there are unknown varying
parameters or disturbances.There are two possibilities [5]: (i)
assuming that the bounds of such uncertainties are known,
and (ii) using a parameter updating mechanism in order to
tackle the uncertain bounds. Ideal sliding motion only exists
for infinite switching frequency. Thus, from a practical point
of view, undesired chattering phenomenon is present [1].
Some research projects on slidingmode control are discussed
below.

In [6], an adaptive robust sliding nonlinear controller is
formulated for a three-phase induction motor drive on the
basis of a space-svector modulation scheme. The goal is to
control the torque and stator flux. The motor model is fifth
order, based on a stationary frame with two axes, and the
stator currents and stator fluxes are the state variables. It is



2 Mathematical Problems in Engineering

assumed that stator and rotor resistances may be varying and
uncertain. The controller takes into account such variation:
the stator and rotor resistances are online updated on the
basis of the stator measured currents and voltages.

In [7, 8] a sliding mode controller is developed for a
sensorless induction motor (IM) drive, using the principles
of direct torque control and space-vector pulse-width mod-
ulation (PWM). The goal is to control the rotor speed and
stator flux (torque and flux) by means of two sliding mode
controllers. Sliding mode observers are used for torque and
flux estimation employing two motor models. The inverter is
controlled using space-vector PWM.

In [9], an adaptive sliding mode controller is designed
for a two-mass IM drive without mechanical sensors, with
an elastic joint. The goal is to control the motor speed. The
speed is notmeasured, whereas the stator current and the DC
link voltage of the motor are. The control structure consists
of the rotor flux control loop and the speed control loop: (i)
in the flux control loop, an MRAS type estimator is used for
estimation of rotor speed and flux, based on the current and
voltages of the IM, and (ii) in the speed control loop there
is an inner control loop, where the electromagnetic torque
of the IM is regulated. In addition, a fuzzy neural network
is used with online tuning of its connective weights.

In [10], an adaptive robust sliding controller is formulated
for SISO nonlinear systems, with implementation on a linear
motor. It is assumed that (i) the nonlinear part can be
linearly parameterized and (ii) there are unknown varying
parameters and disturbances whose bounds are known. A
discontinuous projection type updated law is used in order to
guarantee the bounded nature of the parameter updates. The
control scheme is applied to an X-Y table driven by a linear
motor.The control design gives as result a signum type signal,
but a saturation type function is proposed to replace it.

Although the basic approach of the sliding mode con-
trol is intended for a continuous control input, there are
applications to two-value control input. For instance, in
[11], a sliding control scheme is designed for discrete pulse
modulated converters. An integral term is incorporated in
the definition of the error function 𝑆 in order to achieve the
desired steady state behavior. Simulations and experiments
confirm the improvement of the steady state behavior. The
main features of such control scheme are (i) the idea is that
the error function 𝑆 converges to zero, (ii) the control design
is based on the properties of the time derivative of the error
function 𝑆, and (iii) the commutation frequency is not fixed.

The drawbacks of sliding mode control are (cf. [5, 6,
10]) (i) the control gain is large when the defined param-
eter bounds are large, (ii) the control input may exhibit
chattering, which may excite high frequency unmodeled
modes of the system, and (iii) the input chattering may
lead to high power consumption and wear of mechani-
cal components (cf. [12, 13]). There have been significant
works focused on the reduction or fixing of the commu-
tation frequency, in order to reduce chattering, mainly in
the field of power electronics. The current sliding control
schemes with fixed frequency lead to significantly flawed
convergence of the system variables towards the sliding
surface.

Quasi-sliding mode control emerged as an alternative
solution to the drawbacks of sliding control, retaining the
inherent advantages of its operation. Indeed, the undesirable
chattering and high frequency switching of the control signal
are avoided. The controller design aims at achieving system
convergence towards a boundary layer instead of the sliding
surface, as mentioned in [14, pages 335, 336]. In the case of
a continuous control input, the boundary layer implies the
use of a saturation function in the control law instead of
a discontinuous signal (see [10, 15]). The main features are
as follows: (Ci) the main idea is that the system converges
towards a region so that |𝑆| ≤ 𝜀, where 𝜀 is a small user-
defined positive constant; (Cii) the control law is designed
to achieve an adequate negative nature of the time derivative
of the Lyapunov function or, equivalently, adequate signum
properties of the time derivative of the error function; (Ciii)
the commutation frequency is not fixed.

Thus, it is important to formulate a control law that
achieves desired system performancewhile tackling the effect
of uncertainties or disturbances. To develop such controller,
in this work, two different controllers were used: the zero
average dynamics (ZAD) technique and the fixed point
inducting control (FPIC). The ZAD technique, working with
a second loop of control (FPIC), results in a quasi-sliding
controller that has proven to be effective and robust to
uncertainties and disturbances.

The theoretical basis of the ZAD technique design was
explained by Fossas et al. in [14], in 2000. In the ZAD design,
the definition of the duty cycle is such that the average
dynamics of the error function is zero for one measuring
period. This idea leads to a fixed switching frequency with
convergence of the system towards the boundary layer;
compars [14, pages 341–343]. In [16] a piece-wise linear
approximation of the error function was proposed, in order
to simplify the computation of the duty cycle. Nevertheless,
the ZAD strategy is not as robust as sliding control. For
this reason, the ZAD-FPIC strategy was developed in [16]
as an improvement of the ZAD strategy. Indeed, The ZAD-
FPIC duty cycle is the weighted sum of (i) the ZAD duty
cycle and (ii) a feed-forward component defined as the steady
state of the ZAD duty cycle. The ZAD-FPIC strategy allows
further improvement of the convergence properties of the
ZAD technique. The theoretical basis of the FPIC design was
proposed for the first time in [16] and experimentally proven
in [17, 18]. The main features of the ZAD-FPIC strategy are
as follows: (i) the control design is not aimed at obtaining
negativeness or positiveness properties of the time derivative
of the error function; instead, a linear combination of the
error and its derivative is forced to have zero average, (ii)
ZAD-FPIC scheme improves the properties of the ZAD
technique by defining a new duty cycle that combines the
ZAD duty cycle with its steady state or with its expected duty
cycle in each iteration; thus, stability is guaranteed in a wider
range of the parameter values, and (iii) the closed loop system
is more robust with this controller.

In this paper, an adaptive ZAD-FPIC strategy is formu-
lated for motor speed control. The system involves a buck
power converter, a PMDC motor, and a dSPACE platform.
The load torque and the friction torque are considered
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unknown, so that they lead to an uncertain parameter. The
uncertain parameter is estimated by means of a least mean
squares (LMS) mechanism, which is formulated and tested
on the real system.The ZAD-FPIC scheme is formulated and
experimentally tested. Bifurcation diagrams are developed
for the adaptive ZAD-FPIC control system, for different
values of the controller parameters. Numerical and experi-
mental diagrams match. The control parameters are defined
according to these curves.Themain differences of the present
paper with respect to closely related papers on ZAD-FPIC
design, for instance [16, 17], are as follows: (i) ZAD-FPIC
technique is proven for the first time in a high order system
(PMDC motor). In previous works, ZAD-FPIC technique is
only applied to second order systems; (ii) in previous works,
parameters have been assumed as constant or measured. In
this work, the effect of parameter estimation on the closed
loop performance is taken into account in experiments and
simulations, and (iii) the effect of the values of the covariance
matrix on the parameter estimation performance is analyzed
using simulations and experiments.

The paper is organized as follows. In Section 2, the
proposed system and hardware considerations as well as
the mathematical model of the system are presented. In
Section 3, the control techniques and load torque estimation
are defined. In Section 4, numerical and experimental results
are shown. Finally, in Section 5, conclusions are presented.

2. Physical and Modelling Considerations

In this section, the physical system and the mathematical
model are presented. The physical considerations include
hardware characteristics, whereas the mathematical model is
a relatively simple dynamical model.

2.1. Physical System. Figure 1(a) shows the block diagram of
the system under study, whereas Figure 1(b) shows the basic
circuit considered in this work. According to Figure 1(a),
this system is divided into two major groups. The first
one is composed of all hardware parts. This group includes
mechanical and electronic components. The second one
involves software developments. Software is implemented in
a dSPACE platform, where the acquisition signals and the
control techniques implementations are performed.

The hardware is composed of a PMDCmotor with a rated
power of 250W, rated voltage of 42V, rated DC current of
6A, and maximum speed of 4000 RPM. For motor speed
acquisition, a 1000 pulse per turn encoder was used. The
motor is fed by a buck power converter (see Figure 1(b)).
To measure the capacitor voltage (𝜐

𝑐
), the inductor current

(𝑖
𝐿
), and the armature current (𝑖

𝑎
) series resistances were

used. The switch gate (MOSFET) is driven by the PWM
controller.The PWM signal and theMOSFET are coupled via
fast optocouplers HCPL-J312.

The digital part was developed in the control- and
development-card dSPACE DS1104, where the control tech-
niques were implemented.This card is programmed from the
Matlab/Simulink platform, and it has a graphical interface
called ControlDesk.The sampling rate of all the variables was

set at 6 kHz. The state variables 𝜐
𝑐
, 𝑖
𝐿
, and 𝑖

𝑎
were digitalized

with 12-bit resolution, while the controlled variable 𝑊
𝑚
was

sensed by an encoder with 28-bit resolution. The parameters
associated with the buck converter and the controller, as well
as themotor parameters𝐵, 𝐽eq, 𝑘𝑡, 𝑘𝑒,𝑇fric,𝑅𝑎 𝐿

𝑎
, are constant

and are passed to the control block by the userinterface.
The load torque 𝑇

𝐿
is variable and will be online estimated.

The performance and robustness of the system will be tested
by varying one parameter. At each sampling time 𝑡 = 𝑘𝑇,
the controller computes the duty cycle and the equivalent
PWM signal to control the switch. Because of the physical
characteristics of the system, the control action at sampling
time 𝑡 = 𝑘𝑇 is computed according to the values of the
state variables at the previous sampling time 𝑡 = (𝑘 − 1)𝑇.
This restriction must be taken into account in the controller
design.

2.2. Mathematical Model. Figure 1(b) shows a basic diagram
of the system. The buck power converter is used to feed the
DC-motor. The system is of variable structure because on/off
switch positions produce different topologies. Particularly,
when the buck converter works in a continuous conduction
mode (CCM), two systems are achieved. When the switch is
ON the system is represented by
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(1)

This equation can be expressed in a compact form by
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1
, (2)

where the state variables are the motor speed 𝑊
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Figure 1: Schematic diagrams of implementation and physical system.
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and in a compact form as:

�̇� = 𝐴
2
𝑥 + 𝐵
2
. (4)

In all cases, the output of the system is 𝑊
𝑚
, which corre-

sponds to the variable to be controlled. 𝑘
𝑒
is the voltage

constant (V/rad/s); 𝐿
𝑎
is the armature inductance (H); 𝑅

𝑎

is the armature resistance (Ω); 𝐵 is the viscous friction
coefficient (N⋅m/rad/s); 𝐽eq is the moment of inertia (kg⋅m2);
𝑘
𝑡
is the motor torque constant (N⋅m/A); 𝑇fric is the friction

torque (N⋅m); 𝑇
𝐿
is the load torque (N⋅m).The parameters 𝐶

and𝐿 are the capacitance and inductance of the converter; the
parasitic resistance 𝑟

𝑠
is equal to the sumof the source internal

resistance and MOSFET resistance; the resistance 𝑟
𝐿
is equal

to the sum of the resistance of the coil and the resistance used
for measuring the current. 𝐸 is the power source to feed the
buck power converter when the switch is ON (see (1)). 𝑉fd is
the required voltage for the diode to be on (see (3)). Equation
(3) is valid until 𝑖

𝐿
= 0. Only CCM and centered PWM are

considered in this work (see Figure 2(a)), so that the system
operates as follows:
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(5)

where 𝑘 represents the 𝑘th iteration,𝑇 is the sampling period,
and 𝑑 ∈ [0, 1] is the duty cycle, which will be computed in
Section 3, and it corresponds to the time ratio between the
ON position switch and the sampling time 𝑇.

3. Control Goal and Control Strategies

The objective of controlling a DC-motor is to maintain the
motor speed in a fixed reference value defined by the user.
The motor is fed by a power converter, which, in turn, is
controlled by a PWM.Therefore, the voltage of the converter
is chosen as control input. Thus, the controller computes
the duty cycle to be applied to the buck converter in such a
way that the system output (𝑊

𝑚
) is regulated. This section

is organized as follows: Section 3.1 shows the definition of
the error function and its time derivative. Section 3.2 shows
the formulation of the ZAD control strategy. Section 3.3
shows the formulation of the ZAD-FPIC control strategy.
Section 3.4 shows the definition of the LMS mechanism for
estimation of the unknown parameter.

3.1. Definition of the Error Function and Its Time Derivative.
To define the error function, it is necessary to define the
output error and its time derivatives. The output error is
defined as

𝑒 (𝑡) = 𝑊
𝑤ref (𝑡) − 𝑊

𝑚
(𝑡) , (6)

where 𝑊
𝑤ref(𝑡) is the reference value for the motor speed

and �̇�
𝑚

(𝑡) is obtained from (1) or (3) depending on the time
instant. The derivative of (6) is given by

̇𝑒 (𝑡) = �̇�
𝑤ref (𝑡) − �̇�

𝑚
(𝑡) . (7)

At the sampling time 𝑡 = 𝑘𝑇, (6) and (7) are written as

𝑒 (𝑘𝑇) = 𝑊
𝑤ref (𝑘𝑇) − 𝑊

𝑚
(𝑘𝑇) , (8)

̇𝑒 (𝑘𝑇) = �̇�
𝑤ref (𝑘𝑇) − �̇�

𝑚
(𝑘𝑇) . (9)

Equations (7) and (9) indicate that the derivative of the output
error at the sampling time 𝑡 = 𝑘𝑇 is computed in two steps: in
the first step, the derivative of the error is computed in time
domain, and in the second step, the corresponding sampling
values of the states are assigned to the expression.The signals

̈𝑒(𝑘𝑇) and ⃛𝑒(𝑘𝑇) have the same interpretations. With the
aim of formulating a quasi-sliding controller and using the
fact that the motor is a fourth-order system, an auxiliary
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Figure 2: Schemes of the PWM and the quasi-sliding surface.

third-order function involving 𝑒(𝑡), ̇𝑒(𝑡) and higher order
derivatives is defined as

𝑠 (𝑡) = 𝑒 (𝑡) + 𝑘
𝑠1

̇𝑒 (𝑡) + 𝑘
𝑠2

̈𝑒 (𝑡) + 𝑘
𝑠3

⃛𝑒 (𝑡) . (10)

Constants 𝑘
𝑠1
, 𝑘
𝑠2
, and 𝑘

𝑠3
are control parameters which

should be adjusted by the designer to satisfy stability require-
ments. At 𝑡 = 𝑘𝑇 (10) can be written as

𝑠 (𝑘𝑇) = 𝑒 (𝑘𝑇) + 𝑘
𝑠1

̇𝑒 (𝑘𝑇) + 𝑘
𝑠2

̈𝑒 (𝑘𝑇) + 𝑘
𝑠3

⃛𝑒 (𝑘𝑇) . (11)

The ZAD strategy requires the computation of signal ̇𝑠 and its
evaluation at 𝑡 = 𝑘𝑇. The derivative of (10) is

̇𝑠 (𝑡) = ̇𝑒 (𝑡) + 𝑘
𝑠1

̈𝑒 (𝑡) + 𝑘
𝑠2

⃛𝑒 (𝑡) + 𝑘
𝑠3

....

𝑒 (𝑡) . (12)

Evaluated at time 𝑘𝑇, the previous equation is written as

̇𝑠 (𝑘𝑇) = ̇𝑒 (𝑘𝑇) + 𝑘
𝑠1

̈𝑒 (𝑘𝑇) + 𝑘
𝑠2

⃛𝑒 (𝑘𝑇) + 𝑘
𝑠3

....

𝑒 (𝑘𝑇) , (13)

where ̇𝑒(𝑘𝑇) is defined in (9), whereas ̈𝑒(𝑘𝑇), ⃛𝑒(𝑘𝑇), and
....

𝑒

(𝑘𝑇) are obtained by differentiating (7) and replacing 𝑡 by
𝑘𝑇as follows:

̈𝑒 (𝑘𝑇) = �̈�
𝑤ref (𝑘𝑇) − �̈�

𝑚
(𝑘𝑇) ,
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𝑚
(𝑘𝑇) ,

....

𝑒 (𝑘𝑇) =

....

𝑊
𝑤ref (𝑘𝑇) −

....

𝑊
𝑚

(𝑘𝑇) .

(14)

In turn, the derivatives �̈�
𝑚

(𝑘𝑇), �⃛�
𝑚

(𝑘𝑇), and
....

𝑊
𝑚

(𝑘𝑇) are
obtained by differentiating (1) or (3), depending on the
required signal.

Remark 1. The error function 𝑠(𝑘𝑇) and its time derivative
̇𝑠(𝑘𝑇) are defined in (11) and (13). The signals required for
their computations are the output error (8) and the first and
higher order derivatives of the output error, that is, ̇𝑒(𝑘𝑇),

̈𝑒(𝑘𝑇), ⃛𝑒(𝑘𝑇), and
....

𝑒 (𝑘𝑇), which are defined in (9) and (14).

Remark 2. The signals �̈�
𝑚

(𝑘𝑇), �⃛�
𝑚

(𝑘𝑇), and
....

𝑊
𝑚

(𝑘𝑇) are
obtained by differentiating expressions (1) or (3), so that their
computation involves the values of the state variables at the
sampling time 𝑡 = 𝑘𝑇 and matrices 𝐴

1
and 𝐵

1
of (2) in the

case that the switch is ON or matrices 𝐴
2
and 𝐵

2
of (4) in the

case that the switch is OFF.

Remark 3. The error function 𝑠(𝑘𝑇) and its time derivative
̇𝑠(𝑘𝑇) depend on the values of the state variables at the
sampling time 𝑡 = 𝑘𝑇.

3.2. ZAD Strategy. The ZAD strategy is a quasi-sliding con-
trol strategy, widely studied for second order systems [14, 16].
The basic idea of this technique is to compute the duty cycle
so that the average dynamics of the error function is zero in
one time period. A complete description of the ZAD strategy
and its application to control buck power converters can be
found in [16]. Contrary to the sliding mode control with
hysteresis band, this technique allows the a priori definition
of the switching frequency.

In this paper, the average dynamics of the error function
is solved analytically using the assumption that the error
function is piece-wise linear, as it is illustrated in Figure 2(b).
As a result, in average, the error function is zero in each
time period, so that the system is forced to evolve in a close
neighborhood of the sliding surface. The tasks of the ZAD
control design are (cf. [14, pages 338, 339]) as follows: (i)
define the error function in terms of the output error, (ii)
assume that the error function 𝑠 behaves as a piece-wise
linear function and define this function, and (iii) develop the
time integral of the error function using the piece-wise linear
definition, and (iv) solve the resulting expression for the ZAD
duty cycle 𝑑

𝑘
.

According to the previous steps, the average dynamics
are defined as a time integral of the error function 𝑠(𝑘𝑇)

(11) in one time period, using the assumption that the error
function is piece-wise linear, namely, 𝑠pwl. The piece-wise
linear function is presented in Figure 2(b), where, (i) when
𝑘𝑇 ≤ 𝑡 < 𝑡

1
the switch is ON and the system model is

given by (1); when 𝑡
1

≤ 𝑡 ≤ 𝑡
2
the switch is OFF and

the model of the system is given by (3); when 𝑡
2

≤ 𝑡 <

(𝑘 + 1)𝑇, the switch turns ON again and the system model
is given by (1), (ii) ̇𝑠

+
and ̇𝑠
−
are the slopes of 𝑠pwl when the

switch is ON and OFF, respectively, and (iii) 𝑠
1
and 𝑠
2
are

the values of 𝑠pwl at some specific instants, which correspond
to switching instants. Other simplifications are introduced in
the definition of 𝑠pwl; namely, (i) the slopes of the first and
third parts of the function are the same, denoted as ̇𝑠

+
, and

(ii) all slopes can be computed using the data at the beginning
of the sampling time. Considering these simplifications, the
piece-wise linear function 𝑠pwl is defined as

𝑠pwl (𝑡) =

{
{

{
{

{

𝑠 (𝑘𝑇) + (𝑡 − 𝑘𝑇) ̇𝑠
+

(𝑘𝑇) if 𝑘𝑇 ≤ 𝑡 < 𝑡
1

𝑠
1

(𝑘𝑇) + (𝑡 − 𝑡
1
) ̇𝑠
−

(𝑘𝑇) if 𝑡
1

≤ 𝑡 ≤ 𝑡
2

𝑠
2

(𝑘𝑇) + (𝑡 − 𝑡
2
) ̇𝑠
+

(𝑘𝑇) if 𝑡
2

< 𝑡 ≤ (𝑘 + 1) 𝑇,

(15)
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where 𝑡
1

= 𝑘𝑇 + 𝐷
𝑘
𝑇/2 and 𝑡

2
= (𝑘 + 1)𝑇 − 𝐷

𝑘
𝑇2

(similar to Figure 2(a)); signals 𝑠(𝑘𝑇), ̇𝑠
+

(𝑘𝑇), and ̇𝑠
−

(𝑘𝑇)

are computed according to Remarks 1 and 2. The signal
𝑠(𝑘𝑇) is computed using (11) and (1). The signal ̇𝑠

+
(𝑘𝑇) is

computed using (13) and matrices 𝐴
1
and 𝐵

1
(2). The signal

̇𝑠
−

(𝑘𝑇) is computed using (13) and matrices 𝐴
2
and 𝐵

2
(4).

𝑠
1
(𝑘𝑇) = 𝑠(𝑘𝑇) + 𝐷

𝑘
𝑇/2 ̇𝑠
+

(𝑘𝑇) and 𝑠
2
(𝑘𝑇) = 𝑠

1
(𝑘𝑇) + 𝑇(1 −

𝐷
𝑘
) ̇𝑠
−

(𝑘𝑇). Dependence with respect to 𝑘 has been explicitly
introduced into the equations with the aim of clarifying that
these derivatives change each sampling time. 𝐷

𝑘
𝑇 is the time

the switch is ON, and 𝐷
𝑘

∈ [0, 1]. It can be noticed that
𝑠pwl(𝑡) depends on 𝐷

𝑘
and (1) and (3). The idea of the ZAD

strategy is to design the duty cycle 𝐷
𝑘
, such that the average

of signal 𝑠pwl(𝑡) is zero during one time period.This condition
is expressed as

∫

(𝑘+1)𝑇

𝑘𝑇

𝑠pwl (𝑡) 𝑑𝑡 = 0. (16)

The above integral is solved for 𝐷
𝑘
:

𝐷
𝑘|𝑘

=

2𝑠 (𝑘𝑇) + 𝑇 ̇𝑠
−

(𝑘𝑇)

𝑇 ( ̇𝑠
−

(𝑘𝑇) − ̇𝑠
+

(𝑘𝑇))

, (17)

where the notation 𝑘|𝑘 is used to emphasize that the duty
cycle value depends on the state variables measured at the
sampling time 𝑘𝑇. However, in the experimental setup, it has
been experimentally confirmed that the control action expe-
riences one period delay, so that it is necessary to compute
𝐷
𝑘
using the values acquired in the previous sampling time.

In this case,

𝐷
𝑘|(𝑘−1)

=

2𝑠 ((𝑘 − 1) 𝑇) + 𝑇 ̇𝑠
−

((𝑘 − 1) 𝑇)

𝑇 ( ̇𝑠
−

((𝑘 − 1) 𝑇) − ̇𝑠
+

((𝑘 − 1) 𝑇))

. (18)

Finally, the ZAD duty cycle is given by

𝑑
𝑘

=

{
{

{
{

{

1 if 𝐷
𝑘|(𝑘−1)

> 1,

𝐷
𝑘|(𝑘−1)

if 0 ≤ 𝐷
𝑘|(𝑘−1)

≤ 1,

0 if 𝐷
𝑘|(𝑘−1)

< 0,

(19)

where (𝑘 − 1) means a one-period delay in all the measured
values, and 𝑑

𝑘
is the duty cycle that should be applied to the

system between 𝑘𝑇 and (𝑘 + 1)𝑇.

Remark 4. Theduty cycle𝑑
𝑘
(19) is saturated between 0 and 1,

because 𝑑
𝑘
is the ratio between the time the switch is ON and

the time period𝑇. For duty cycle values outside of this specific
range the duty cycle is saturated, and in the next period, the
controller computes the duty cycle again with the new values
of the states.

Remark 5. The ZAD duty cycle 𝑑
𝑘
defined in (19) involves

the state variables values at the sampling time 𝑡 = (𝑘 − 1)𝑇,
matrices 𝐴

1
and 𝐵

1
of (2), andmatrices 𝐴

2
and 𝐵

2
of (4).The

signals necessary for its computation are (i) the signal𝐷
𝑘|(𝑘−1)

(18), (ii) 𝑠((𝑘 − 1)𝑇), which is computed using (11), where
𝑒((𝑘−1)𝑇), ̇𝑒((𝑘−1)𝑇), ̈𝑒((𝑘−1)𝑇), and ⃛𝑒((𝑘−1)𝑇) are obtained
according to Remarks 1 and 2, (iii) ̇𝑠

+
((𝑘 − 1)𝑇), which is

computed using (13), where ̇𝑒((𝑘−1)𝑇), ̈𝑒((𝑘−1)𝑇), ⃛𝑒((𝑘−1)𝑇),

and
....

𝑒 ((𝑘 − 1)𝑇) are obtained according to Remarks 1 and 2,
using matrices 𝐴

1
and 𝐵

1
of (2), (iv) ̇𝑠

−
((𝑘 − 1)𝑇), which is

computed in a similar way as ̇𝑠
+

((𝑘 − 1)𝑇), but using matrices
𝐴
2
and 𝐵

2
of (4).

Remark 6. Depending on the values of 𝑘
𝑠𝑖
associated with

𝑠(𝐾𝑇) (11) and its derivatives, the ZAD duty cycle 𝑑
𝑘
induces

the convergence of the error function 𝑠pwl(𝑡) towards a close
neighborhood of 𝑠(𝑡) = 0, this convergence is achieved
through the fulfillment of the ZAD condition (16). Never-
theless, this convergence property is not as strong as the
convergence of sliding mode control, and the ZAD strategy
is not as robust as sliding control. Even more, ZAD control
strategy may lead to unstable closed loop system when there
ARE period delays. The system analyzed in this work has
one period delay. Experimental and numerical results, not
presented here, show that the states of the converter (𝜐

𝑐

and 𝑖
𝐿
) never stabilize at a fixed point. For this reason,

the ZAD-FPIC strategy, which was developed in [16] as an
improvement of the ZAD strategy, is added to ZAD control.
ZAD-FPIC controller has proven to be effective and robust to
(i) stabilize the closed loop system, and (ii) achieve adequate
performance of the controlled system.

3.3. FPIC Control Technique. As mentioned in Remark 6, the
ZAD strategy is not as robust as sliding mode control, and
it implies severe degradation of the closed loop performance
when there is a time delay. Therefore, the ZAD-FPIC is used
to control the system.

The duty cycle of the ZAD-FPIC strategy is based on (i)
the ZAD duty cycle (𝑑

𝑘
) defined in (19), (ii) a feedforward

component defined as 𝑑
∗, which corresponds to the steady

state value of 𝑑
𝑘
. Indeed, the new duty cycle is a weighted

sum of the duty cycles 𝑑
𝑘
and 𝑑

∗. The theoretical basis
of FPIC design was proposed for the first time in [16]
and experimentally proven in [17, 18]. The mathematical
definition of the steady state value of the ZAD duty cycle,
that is, 𝑑

∗, is based on the discrete time representation of
the system, as explained below. The system described in
Section 2.1with theZADduty cycle𝑑

𝑘
(19) can be represented

as 𝑥(𝑘+1) = 𝑓(𝑥(𝑘), 𝑑
𝑘
). As 𝑑

𝑘
is a function of the states, then

𝑥(𝑘 + 1) can be expressed as a function of states 𝑥(𝑘); that is,
𝑥(𝑘+1) = 𝑓(𝑥(𝑘)).This equation can be solved to find out the
steady states values. To compute 𝑑

∗, these steady state values
are replaced in the expression of 𝑑

𝑘
. The following theorem

defines the unsaturated ZAD-FPIC duty cycle as a weighted
sum of the ZAD duty cycle 𝑑

𝑘
and its steady state 𝑑

∗.

Theorem 7 (FPICTheorem). Consider the following discrete-
time system:

𝑥 (𝑘 + 1) = 𝑓 (𝑥 (𝑘) , 𝑑
𝑘
) , (20)

where 𝑥(𝑘) ∈ R𝑛, 𝑓 : R𝑛+1 → R𝑛, 𝑑
𝑘

∈ R is the duty
cycle that depends on the system states. The fixed point of the
above system is given by 𝑥

∗

= 𝑓(𝑥
∗

, 𝑑
∗

), where 𝑥
∗ and 𝑑

∗ are
the steady state values of 𝑥(𝑘) and 𝑑

𝑘
, respectively. Assume that

the fixed point (𝑥
∗

, 𝑑
∗

) is stable, so that the modulus of each
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eigenvalue is less than one, that is, |𝜆
𝑖
(𝐽)| < 1, for all 𝑖, where

𝜆
1
, . . . , 𝜆

𝑛
are the eigenvalues of the jacobian 𝐽

1
,

𝐽
1

=

𝜕𝑓

𝜕𝑥








(𝑥
∗
, 𝑑
∗
)

. (21)

Then, the choice

𝑑
𝑘

=

𝑑
𝑘

+ 𝑁𝑑
∗

𝑁 + 1

(22)

with high enough 𝑁 achieves the asymptotic convergence of
the system (20) to the fixed point (𝑥

∗

, 𝑑
∗

) independently of the
value of 𝑑

𝑘
.

Remark 8. As parameter 𝑘
𝑠𝑖

varies, the system can turn
unstable, but the steady state does not change. Evenmore, this
result is the same when one period delay is considered.

Remark 9. Note that (22) does not change the fixed point of
(20).

Theproof is presented in the appendix.The value of𝑁 can
be found by means of a numerical analysis. 𝑑

𝑘
refers to the

duty cycle computed using the ZAD-technique (19), and 𝑑
∗

corresponds to the steady state value of the controlled system.
However, for PWM controlled systems, 𝑑

∗ can be computed
by sensing the input voltage (Vin) at the beginning of the
period. In this way, it is possible to find out the expected duty
cycle in that period, and 𝑑

∗ is replaced by the expected duty
cycle in the current period. Particularly, in the case 𝐸 ≫ 𝑉fd
which is the normal case, the expected duty cycle will be

𝑑
∗

=

Vref
Vin

. (23)

Taking into account the above theorem and the easy compu-
tation of 𝑑

∗, the final duty cycle applied to the motor system,
described by (5), is expressed as

𝑑ZAD-FPIC := 𝑑 =

{
{

{
{

{

1 if 𝑑
𝑘

> 1

𝑑
𝑘

if 𝑑
𝑘

∈ [0, 1]

0 if 𝑑
𝑘

< 0.

(24)

Remark 10. The ZAD-FPIC duty cycle (𝑑ZAD-FPIC) is defined
in (24) and the signals and equations required for its com-
putation are the unsaturated duty cycle 𝑑

𝑘
(22), the ZAD

duty cycle 𝑑
𝑘
(19), the signal 𝑑

∗ (23), and the value of the
constant 𝑁. In addition, the ZAD duty cycle (19) is computed
according to Remark 5.

Remark 11. Equations (22) and (24) indicate that the ZAD-
FPIC duty cycle 𝑑ZAD-FPIC is a weighted sum of: (i) the ZAD
duty cycle 𝑑

𝑘
(19) and (ii) the steady state of the ZAD duty

cycle or the expected duty cycle in the current period, that is,
𝑑
∗ (23).

3.4. Motor Load Torque Estimator. The control scheme to be
formulated relies on the known parameter values of the plant
model, but the load torque (𝑇

𝐿
) and the friction torque (𝑇fric)

exhibit an unknown time varying behavior. Therefore, this
subsection shows the formulation of the online estimation
mechanism for 𝑇

𝐿
+ 𝑇fric, using the LMS technique. Since the

sampling rate is relatively high, the estimation mechanism
is formulated in continuous time. The LMS is a simplified
version of the recursive least squares (RLS) technique, as is
discussed below. The RLS method for systems in continu-
ous time aims at minimizing the weighted integral of the
difference between the actually observed and the computed
values (see [19, 20]). Consider a continuous time system. If the
system is of first order, a first order filter given by (25) must
be introduced, where 𝑐

𝑓
is a user-defined positive constant

(cf. [19]). Consider the following:

𝐻
𝑓

=

𝑐
𝑓

𝑝 + 𝑐
𝑓

. (25)

The parameterization of the system leads to

𝐹 = 𝜑
⊤

𝜃, (26)

where 𝐹 is the “output” vector and 𝜑 is the regression vector.
Both of them are known and vary with time, whereas 𝜃 is
the parameter vector, which contains the unknown system
parameters.The formulation of the RLSmethod assumes that
the unknown parameters contained in 𝜃 are constant, which
makes it possible to guarantee the convergence properties.
Despite this assumption, the RLS method also achieves ade-
quate performance in real life systems where the parameters
usually vary with time (see [19, 21, 22]). This can be handled
by properly defining the forgetting factor. The RLS estimator
is described by the following equations (cf. [19, 20]):

𝑑
̂
𝜃

𝑑𝑡

= 𝑃𝜑𝜀, (27)

𝜀 = 𝐹 − 𝜑
⊤̂

𝜃, (28)

𝑑𝑃

𝑑𝑡

= 𝛼𝑃 − 𝑃𝜑𝜑
⊤

𝑃, (29)

where 𝑃, ̂
𝜃, 𝐹, and 𝜑 vary with time, 𝛼 is the forgetting

factor, and ̂
𝜃 is the estimate of 𝜃. This estimator achieves the

asymptotic convergence of the estimate ̂
𝜃 towards the real

parameter vector 𝜃 if the “persistent excitation” condition is
fulfilled (see [20]). There are several simplified versions of
the RLS method that render the computation of the matrix 𝑃

simpler, but the cost is a slower convergence of the parameter
estimate ̂

𝜃 (see [19]).The LMS algorithm considers a constant
scalar value for the matrix 𝑃 (see [19, 23, 24]), that is,

𝑃 = 𝛾, (30)

where 𝛾 is a positive scalar constant. Thus, the LMS estimate
̂
𝜃 is provided by (27), (28), and (30), with 𝐹(𝑡) and 𝜑(𝑡)

defined on the basis of parameterization (26). To apply the
LMSmethod to the estimation of uncertain parameters of the
motormodel, the first differential equation given in (1) is used
and it is given by

�̇�
𝑚

(𝑡) =

−𝐵𝑊
𝑚

(𝑡)

𝐽eq
+

𝑘
𝑡
𝑖
𝑎

(𝑡)

𝐽eq
−

(𝑇fric + 𝑇
𝐿
)

𝐽eq
. (31)
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Figure 3: ZAD-FPIC controller simulation block.

By applying the first order filter (25) to the above equation, it
is obtained (see [19])

𝑐
𝑓

𝑊
𝑚

(𝑡) − 𝑐
𝑓

𝐻
𝑓

𝑊
𝑚

(𝑡)

=

−𝐵𝐻
𝑓

𝑊
𝑚

(𝑡)

𝐽eq
+

𝑘
𝑡
𝐻
𝑓

𝑖
𝑎

(𝑡)

𝐽eq
−

𝐻
𝑓

(𝑇fric + 𝑇
𝐿
)

𝐽eq
.

(32)

By defining 𝐹, 𝜑, and 𝜃 as

𝐹 (𝑡) = 𝑐
𝑓

𝑊
𝑚

(𝑡) − 𝑐
𝑓

𝐻
𝑓

𝑊
𝑚

(𝑡) +

𝐵𝐻
𝑓

𝑊
𝑚

(𝑡)

𝐽eq
−

𝑘
𝑡
𝐻
𝑓

𝑖
𝑎

(𝑡)

𝐽eq
,

𝜑 (𝑡) = −

1

𝐽eq
𝐻
𝑓

, 𝜃 = (𝑇fric + 𝑇
𝐿
) .

(33)

Equation (32) can be written as

𝐹 (𝑡) = 𝜑 (𝑡) 𝜃, (34)

where 𝜃 is the unknown parameter.

Remark 12. The estimate ̂
𝜃 for the uncertain parameter 𝜃 =

𝑇fric + 𝑇
𝐿
is provided by (27), (28), and (30), with 𝐹(𝑡) and

𝜑(𝑡) defined in (33), 𝑐
𝑓
being a user-defined positive constant.

Equation (30) is considered instead of (29) in order to avoid
complex computation of the matrix 𝑃.

4. Numerical and Experimental Results

In view of Remark 6, the ZAD-FPIC strategy with duty cycle
(𝑑ZAD-FPIC) given by (24) is considered for implementation
on the real system. However, there are two major problems
associated with the implementation. First, the values of the
state variables at the beginning of each period are required
for the computation of the duty cycle. Thus, the sampled
signals and PWM are synchronized using a trigger signal at
the beginning of each switching period. Second, the ZAD-
FPIC strategy relies on known values of the friction torque
and load torque, which may be uncertain. Indeed, many
values of the plant model parameters, both the DC-motor
and converter parameters, are used by the controller. Thus,
the load and friction torque term is estimated online by the
LMS mechanism, whereas the remaining parameters were
established previously. The uncertain term 𝜃 = 𝑇fric + 𝑇

𝐿
is

estimated as ̂
𝜃, provided by the LMS estimation mechanism,

according to Remark 12 of Section 3.4.
Figure 3 shows the block diagram for the ZAD-FPIC

controller simulation benchmark with parameter estimation.
The parameter estimation and ZAD-FPIC blocks use the
equations mentioned in Remark 10.

Several tests performed on the motor system, and not
shown here, proved that the sensitivity of the closed loop
system with respect to parameter 𝑘

𝑠3
is significant, but

sensitivity with respect to 𝑘
𝑠1
and 𝑘

𝑠2
is low. Therefore, 𝑘

𝑠3

is chosen as a variable control parameter and bifurcation
parameter, whereas 𝑘

𝑠1
and 𝑘

𝑠2
are fixed control parameters.
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Figure 4: Bifurcation diagram of the output (𝑊
𝑚
) and duty cycle (𝑑) of the controlled system varying the bifurcation parameter 𝐾

𝑆3
.

Other parameter values are shown inTable 1. To ease the visu-
alization of the controller parameters, they will be expressed
in dimensionless form and they are called 𝐾

𝑆1
, 𝐾
𝑆2
, and 𝐾

𝑆3
.

The relationships between dimensionless parameters (𝐾
𝑆1
,

𝐾
𝑆2
, and 𝐾

𝑆3
) and control parameters (𝑘

𝑠1
, 𝑘
𝑠2
, and 𝑘

𝑠3
) are

𝑘
𝑠1

= 𝐾
𝑆1

√𝐿𝐶, 𝑘
𝑠2

= 𝐾
𝑆2

𝐿𝐶, and 𝑘
𝑠3

= 𝐾
𝑆3

𝐿𝐶√𝐿𝐶.
Figure 4 shows the bifurcation diagrams of the system

output (𝑊
𝑚
) and the duty cycle 𝑑 when the parameter 𝐾

𝑆3
is

varied. In this experiment𝑇fric+𝑇
𝐿

= 0.0284N⋅m, and𝑁 = 1.
Figures 4(a) and 4(b) show simulation results, while Figures
4(c) and 4(d) show experimental results. It is important to
note that even in the cases where the duty cycle does not
have a fixed frequency, speed regulation is reached with a
very low error. Fixed frequency is lost for 𝐾

𝑆3
⪅ 15, and

the converter works in chaotic way. In the interval 15 <

𝐾
𝑆3

< 30, the converter works with a fixed switching
frequency, but chaotic motion is present in the converter.
The chaotic motion cannot be noticed in the speed because
the motor has a slow response. For 𝐾

𝑆3
> 30, the system

operation is very close to fixed frequency without chaotic
motion. The output error in chaotic regime is greater than
the output error in stable region (see Figures 4(a) and 4(c)).
The shapes of the closed loop signals of the experiment for
𝐾
𝑆3

> 30 are due tomeasurement noise, delays, uncertainties,
and unmodeled dynamics. From a practical point of view,

the chaotic behavior of the duty cycle does not affect the
speed regulation. However, fixed switching frequency has the
advantage that the filtering of harmonics is easier than that
of chaotic behavior. For this reason, it is better to design
the controller in such a way that all the states are stable and
operate in a fixed point.

Figure 5 shows time evolution for the output 𝑊
𝑚

and
estimated load torque (𝑇fric + 𝑇

𝐿
) when the following values

are considered: 𝑊
𝑚ref = 400 rad/s, 𝐾

𝑆3
= 80, and 𝑁 =

1.5. The torque changes from (𝑇fric + 𝑇
𝐿
) = 0.04N⋅m to

(𝑇fric + 𝑇
𝐿
) = 0.0715N⋅m at 𝑡 = 0.5 s. The motor speed (𝑊

𝑚
)

follows the reference value (𝑊
𝑚ref = 400) with an error value

below 0.25% only when the load torque estimator is used (see
Figures 5(a) and 5(c)). Figures 5(b) and 5(d) show estimated
numerical and experimental load torque values, respectively.

Figure 6 shows the estimated load torque value when
the adaptive constant 𝛾 is varied. For small values of 𝛾, the
velocity of convergence from the estimated parameter to the
real parameter is slow, but oscillations are absent. This is a
result of the parameter estimation theory.

5. Conclusions

In this work, ZAD-FPIC technique has been applied to a high
order dynamical system, for the first time. In particular, it
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Figure 5: Evolution of 𝑊
𝑚
and estimated torque (𝑇fric + 𝑇

𝐿
).
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Figure 6: Dynamics of estimator when 𝛾 is varied.
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Table 1: Parameters for simulation and experiment.

Parameter Value
𝐸: Input voltage 40.035V
𝑟
𝑠
: Internal resistance of the source and

MOSFET 0.84Ω

𝑉fd: Diode forward voltage 1.1 V
𝐿: Inductance 2.473mH
𝑟
𝐿
: Internal resistance of the inductor 1.695Ω

𝐶: Capacitance 46.27 𝜇F
𝑅
𝑎
: Armature resistance 2.7289Ω

𝐿
𝑎
: Armature inductance 1.17mH

𝐵: Viscous friction coefficient 0.000138N⋅m/rad/s
𝐽eq: Moment of inertia 0.000115 kg⋅m2

𝑘
𝑡
: Motor torque constant 0.0663N⋅m/A

𝑘
𝑒
: Voltage constant 0.0663V/rad/s

𝑇fric: Friction torque 0.0284N⋅m
𝑇
𝐿
: Load torque Variable N⋅m

𝑊
𝑚ref: Reference speed 400 rad/s

𝑁: FPIC control parameter 1 or 1.5
𝐹
𝑐
: Switching frequency 6 kHz

𝐹
𝑠
: Sampling frequency 6 kHz

1𝑇 𝑝: 1 Delay time 166.6 𝜇s
𝐾
𝑆1

, 𝐾
𝑆2
: Control parameters Equal to 2

𝐾
𝑆3
: Bifurcation parameters Variable

was designed and applied successfully to a coupled motor-
power converter system. Simulations and experiments were
performed, and they showed significant agreement.

The quasi-sliding control technique designed in this work
allows to choose the switching frequency of the controller.
This switching frequency is given by the sampling period, and
once the sampling period is defined, the system works in a
fixed switching frequency regime.

The stability of the closed loop system was analyzed
using bifurcation diagrams, and stable behavior and chaotic
behavior were observed. For all cases, the regulation error
was lower than 0.5%. However, when the system operates in
a stable zone (𝐾

𝑆3
> 30) the regulation error is lower than

0.15%. In addition, the parameter estimator handles the effect
of uncertainty on the load torque and friction torque, so that
output regulation is achieved even in the case that the load is
changed.

Appendix

Proof of Theorem 7

The system (20) with the new manipulated input (22) is
described by the following equation:

𝑥 (𝑘 + 1) = 𝑓 (𝑥 (𝑘) , 𝑑
𝑘
) . (A.1)

From (22), it follows that if 𝑁 is high enough, then 𝑑
𝑘

= 𝑑
∗,

so that (𝑥
∗

, 𝑑
∗

) is still a fixed point of the system (A.1). The
Jacobian matrix of system (A.1) around the fixed point is

𝐽 =

𝜕𝑓

𝜕𝑥








𝑥
∗
,𝑑
∗

+

𝜕𝑓

𝜕𝑑
𝑘

𝜕𝑑
𝑘

𝜕𝑑
𝑘

𝜕𝑑
𝑘

𝜕𝑥










𝑥
∗
,𝑑
∗

(A.2)

using (21) and (22) yield:

𝐽 = 𝐽
1

+

𝜕𝑓

𝜕𝑑
𝑘

1

𝑁 + 1

𝜕𝑑
𝑘

𝜕𝑥










𝑥
∗
,𝑑
∗

,

𝐽 = 𝐽
1

+

1

𝑁 + 1

𝜕𝑓

𝜕𝑑
𝑘

𝜕𝑑
𝑘

𝜕𝑥










𝑥
∗
,𝑑
∗

,

(A.3)

where 𝐽
1
is defined in (21). From the theorem of continuity,

it is follow that if 𝑁 is high enough, the eigenvalues of
matrix 𝐽 approximate the eigenvalues of matrix 𝐽

1
. Since the

eigenvalues of 𝐽
1
are inside the unit circle, the system (A.1) is

locally stable (see [17, page 02]).
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