Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 703414, 15 pages
http://dx.doi.org/10.1155/2013/703414

Research Article

Hindawi

A Hybrid Distributed Mutual Exclusion Algorithm for

Cluster-Based Systems

Moharram Challenger,"? Elif Haytaoglu,' Gorkem Tokatli,'

Orhan Dagdeviren,' and Kayhan Erciyes®

! International Computer Institute, Ege University, 35100 Izmir, Turkey
? Department of Computer Engineering, Shabestar Branch, Islamic Azad University, 53815 Shabestar, Iran
? Department of Computer Engineering, Izmir University, 35140 Izmir, Turkey

Correspondence should be addressed to Moharram Challenger; m.challenger@gmail.com

Received 26 April 2013; Accepted 10 June 2013

Academic Editor: Guanghui Wen

Copyright © 2013 Moharram Challenger et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Distributed mutual exclusion is a fundamental problem which arises in various systems such as grid computing, mobile ad hoc
networks (MANETSs), and distributed databases. Reducing key metrics like message count per any critical section (CS) and delay
between two CS entrances, which is known as synchronization delay, is a great challenge for this problem. Various algorithms use
either permission-based or token-based protocols. Token-based algorithms offer better communication costs and synchronization
delay. Raymond’s and Suzuki-Kasami’s algorithms are well-known token-based ones. Raymond’s algorithm needs only O(log, (N))
messages per CS and Suzuki-Kasami’s algorithm needs just one message delivery time between two CS entrances. Nevertheless,
both algorithms are weak in the other metric, synchronization delay and message complexity correspondingly. In this work, a new
hybrid algorithm is proposed which gains from powerful aspects of both algorithms. Raysuz’s algorithm (the proposed algorithm)
uses a clustered graph and executes Suzuki-Kasami’s algorithm intraclusters and Raymond’s algorithm interclusters. This leads to
have better message complexity than that of pure Suzuki-Kasami’s algorithm and better synchronization delay than that of pure

Raymond’s algorithm, resulting in an overall efficient DMX algorithm pure algorithm.

1. Introduction

Using shared resources among different processes is a pri-
mary need in distributed systems. For this reason, distributed
mutual exclusion (DMX) has drawn great attention over the
years and a good number of algorithms have been proposed
in this area. These algorithms are used in distributed systems
such as mobile ad hoc networks (MANETS), sensor networks
[1, 2], grids, and distributed databases. Messages sent for
acquiring and releasing CS are an important measure for
DMX algorithms and have a great effect on system’s overall
performance. Safety, liveness, and fairness are the main
requirements for any mutual exclusion algorithm. Lamport’s
algorithm [3] and Ricart-Agrawala’s (RA) [4] algorithm are
considered as two of the most important fair distributed
mutual exclusion algorithms in the literature. Generally,

DMX algorithms can be classified into two major groups,
token-based algorithms and permission-based ones. In the
first case, a node enters a CS after receiving permission from
all of the nodes in its set for the critical section. For token-
based algorithms, however, processes are on a logical ring
and possession of a system-wide unique token provides the
right to enter a critical section. Suzuki-Kasami’s algorithm [5]
and Raymond’s tree-based algorithm [6] are milestone token-
based algorithms.

Suzuki-Kasami’s algorithm has a low synchronization
delay of one message between each two consecutive CS
entrances, meanwhile its message communication number
per any CS is N and that is fairly high for vast distributed sys-
tems which can restrict system scalability. On the other hand,
Raymond’s algorithm requires low message communication

for each CS entrance, but its delay is order of O(log,(N))
messages between two consecutive CS entrances.

In this study, a new hybrid DMX algorithm is proposed
that is called Raysuz. Raysuz’s algorithm uses a clustered
graph infrastructure. Suzuki-Kasami’s algorithm is run inside
the clusters and Raymond’s algorithm is run among cluster
leaders. Therefore it has better synchronization delay than
pure Raymond’s algorithm and better message complexity
than pure Suzuki-Kasami’s algorithm.

In addition, cluster leaders collect internal CS requests
and serve them once they receive token from other clusters.
This prevents ping-pong style communication of token which
is the matter of issue in Raymond’s algorithm. Also using
shortest paths inside clusters, Raysuz’s algorithm gains even
better performance than Suzuki-Kasami’s algorithm too.

In rest of the paper, we have presented related work in
Section 2. In Section 3, the new hybrid algorithm is described
both formally and informally. The description of the algo-
rithm is supported by the sample scenario in this section.
Then in Section 4, the proposed algorithm is evaluated.
Finally, in Section 5, we discuss the proposed algorithm and
conclude the paper.

2. The Literature Study

In this section the related studies are elaborated and some
performance metrics are discussed which are used in com-
parison of related algorithms.

2.1. Related Work. DMX algorithms can be classified as
permission-based and token-based. In the permission based
approaches, if a node needs to enter the CS, it should take
permission from all other nodes. There are many algorithms
which use this approach, for example, the studies of Singhal
[7], Maekawa [8], Agrawal and El Abbadi [9], and Lodha
and Kshemkalyani [10]. In the Lamport’s algorithm, a node
which needs to enter CS should broadcast its CS request, wait
for acknowledge from all nodes, and finally enter the CS.
After exiting CS, the node should broadcast a release message
indicating I have exited the CS. This algorithm sends 3(N — 1)
messages for each CS [3].

In order to reduce message complexity, Ricart Agrawala
has made improvements to Lamport’s algorithm which sends
only 2(N — 1) messages per each CS [4]. Ricart Agrawala
achieved this by removing release message step of Lamport’s
algorithm. Instead, the node exiting the CS only sends release
message to the nodes which have sent request messages and
wait for permission. A queue for holding requests that come
from other nodes is also added to the algorithm.

Agrawal and El Abbadi [9] and Maekawa [8] have pro-
posed quorrum-based algorithms which dramatically reduce
the message complexity and belong to permission-based
approach [8, 9]. Agrawal and El Abbadi use tree-structured
quorums which require permission from only O(log,(N))
nodes in best case, and O(N) in the worst case. Maekawa
proposed a new DMX algorithm which only uses ¢ VN mes-
sages to create a mutual exclusion in a computer network. The
network consists of number of subsets whose intersection set

Mathematical Problems in Engineering

is not empty. DMX algorithms in [11-15] are also permission-
based algorithms.

Additionally, there are also a number of algorithms which
use token-based DMX approach [5, 6, 16-21]. Main idea of
token-based algorithms is that the node having the token
will have opportunity to enter CS. One of the most popular
approaches is Suzuki-Kasami’s algorithm [5] which uses N
messages per each CS. Another one is Raymond’s tree based
algorithm [6] which reduces the message complexity using
its dynamic tree structure. Raymond’s and Suzuki-Kasami’s
algorithms are basis for our new approach which is described
in Sections 2.2 and 2.3. In [22], a new DMX algorithm which
is based on path reversal is proposed.

Although many DMX algorithms exist, the state-of-the-
art technologies still require adapted DMX algorithms for
their circumstances. For example, Edmondson et al. [23]
propose a QoS-enabled DMX algorithm for public clouds
[24].

2.2. Performance Metrics. Performance bounds of DMX
algorithms can vary due to the network load. When a few
number of nodes want to enter a CS, the network is assumed
as lightly loaded; otherwise it can be called highly loaded.
There exist some metrics for evaluating performance and effi-
ciency of DMX algorithms. “number of messages per request”
is one of them which denotes the total number of messages
used for entering CS. It is a critical metric for determining
limits of required network bandwidth. Another key metric
is “response time” which implies the time interval between
one node’s requesting of a CS permission and entering the
CS. The last metric is “synchronization delay.” It denotes the
latency between one node exiting and the next permitted
node entering the CS.

2.3. Suzuki-Kasami’s and Raymond’s Algorithms. One of the
most important token-based DMX algorithms is Suzuki-
Kasami’s algorithm [5]. It works on fully connected network
and its main idea is to reduce the synchronization delay. The
algorithm has three data structures. The first one is N-sized
array named request which is used for holding requests of all
nodes in the network. The number of requests which is made
by some node i is stored in iy, place of request array. When a
new request comes from node j, j;, element of the request
array is incremented by one. The other two structures are
stored only in token. One of them is an N-sized array named
last which holds the number of CS entrances for each node.
SuzQ is a queue for holding node identities that are waiting
for the token.

When node i wants to enter the CS, it increments its
request number on the request array and broadcasts it. Upon
receiving request from node i, any node j#i updates its ith
element of request array with new value of variable in arriving
message. After exiting the CS, a node compares the last and
request arrays and enqueues node v if v,;, element of request
array is one more than the v,;, element of /ast array and v does
not already exist in queue.

Suzuki-Kasami’s synchronization delay is lower than
Raymond’s algorithm (0 or T') but its “number of messages

Mathematical Problems in Engineering

per request” is higher than many of the other token-based
algorithms (N).

Considering message complexity, Raymond’s algorithm
is one of the most powerful algorithms amongst token-
based solutions for DMX [6]. The algorithm is based on
unrooted minimum spanning tree. The tree can be physically
or logically built. Each node does not need to know about
all the network topology; they only have to know about their
neighbors.

Entering a CS for a node requires having the PRIVILEGE.
Every node in the tree has a variable named HOLDER
indicating the direction to its neighbor which is on the
shortest path to the node that has the PRIVILEGE. If the
node owns the PRIVILEGE, its HOLDER variable shows
itself. If a nonprivileged node wants to enter the CS, it sends
REQUEST message to HOLDER. When a nonprivileged node
receives the REQUEST message from its neighbor, it sends
the REQUEST message to its HOLDER node. This process
continues until the REQUEST message reaches the privileged
node. When the privileged node receives request message and
finishes executing its CS, it becomes a nonprivileged node
and sends PRIVILEGE message to the sender. If the privileged
node receives a REQUEST message while executing its CS, it
sends PRIVILEGE message to the sender after it finishes CS.

As can be inferred from the description of the algorithm,
the “number of messages per request” is decreased dramati-
cally in comparison with the other DMX algoritms. However,
this improvement comes with a trade-oft. While achieving a
reasonable decrease on the “number of messages per request,”
“synchronization delay” increases. In Table1, performance
metrics of Raymond’s tree-based algorithm are shown as well
as information for some other algorithms.

2.4. Comparison. In this section, some of the DMX algo-
rithms are evaluated with respect to performance metrics and
their results, as shown in Table 1. In centralized algorithm,
three messages are sent per any CS both in high and low
network loads [16]. Its synchronization delay is measured as
2T. Its primary drawback is known as single point of failure.
However, Lamport’s algorithm requires 3(N — 1) messages
per CS, and its synchronization delay is only T' [3]. Ricart
and Agrawala (RA) have made an improvement and their
algorithm uses only 2(N — 1) messages per CS both in high
and low network loads. Also, it has synchronization delay of
only T [4].

Maekawa’s algorithm is quorum based and sends 3VN
messages and 5VN messages per any CS for low load and
high loads, respectively [8]. Its synchronization delay is
evaluated as 2T. Another quorum-based algorithm, Agrawal
and El Abbadi’s algorithm, uses O(log,(N)) messages per
CS in low load and (N/2) messages per CS in high load
[9]. Suzuki-Kasami’s algorithm, which is one of the token-
based algorithms, uses N messages per CS in low load, and
its synchronization delay is to be measured as T [5]. While
Suzuki-Kasami’s algorithm uses N messages per CS, Ray-
mond’s tree-based algorithm uses only O(log,(NN)) messages
per CS. Although synchronization delay of Suzuki-Kasami’s

3
TaBLE 1: Comparing different DMX algorithms.
Criteria
Algorithm Number of Number of Synch

messages per messages per (CS)
CS (low load) CS (highload) delay

Permission based
Centralized 3 3 2T

Message passing

Lamport 3(N-1) 3(N-1) T
Ricart-Agrawala 2(N-1) 2(N-1) T
Singhal N-1 3/2(N -1) T
Lodha N-1 2AN-1) T
Quorum based
Maekawa 3VN 5VN 2T
Agrawal-El Abbadi log,(N) N/2 —
Token passing
Token ring N/2 — N/2
Suzuki-Kasami N N T
Raymond log,(N) log,(N) 4T

algorithm is only T, Raymond’s algorithm spends 4T as
synchronization delay [6].

As a result, Suzuki-Kasami’s algorithm and Raymond’s
algorithm have less synchronization delay and less message
count per CS, respectively. Their message count per CS and
synchronization delay is not efficient correspondingly and we
have dealt with these weaknesses.

3. Raysuz Algorithm

Suzuki-Kasami’s algorithm is known to have lower synchro-
nization delay than Raymond’s with the expense of higher
message complexity. Raymond’s algorithm has much less
message complexity, but synchronization delay is higher
because of using only the edges of the minimum spanning
tree (MST).

In this section, we propose an algorithm which combines
the better sides of these algorithms. Initially, the nodes are
grouped in clusters and each cluster has a leader node.
Suzuki-Kasami’s algorithm is used inside clusters and Ray-
mond’s algorithm is used to pass token among the cluster
leaders. Among the leaders, token can travel only on the
edges belonging to the MST paths, but inside clusters shortest
paths can be used. The high message traffic of broadcasting
CS requests of Suzuki-Kasami’s algorithm is decreased by
limiting broadcast only inside the clusters. Each cluster leader
will be responsible for requesting token from outer clusters
and dealing with their requests.

3.1 System Model and Data Structures. Before explaining the
algorithm, we describe the system model. Each node has a
unique ID and it can only communicate with its neighbors
via edges. We also assume that communication channels have
FIFO structure. Asynchronous communication model is used

@ Root

@ Cluster head
(O Cluster member

FIGURE 1: An example network clustered with DSTA.

in this algorithm. It is supposed that the communication
channel and nodes are failure free and there are no malicious
nodes. We suppose that all of the edges in the network
have the same weight. However, other assumptions will not
violate our results. Interested readers for weighted graphs
and analysis of clustering complex networks with distributed
preference mechanism can refer to [25].

Distributed spanning tree-based clustering algorithm
(DSTA) [26] can be implemented to cluster the network.
DSTA constructs clusters with controllable diameter and the
spanning tree of cluster heads (leaders) directing to the root
(sink) node as the backbone. The depth parameter of the
DSTA is used to adjust the diameter of the clusters. The
root node sends PARENT (nhops) message to its immediate
neighbors to start the execution of the DSTA algorithm.
When a node first receives PARENT (nhops) message, it sends
PARENT (nhops + 1 mod depth) message to its neighbors.
The recipients of the message with nhops = 0 are the CLUS-
TERHEADS, and those with nhops < depth are the MEMBER
nodes. Figurel shows an example network clustered with
DSTA, where depth = 2. The borders of the clusters are circled
and the communication edges are shown with lines.

Inside clusters, Suzuki-Kasami’s algorithm is used to pass
the token. Broadcasting requests for token in this algorithm
will be achieved by unicasting them on the shortest paths for
each node in the cluster. The leader only spectate the internal
token passing operations. Token passing between clusters is
made by cluster leaders using Raymond’s algorithm. When
internal requests take place, the leader node in the cluster will
be responsible for requesting and taking token from other
cluster leaders. When the token is in the cluster and other
clusters need it, the leader of the cluster steals token from its
cluster and sends it to the leader of related cluster.

The ordinary and leader nodes must hold some variables
in order to run the algorithm. These variables are as follows.

(i) Dir: each node holds the direction which shows the
leader of the cluster having the token. This variable

Mathematical Problems in Engineering

helps cluster leaders requests to reach the cluster
which has the token.

(ii) TokInside: this variable is held by the leader nodes. It
states whether the token is inside the cluster or not.

(iii) Asked: this variable states whether a Raymond’s algo-
rithm token request has been made or not. Using
this variable prevents sending token requests for each
incoming request. It is used by cluster leaders and
other nodes who are making token transfer on the
transfer path.

(iv) RequestArray: it is an array which is used in the
same way as Suzuki-Kasami’s algorithm. Related array
element is incremented for each internal Suzuki-
Kasami’s algorithm request.

(v) LastArray: this array is used in the same way as
last array in Suzuki-Kasami’s algorithm. It holds the
number of times each node in cluster has entered
the CS. Nodes increment their array element after
finishing critical section. There is only one LastArray
for each cluster and it travels with internal tokens.

(vi) SuzQ: it is the queue which is used by nodes that
are waiting to enter CS in the same cluster, the
same as Suzuki-Kasami’s algorithm. It also travels
with internal token, which is always sent to head of
this queue. New requests from the same cluster are
detected by comparing request and last arrays and
there requester nodes are added to this queue by
nodes exiting CS.

(vil) RaymQ: this queue is the same as Raymond’s algo-
rithm. During the token travel among the cluster
leaders, the nodes in the path use this queue. Cluster
leaders forward their token to the head of this queue
after their clusters have finished their jobs. Ordinary
nodes in the path also help the transfer of token by
using this queue.

There are also several message types, used in the proposed
algorithm, which are listed below.

(i) InTok: a token message which lives in the clusters.

(ii) ExTok: a token message which travels between cluster
leaders.

(iii) InReq: it denotes internal Suzuki-Kasami’s algorithm
requests made within the clusters.

(iv) ExReq: it denotes external token requests (handled
using Raymond’s algorithm) which are sent by the
cluster leaders.

(v) Pulse: this input denotes the need of entering CS. Only
ordinary nodes can have pulse and enter CS.

3.2. Informal Description of Raysuz’s Algorithm. In Raysuz’s
algorithm, we have two types of nodes, namely, ordinary and
leader. Ordinary nodes only have information about their
own neighbors and use Suzuki-Kasami’s algorithm to enter
the CS. These nodes broadcast a CS request to their cluster

Mathematical Problems in Engineering

using the shortest path routing with all possible edges. When
the nodes acquire the InTok, these nodes will do the same
procedure as that of Suzuki-Kasamis algorithm. The only
difference between ordinary nodes in pure Suzuki-Kasami’s
algorithm and Raysuz’s algorithm is that the ordinary nodes
in the proposed algorithm use Raymond’s algorithm proce-
dures to transfer external CS requests and external token
between cluster leaders. When an external CS request comes
to a node, this node adds the requester to its RaymQ and
if another external CS request has not been sent earlier, it
sends an external CS request towards the direction in Dir.
Whenever an external token arrives at the node, it sends this
token to the head of RaymQ, probably itself.

Leader nodes are dedicated to request token from other
clusters. The leader nodes can process two threads in order
to act as leader and ordinary nodes simultaneously. Their
job is to send external token requests when their cluster
needs token and give the token back when other clusters
need it. They send external requests and external token
according to Raymond’s algorithm routines. When there is
an internal Suzuki-Kasami’s algorithm request, InReq, inside
the cluster, the cluster leader sends an external request to
direction, Dir, if the token is not in the cluster. Each node
in the path will forward the message up to the leader of
the cluster having the token. When the leader of the token
owner cluster receives the external request, ExReq, it sends
an ordinary Suzuki-Kasami’s request to its cluster, takes the
token in its turn, and sends it to the requester. Cluster
leaders add a level of indirection and obtain the illusion
that there are only cluster leaders which are implementing
Raymond’s algorithm. They also hide the outer system from
their cluster nodes. When the token is outside the cluster, the
ordinary nodes will believe that the token is in their cluster
leader.

As mentioned above, this clustered algorithm combines
the low synchronization delay feature of Suzuki-Kasami’s
algorithm and low message complexity feature of Raymond’s
algorithms. When an external requests arrives, the cluster
leader does not grab and does not send the token immedi-
ately. Instead, it makes a Suzuki-Kasami’s algorithm request
to take and send the token. This behaviour ensures that
significant amount of internal CS demands which have
arrived before external requests are fulfilled. This prevents
token to travel along the graph for each request like in a ping-
pong style communication, thus reducing token travelling
distance for each request and reducing synchronization delay
in comparison with pure Raymond’s algorithm. Moreover,
using the shortest paths for Suzuki-Kasami’s operations
fastens the token travelling inside the cluster, therefore
reduces the synchronization delay and number of messages per
request.

3.3. Formal Description of Raysuz’s Algorithm. In this section,
Raysuz’s algorithm is illustrated formally as two finite state
machines (FSM) for both leader and ordinary nodes. The
related FSMs for leader and ordinary nodes can be seen in
Figures 2 and 3, respectively. The pseudocode of these algo-

rithms and used legends are provided in Table 3, Algorithm 1,
and Algorithm 2.

3.3.1. The Leader Node. As it can be seen in the FSM of
Figure 2, the leader node has three states, IDLE, WAITEXTO-
KEN, and INTOKENSTEAL.

IDLE. The leader nodes are in IDLE state when the token
is in the cluster and there are no external requests, or the
token is outside and there are no internal nodes which
need to enter CS currently. When the token is inside and
external request arrives, leader node makes a Suzuki-Kasami’s
algorithm request, adds the requester’s ID to RaymQ, and
passes to INTOKENSTEAL state. If the token is not inside
the cluster and an internal Suzuki-Kasami’s algorithm request
arrives, the leader adds itself to RaymQ and sends an external
request to the direction of Dir (if not previously sent) and
transits to WAITEXTOKEN state.

INTOKENSTEAL. The leader nodes are in INTOKENSTEAL
state when they are waiting for the internal token to send
to external requester. When the internal token arrives, the
leader looks at its RaymQ and SuzQ sizes. If their sizes both
are one (which is the same the leader itself), it means that
there is no more external or internal requester waiting for
the token. Therefore, it sends the token to the requester and
updates the direction to it and finally goes to IDLE state. If
one of the queues is greater than one, it means that the token
is needed back, either for internal CS demands or external
requests. In this case, the leader puts itself into its RaymQ and
sends external request just after sending the token and finally
it transits to WAITEXTOKEN state.

WAITEXTOKEN. The leader nodes are in this state when
they are waiting for the external token either for internal CS
demands or external requests. When the external token for
another cluster arrives to the leader, it just forwards the token
to head of RaymQ, changes direction, and transits its state to
IDLE. If the external token arrives to the leader, it looks at
the size of its RaymQ. In case the size of its RaymQ is one,
this means there are no other external requests waiting, so it
creates and sends the internal token to its cluster and goes to
IDLE state. If it is greater than one, this means that there are
other clusters waiting for the token, thus it makes a Suzuki-
Kasami’s algorithm request just after sending the token into
its cluster and goes to INTOKENSTEAL state.

The routine which takes place in a leader of any cluster is
clearly defined in the Algorithm 1. This algorithm consists of
six steps. Step one is triggered when the cluster has no token
inside and the leader receives a request, either from outside
or inside cluster. In both cases, it transits to WAITEXTOKEN
state but in earlier case the leader puts external request in
the RaymQ while in latter case it puts its own request in this
queue.

Step two describes the state which occurs when the token
owner cluster’s leader receives a token request. The actions to
take place are determined with regard to whether the request
comes from intracluster or not. The former one forces leader
to operate ordinary Suzuki-Kasami’s algorithm’s related part.
In the other case, the leader makes Suzuki-Kasami’s request

Mathematical Problems in Engineering

<1nToken for me and [size(RaymQ) > 1 or size (SuzQ) > 1])

(1) UpdateSuzQ

(2) Dir = DeQueue (RaymQ)
(3) Send ExToken to Dir

(4) Tokeninside = false

............ (InReq)------------ (5) Send ExReq to Dir
(1) Inc Req, update SuzQ (6) Asked = True
,,,,,,,,,, (ExReq)---------- (7) Add own to RaymQ

(1) Add requestor to RaymQ
<ExTuken !For me and size (RaymQ > 1))

(1) Head = DeQueue (RaymQ) (ExToken for me and size (RaymQ>1)) >\ eeeeeeees (InReq)——m
(2) Send ExToken to head (1) Asked = False Inc.Req

(3) Change Dir to head @) Tokeninside=true N\ e (ExReq)-—meeememev
(4) Send ExReq to Dir (3) Create InToken with last SuzQ Add requester to RaymQ

(4) Send InTok to head of SuzQ
(5) Inc Req, Bcast Req

INTOKEN

(InReq. and Tuklnsidz>
(1) Inc Req

FIGURE 2: Leader nodes’ finite state machine.

on behalf of the original requester to steal the token from
its own cluster to send it outside of the cluster (to the origin
of the request). At this point, the leader’s state is changed to
INTOKENSTEAL state.

In step three the leader which is in token steal state
receives it and sends the token to the requester’s cluster. Until
receiving the token, this leader reacts with a new request from
other clusters, if any, in step four. Step five deals with the
leaders that are waiting for the external token and receive a
request from other clusters. Nevertheless, the actions listed
in step six will be taken if this leader gets the token for its
cluster.

3.3.2. The Ordinary Node. The ordinary node has also three
states, IDLE, HAVEREQUEST, and HAVETOKEN.

IDLE. This state means that the ordinary node does not have
a CS demand. It follows Raymond’s algorithm routine when
external requests or the external token arrives. When a pulse

indicating CS demand arrives, it makes Suzuki-Kasami’s
algorithm request and goes to HAVEREQUEST state.
HAVEREQUEST. The node waits for the token in this state.
When internal token arrives, it enters the CS. Upon exiting
the CS, it checks the SuzQ. If it is empty, this means there
are no token waiting nodes in the cluster. Thus, it goes to
HAVETOKEN state. If SuzQ is not empty, it sends the token
to the head of SuzQ and goes to IDLE state.

HAVETOKEN. This state means that there are no more token
waiting nodes in the cluster and the token remains at the node
after the CS; then it can freely enter the CS whenever it needs.
When an internal request arrives, it sends the token to the
requester and transits to IDLE state.

The routine which takes place in an ordinary node is
defined in the algorithm of Algorithm 2. This algorithm
contains seven steps. The first step deals with any idle or
token requested ordinary node which receives a request from
any other node. In second step, the actions required upon
receiving an external token for idle nodes or nodes which
have just requested a token are listed. The event of receiving

Mathematical Problems in Engineering

—————————— (Pulse)-—-------
----------- (ExReq)----------- (1) Inc Reg, (ExReq\
(1) Add requestor to RaymQ (2) Beast Req (1) Add requestor to RaymQ
(2) IF ! Asked (2) IF ! Asked

- Send own Req to Dir
(3) Asked = True
(ExToken\
(1) Asked = False

- Send own Req to Dir
(3) Asked = True
(ExToken)

(1) Asked = False

HAVE

(2) Head = DeQueue (RaymQ)
(3) Send token to head
(4) Change Dir to head

(1ycs

(5) IF RaymQ not empty

. 2,
- ExR D 3
Send ExReq to Dir @ % @%
- Asked = True %') ‘%9 e
O'/ g %,
<InReq\ 520,{
(1) Inc Req %,O

(InTok for me and SuzQ not empty)

(2) Update SuzQ
(3) Send InTok to head of SuzQ

REQUEST

(2) Head = DeQueue (RaymQ)
(3) Send token to head
(4) Change Dir to head

(5) IF RaymQ not empty

- Send ExReq to Dir
- Asked = True
(InReq\
(1) Inc Req

(1) Add requestor to RaymQ
(2) IF ! Asked

- Send own Req to Dir
(3) Set Asked

FIGURE 3: Ordinary Nodes’ Finite State Machine.

a pulse enforces the idle node to have a request in the third
step.

The fourth and fifth steps demonstrate the original related
part of Suzuki-Kasami’s algorithm in which any requested
node receives the token. Finally, the sixth and seventh
steps handle receiving request and pulse, respectively, for an
ordinary node which is in the HAVETOKEN state.

3.4. A Sample Scenario Using Raysuz’s Algorithm. For clarity
of Raysuzs algorithm, we present a sample scenario for
the algorithm execution. According to the algorithm, the
network is clustered by an algorithm such as [26, 27]. In this
scenario, initially, the token belongs to a node T, in cluster
C,. There are some requests from other nodes in this scenario:
firstly, N, in C,, requests the token. Then the other node, N, in
C,, asks for the token shortly after Ny’s request. Meanwhile,
N, in C, also wants to grab the token. This scenario shows
how the algorithm deals with these requests.

The first event of the scenario can be seen in Figure 4(a).
Firstly, node N, which needs the token, makes a Suzuki-
Kasami request and broadcasts it to its cluster. Since it is
the first node which has requested the token, it receives the
token immediately as shown in event 1 in Figure 4(b). After
that, node N in cluster C, requests the token from its own
cluster with broadcasting a Suzuki-Kasami’s request as shown
in event 2 in Figure 4(b). Due to lack of the tokens in this
cluster C,’s leader L, sends the request to the leader of the

cluster which is the owner of the token, L, as in Figure 5(a).
After L, receives the token request, it makes a Suzuki-Kasami
request as it does for itself, as shown in event 1 in Figure 5(b).
Shortly after that, node N, from another cluster, C,, wants
the token and makes a request to its own cluster as shown in
event 2 in Figure 5(b). Since the token is not in C,, its leader,
L,, sends the request to N’s cluster leader as shown in event
1in Figure 5(c).

At this point, N, has the token and N, and N, are waiting
for it. When N,, quits the critical section, it sends the token to
the leader of its cluster as shown with event 2 in Figure 5(c)
and the leader forwards it to the leader of C; accompanied
with a request (for request of N,) as shown in event 1 in
Figure 5(d). Upon receiving the token by L, it delivers the
token to N;, which has asked for it, and then L, broadcasts
an internal request in its cluster to steal the token and send it
back to L as shown in event 2 in Figure 5(d).

As soon as N, exits the critical section, due to prior
internal request, it sends the token to L, as shown in event
1 in Figure 5(e). Afterwards, the leader returns the token to
L, as shown in event 2 in Figure 5(e). Then, L, according to
the requests saved in its queue, sends the token to L,, which
delivers it to N, as shown in events 3 and 4, respectively, in
Figure 5(e).

Now, we examine this scenario deeply according to
algorithm’s detail to understand what is going on in this
algorithm. When node N, makes a Suzuki-Kasami request as
is shown in Figure 4(a), L, only increases the request array in

Mathematical Problems in Engineering

(b)

FIGURE 4: Scenario for Suzuki-Kasami’s part of the Raysuz algorithm.

the same way as an ordinary node does in the same cluster. So
far everything is straightforward. Then node N, in C; makes
arequest in its cluster to enter the CS; see Figure 4(b). Before
N; requests for the token, N, receives the token from the
token holder node, as shown in Figure 4(b).

At this time, in C;, L, which is aware of the token
absence prepares a request to get token and sends it to node
whose identity is the same as the Dir’s content, as shown in
Figure 5(a). Upon receiving the external request from N, L,
adds N, ’s request to its RaymQ and prepares a request to get
the token from its own cluster. This is achieved by making
a Suzuki-Kasami request as shown in event 1 of Figure 5(b),
as if L, wants the token for itself to give it to N;. While L,
is dealing with acquiring the token, another node, N, in C,,
needs to enter the CS, so it makes a Suzuki-Kasami request
as shown with event 2 in Figure 5(b). After some while, L,
sends an external request to L, to get the token as shown in
event 1in Figure 5(c). Then L, adds this node (L,) to its own
RaymQ. In this way, L, knows that there is another node, N,,
which wants to grab the token after N,. Later on, N, sends
back the token to L as shown in event 2 in Figure 5(c).

Now, L, has the token and dequeues RaymQ and sets Dir
variable with dequeued node. Afterwards, it sends the token
to dequeued node which is the first external node which
wants token from L. Since the RaymQ is not empty, L also
sends an external request along with the token as shown in
event 1 in Figure 5(d).

As L, receives the request and the token, it queues the
external request to the RaymQ and forwards the token to the
N, using SuzQ. Taking the request into consideration, L, also
broadcasts a Suzuki-Kasami request in the cluster, as can be
seen in event 2 of Figure 5(d). Since there is no other internal
request in C,, after exiting the CS, N, forwards the token to
the L, as shown in event 1 of Figure 5(e).

At this point, L,’s RaymQ is not empty, so it sends the
token to the RaymQ’s head (in this case L, with dequeuing it

as shown in event 2 of Figure 5(e)). Analogous to the previous
event, L, sends the token to L, using its RaymQ as shown in
event 3 of Figure 5(e).

Finally, L,, receiving an external token, sends the token
to the head of SuzQ which is N, as shown in event 4 in
Figure 5(e). In this way, three nodes received the token in
order and the scenario is accomplished.

4. Analysis of the Proposed Algorithm

In this section, we present the theoretical analysis of Ray-
suz’s algorithm along with relevant proofs. This theoretical
analysis contains correctness, message complexity, energy
consumption, synchronization delay, and response time for
the proposed algorithm.

4.1. Correctness of Raysuz’s Algorithm. The correctness of
Raysuz’s algorithm is examined according to safety and
liveness attributes of the algorithm.

4.1.1. Safety. Safety of Raysuz’s algorithm is analyzed from the
single token existence and mutual exclusion points of view,
which will be discussed in Theorem 3.

Lemmal. In Raysuz’s algorithm at most one token exists in the
network concurrently.

Proof. Assume the contrary. In this case, there exists more
than one token in the network concurrently. Therefore,
according to finite-state machine given in Figure 3, more
than one ordinary node should be in HAVETOKEN state.
Assume that these nodes are in the same cluster. Suzuki-
Kasami’s algorithm is used in intracluster communication;
thus multiple token existence is impossible [5].

On the other hand, assume that more than one node
belonging to different clusters is in the CS at the same time.

Mathematical Problems in Engineering

Otbher clusters Other clusters

Other clusters

Other clusters

Other clusters

Otbher clusters

(d)

Other clusters

Event1,-~ "~
C, /=

1/
1
| g

\

(e)

FIGURE 5: Scenario for Raymond’s part of the Raysuz algorithm.

10

In this case, according to pseudocode of leader node in
Algorithm 1, multiple leaders should be in INTOKENSTEAL
state. Since Raymond’s algorithm is used for intracluster
communications, this is also not possible [6].

There is no other possibility; therefore we contradict our
assumption. O

Lemma 2. At most one node can be in the CS at any time,
ensuring mutual exclusion.

Proof. Assume the contrary, that more than one node can
execute CS at any time concurrently. In Raysuz’s algorithm,
when a node receives token, it enters CS. If there is more
than one token in the network, then more than one node can
execute CS at the same time. However, it is proven in Lemma 1
that this case is not possible. Therefore, we contradict our
assumption. O

Theorem 3. There always exists exactly one token in Raysuz
algorithm, which also provides at most one node entering CS at
any time, thus satisfying Safety attribute.

Proof. The theorem holds since Lemmas1and 2 are true. [J

4.1.2. Liveness

Theorem 4. Raysuz’s algorithm is deadlock- and starvation-

free.

Proof. We use Suzuki-Kasami’s algorithm for intracluster
communication and Raymond’s algorithm for intercluster,
communication. Both algorithms are deadlock- and starva-
tion free which is proven in [5, 6]. Thus, Raysuz’s algorithm
is deadlock- and starvation-free. O

4.2. Message Complexity. The message complexities of Ray-
suz’s, Raymond’s and Suzuki-Kasami’s algorithms are com-
paratively explained in this section. We assume the topology
of the network as multihop cluster tree, where there are C
clusters and N nodes.

In the graph consisting of N nodes, the mean dis-
tance between any two nodes (also mean unicast distance
between two nodes), E(L,), is almost surely of order
O(log,(N)/log,(d)), where d is the weighted average of the
sum of squares of the expected degrees [28].

We consider the power law graphs with lots of nodes, so
d is a very small value in comparison with N. Thus we use
the complexity O(log,(N)) instead of O(log,(N)/log,(d) as a
mean distance between two arbitrary nodes.

4.2.1. The Worst Case. In Raymond’s algorithm, token
requester and token holder nodes will be on the farthest
sides in the worst situation. In this case, request message will
travel up to the root and down to the token holder. Similarly,
token holder will send token back in the same path. Thus, the
message complexity for arequestis N-1+N—-1=2N-2 =
O(N).

In Suzuki-Kasami’s algorithm on a tree, the requester
will broadcast request on tree, which uses a total of N — 1

Mathematical Problems in Engineering

messages. Then the token holder node will receive request
and send token to requester using the shortest path routing
information in messages. Therefore, the total message count
for a requestiss N -1+ N -1 = 2N -2 = O(N).
Raysuz’s algorithm has six phases for requesting and entering
CS. The phases and number of messages sent in each phase
are described as follows.

(i) Requester node sends request to its leader: intra
cluster requests are broadcasted along the tree, and
one message will be sent for each node in cluster
except the requester. This requires N/C—-1 = O(N/C)
messages.

(ii) Leader forwards the request to the token holder node’s
cluster: in this phase, the two token leaders will
communicate. In the worst situation, these leaders
will be in the farthest sides of the tree. Then, the
distance between them will be N — 1 = O(N), which
is also the number of messages needed in this phase.

(iii) Token holder leader makes Suzuki-Kasami’s request:
the leader of the token holding cluster will broadcast
request to its cluster to take the token. This broadcast
needs N/C — 1 = O(N/C) messages.

(iv) Token holder node sends token to its leader: the token
holder node will send token to leader at the cluster
root using O(N/C) messages.

(v) Token holder cluster’s leader sends token to reques-
ter’s leader: similar to phase 2, the two token leaders
will communicate. Thus, the number of messages
neededis N — 1 = O(N).

(vi) Token requester node’s leader sends token to the
requester node using O(N/C) messages.

The total of these phases yields O(N).

4.2.2. The Best Case. The best case situation occurs when
only the token holder node wants to enter CS. In this case,
no message transmission is needed. Therefore, the number
of messages needed for Raymonds, Suzuki-Kasami’s and
Raysuz’s algorithm is 0 in the best case.

4.2.3. The General Case. The general case for message com-
plexity is elaborated in this section. The required notation is
shown in Table 2. We assume that underlying topology is a
balanced tree with height O(log, (N)).

LHL denotes the level of the token holder leader in the
tree. LHN denotes the level of token holder node. LRN is
level of requesting node and LRL is the level of requesting
leader.

In Raymond’s algorithm, request message will travel
LRN +LHN hops. Similarly, the token will travel back LHN +
LRN hops, resulting in a total of 2(LRN + LHN) messages
travelling through the path. This yields O(log,(N)) message
complexity for Raymond’s algorithm. According to Suzuki-
Kasami’s algorithm, N — 1 messages are needed to broadcast
the request. The token will be sent to requester in LHN
number of messages, resulting in N —1+O(log,(N)) = O(N)
messages.

Mathematical Problems in Engineering

TABLE 2: Legends of the analysis.

Legend Description
LHL Level of the token holder leader
LRL Level of requesting leader
LHN Level of the token holder node
LRN Level of requesting node
TABLE 3: Legends of the algorithms.
Legend Description
L; Any leader j
Lo Leader’s cluster holding token
L itExToken Leader who sent request

Leader who sends Suzuki-Kasami’s request

Liokenstea to inner cluster

C; Cluster j

P, Process j

O, Any node

O, 41 The node which is not interested in token
OhaveToken The node which has the token

OhaveRequest The node which has requested the token

In Raysuz’s algorithm, we have the same 6 phases as in
Section 4.2.1.

(i) The requester node sends request to its leader (using
Suzuki-Kasami’s algorithm) with N/C — 1 messages.

(ii) The leader forwards the request to token holder
cluster’s leader in LRL + LHL number of messages.

(iii) Token holder leader broadcasts Suzuki-Kasami’s algo-
rithm request to take the token. The number of
messages needed is N/C — 1.

(iv) Token holder node sends token to its cluster leader
using LHN — LHL messages.

(v) Token holder cluster leader sends token to leader
of token requester node in LRL + LHL number of
messages.

(vi) Leader of token requesting node sends message to
requesting node in LRN — LRL number of messages.

The total of these phases resultsis N/C—1+LRL+LHL +
N/C-1+LHN-LHL+LRL+LHL+LRN-LRL =2N/C-
2+ LRL+LHL + LHN + LRN = O(N/C +log,(N)).

For example, if the number of clusters, C, is big enough,
then the average message complexity becomes Q(log,(N)).

4.3. Energy Consumption. Energy consumption is important
for wireless systems and especially for MANETSs where nodes
are battery-powered. Generally transceiver is the dominant
energy consumer, so that transmitted byte counts should be
minimized to maximize the network lifetime. With regard to
this, our energy consumption analysis depends on message
size and message complexity. We first analyze message size of
Raysuz’s algorithm and then we analyze the worst case, the
best case, and the general case for the transmitted bit count.

1

The complexities of size of ExTok, InReq, ExReq, and Pulse
messages are O(log,(N)) bits since these messages include
constant number of fields (such as source, destination, and
requestor) and each of these fields can be represented with
numbers in [0, N]. On the other hand, the InTok message’s
size is O(N/C log,(N)) bits since Suzuki-Kasami token
should include information about all nodes in the cluster.

4.3.1. The Worst Case. In Raymond’s algorithm, O(N) mes-
sages are sent at the worst case. Since the message size in
Raymond’s algorithm is O(log,(N)) bits, the transmitted bit
count of Raymond’s algorithm is O(Nlog,(N)) bits.

At the worst case, the message complexity of Suzuki-
Kasami’s algorithm is O(N). Token includes information of
all nodes, so that the size of the token is O(Nlog,(N)) bits. In
this case, O(N 2log2 (N)) bits are transmitted in total.

Raysuz’s algorithm has six phases in the worst case
as given in Section 4.2.1. The transmitted bit count of
each phase is added to find the total value as follows:
O(N/C) O(N/Clog,(N)) + O(N) O(log,(N)) + O(N/C)
O(N/Clog,(N)) + O(N/C) O(N/Clog,(N)) + O(N)
O(log,(N)) + O(N/C) O(N/Clog,(N)) = O((N/C)*log,(N)).
At the worst case for C = 1, the complexity of transmitted bit
count is O(Nzlogz(N)) bits.

4.3.2. The Best Case. At the best case, token holder wants to
enter CS. No transmissions are needed; thus, the transmitted
bit counts of Raymond’s, Suzuki-Kasami’s and Raysuz’s algo-
rithm are 0 bits.

4.3.3. The General Case. In the general case, Suzuki-Kasami’s
and Raymond’s transmitted byte counts are O(N 2logz(N)
bits and O(logz(N)z) bits, respectively. The general case of
Raysuz’s algorithm can be found by adding the complex-
ities of intracluster and intercluster operations as follows:
O(N/C) O(N/Clog,(N)) + O(N/C+log,(N)) O(log,(N)) =
O((N/C)zlogz(N) +(N/C+log,(N))log,(N)). For C = 1, the
worst case equals O(Nzlogz(N)) bits, the same as the value
given in Section 4.3.1. For C = N, Q(log,(N)%) bits are the
lower bound of the general case.

4.4. Synchronization Delay. In synchronization delay formu-
lations, we have used notation T to indicate the unit time for
sending a message.

4.4.1. The Worst Case. The worst case synchronization delay
of Suzuki-Kasami’s algorithm is NT for a network consisting
of N nodes, since distance of any two nodes is at most N.
Thus synchronization delay of Suzuki-Kasami’s algorithm is
O(N) at the worst case. The worst synchronization delay
of Raymond’s algorithm is NT, resulting in O(N) time
complexity which is equal to diameter of the tree at the worst
case.

The worst case of Raysuz’s algorithm has 3 phases. In
the first phase token holder finishes executing CS and sends
token to its leader. This phase requires O(N/C) time. In the
second phase, the token holding leader sends token to leader

12

Mathematical Problems in Engineering

L1if LNC; =0
1.1.1 add P, to RaymQ

1.2 else

1.2.2 enqueue RaymQ with L;
1.2.3 send ExReq to Dir
1.3 end if
1.4 L] = quitExTaken

2.1if P,NC; = O then

2.1.2 enqueue P, to RaymQ
213 L] = LinTokenSteal
2.2 else

2.3 end if

3.1.1 update SuzQ

3.1.4 enqueue RaymQ with L ;
3.15 Lj = quitExToken

3.2 else
3.2.1 update SuzQ

3.2.3 send ExToken to Dir
324L; =Ly,
3.3 end if

4.1if B,NnC; = @ then
4.1.1add P; to RaymQ
4.2 else

4.3 end if

51if LNC; =0
5.1.1 enqueue P, to RaymQ
5.2 else

5.2.2 Update SuzQ
5.3 end if
Step 6. UponalL; =L

waitExToken

Step 1. Upon a leader L # L, receives request from process P, and L ; = L4,

1.1.2 send L ;s request to Dir (as an external request)

1.2.1 increase corresponding request array element by 1

Step 2. Upona L; = Ly, receive request from process P,

2.1.1increase jth element of request array and broadcast request

2.2.1 increase ith element of request array by 1

Step 3. Upona L; = Liroensteas Teceive InToken for L ;
3.1 if RaymQ.length > 1 or SuzQ.length > 1 then

3.1.2 dequeue RaymQ and set Dir with dequeued node
3.1.3 send ExToken and ExReq to Dir

3.2.2 dequeue RaymQ and set Dir with dequeued node

Step 4. Upona L ; = Ljrykenstea TeCEIVE request from P;

4.2.1 increase jth element of request array

Step 5. Upona L; = Lyuitparoken 20d receives request from P,

5.2.1 increase corresponding request array element by 1

and receives ExToken for L j
6.1 update SuzQ and last and add them in InToken

ALGORITHM 1: Raysuz’s algorithm for leader node.

of the requester. This phase needs O(N) time. In the last
phase, token requester’s leader sends token to the requester.
This requires O(N/C) time. Consequently, the total messages
needed in these three phases are O(N) time which is needed
at the worst case.

4.4.2. The Best Case. The best case situation occurs when
requester node is the token holder node. In this case, Ray-
mond’s, Suzuki-Kasami’s, and Raysuz’s algorithm will have 0
synchronization delay.

4.4.3. General Case. In Suzuki-Kasami’s algorithm, the best
case and general case have the same delay. The synchro-
nization delay of Suzuki-Kasami’s algorithm is log,(N)T in
general case for power law graphs. In Raymond’s algorithm,
synchronization delay is (LHN + LRN)T= 2log,(N)T in
general case.

In Raysuz’s algorithm, the first phase takes (LHN—-LHL)T
time. The second and the third phases require (LRL+ LHL)T
and (LRN — LRL)T, respectively. The total time is: (LHN +
LRL + LRN)T=2log,(N)T.

Mathematical Problems in Engineering 13

Step 1. Upon O; = Oy, 0or O; = Opgperequest 20d receives request from P,
L1if P,NC; = O then
1.1.1 enqueue P, to RaymQ
1.1.2 if !Asked
1.1.2.1 send own request to Dir
1.1.2.2 set Asked True

1.1.3 end if
1.2 else
1.2.1 increase corresponding request array element by 1
1.3 end if
Step 2. Upon O; = Oy, 01 O; = Ojyyepeques and receives ExToken
2.1 set Asked False

2.2 dequeue RaymQ and set Dir with dequeued node
2.3 send ExToken to Dir
2.4 if RaymQ.length > 1 then
2.4.1 send ExReq to Dir
2.4.2 set Asked True
2.5 end if
Step 3. Upon O; = Oy, and receives Pulse
3.1 increase corresponding request array element by 1 and broadcast request
3.2 Oj = OhuveRequest
Step 4. Upon O; = Opgyerequest TeC€IVes InToken for O; and SuzQlength = 0
4.1 enter CS
4.2 update SuzQ
4.3 send InToken to head of SuzQ
4.4 set Dir as head
Step 5. Upon O; = Ojygyerequest eceives InToken for O; and SuzQ.length > 0
5.1 enter CS
5.2 update SuzQ
5.3 Oj = OhuveToken
Step 6. Upon O; = Oygperopen Teceives request from P,
6.1if ,NC; = O then
6.1.1 enqueue P, to RaymQ
6.1.2 if !Asked
6.1.2.1 send own request to Dir
6.1.2.2 set Asked True
6.1.3 end if
6.2 else
6.2.1 increase corresponding request array element by 1
6.2.2 update SuzQ
6.2.3 send InToken to P,

6.2.4 O; = Oy,
6.3 end if
Step 7. Upon O; = Ojyayeroken and receives Pulse
7.1 enter CS

ALGORITHM 2: Raysuz’s algorithm for ordinary node.

This case is for intercluster token transmission between 4.4.4. Clustering Effect on Raysuz’s Algorithm. Raysuz’s algo-
two leaf clusters. The fact is that the token transmissions are ~ rithm takes the advantage of using clusters and applying
not always from end to end nodes. So, the synchronization ~ Suzuki-Kasami’s algorithm inside the clusters. In some cases,
delay is less than O(log,(NN)). Furthermore, due to the locality nodes that are close to the token owner node are more likely to
of reference, in high load critical section request, a good make CSrequest than further nodes. This locality of reference
number of requests will arise in the clusters, there exist C ~ property leads to have lower synchronization delay using
clusters in the system each having N/C nodes. In these cases, ~ Suzuki-Kasami’s algorithm inside clusters.
the synchronization delay is as much as the best case which is Assume that the requester and the token holder node
much less than O(log,(N)). are in the same cluster. Then, in the worst case, the token

14

requester will wait for the next node of its cluster to enter CS.
This takes log, (N/C)T time.

However, in Raymond’s algorithm, the worst case time is
log,(N)T. It can be seen that Raysuz’s algorithm has lower
synchronization delay when requester is in the same cluster.

4.5. Response Time. At the worst case, the response of time of
Raysuz’s algorithm is 2log,(N/C)T for intracluster commu-
nications and O(log, (N)T) for intercluster communications.
The response times of Raymond’s and Suzuki’s algorithms are
2log,(N)T at the worst case. As explained in previous section,
Raysuz is favorable when requests are mostly made by nodes
that are in the same cluster as the token requestor.

4.6. Fairness. A distributed mutex algorithm can be stated
as fair if CS requests are always satisfied in the increasing
order of their request timestamps. Raymond’s algorithm [6]
is known to be not fair in certain situations. One of these
situations can be stated as follows.

Assume that nodes a and b are in the same cluster and
node a is the token holder and cluster leader of node b.
Also, nodes ¢ and d are in the same cluster and the leader
of these nodes is denoted as node e. This topology can be
seen in Figure 6. Considering this topology, suppose that the
CS requests are made in d, b, and ¢ chronological order. The
leaders of the requesters hear the requests and send requests
to the token holding cluster, node a. Node a sends the token
to the direction of d and immediately sends a request to grab
and send token to node b. Node e which is the leader of
node d receives the token and forwards it to d. After node
d exits the CS, it immediately sends the token to node c,
since they are in the same cluster and Suzuki-Kasami’s part
of Raysuz is processed. Meanwhile, node e makes Suzuki-
Kasami’s request, since it has received a request from node a
(which belongs to node b). After c exits CS, e takes the token
back and sends to a, which will finally send token to b. In this
scenario, ¢ enters CS before b while b has sent request earlier.

Our proposed algorithm uses Raymond’s algorithm for
intercluster communications; therefore, intercluster opera-
tions are unfair as in Raymond’s algorithm. Intracluster
requests are satisfied fairly as in Suzuki-Kasami’s algorithm.
On the whole, unfairness of Raysuz’s algorithm is generally
lower than, and in the worst cases the same as the unfairness
of Raymond’s algorithm.

Kanrar and Chaki [29] had solved the unfairness issue
by adding extensions to original Raymond’s algorithm. The
same approach can be applied to Raysuz’s algorithm easily;
therefore, the unfairness issue can be solved.

5. Discussion and Conclusion

In this work, we have proposed a new token-based hybrid
DMX algorithm. The algorithm works on a clustered graph
and executes Suzuki-Kasami’s algorithm in the clusters,
meanwhile running Raymond’s algorithm between cluster’s
leaders. It stores the CS requests in clusters and serves them
whenever token arrives into the cluster.

Mathematical Problems in Engineering

Other clusters

FIGURE 6: The topology of the scenario.

In general, Raysuz’s algorithm has a stronger fairness
property than Raymonds algorithm. In the worst case
scenario, the algorithm is as fair as Raymond’s algorithm.
However, there are algorithms to make Raymond’s algorithm
fair which can also be added into Raysuz’s algorithm [29].
Instead, Raysuz algorithm gives better message complexity
than pure Suzuki-Kasami’s algorithm and better CS delay
than pure Raymond’s algorithm. In addition, storing CS
request and serving them as soon as external token arrives
leads to preventing ping-pong style token communication
in intraclusters which can be matter of issue in Raymond’s
algorithm.

Using positive points of both Raymond’s and Suzuki-
Kasami’s algorithms makes it possible to balance the amount
of message communication (increasing with bigger clusters)
and the synchronization delay (increasing with smaller clus-
ters). Therefore, having a parameter like cluster size as a
tuning variable can make desired balance between CS delay
and communication messages. Thus, the algorithm will be
useful for both interactive systems with multiusers, in which
traffic reduction is important, and real-time systems, in which
lower CS delay is critical. In the real distributed systems,
usually networks are not fully connected. The proposed
algorithm uses Suzuki-Kasami’s algorithm and customizes it
by finding an MST in the clusters and using the shortest paths
in them.

The reduction of message count used in the communi-
cation leads to have lower energy consumption. This is an
important issue for wireless systems in general and makes
our algorithm more suitable to be used in MANETs. Also,
using clusters and executing CS in the clusters can lead to
have less energy consumptions. Group mutual exclusion [30]
is another field that can be adapted to proposed algorithm
[3, 31]. In any cluster, CS executions can be considered as
groups of nodes which tend to enter a CS.

Acknowledgment

The authors would like to thank the anonymous reviewers for
their accurate comments on the previous version of the paper.
The authors have been able to improve both their work and
the paper significantly by taking these anonymous reviewers’
critical comments into account.

Mathematical Problems in Engineering

References

(1]

(12]

(13]

(14]

[15

(16]

(17]

J. Mou, W. Zhou, T. Wang, C. Ji, and D. Tong, “Consensus
of the distributed varying scale wireless sensor networks,”
Mathematical Problems in Engineering, vol. 2013, Article ID
862518, 9 pages, 2013.

D. Y. Kim and M. Jeon, “Robust distributed Kalman filter
for wireless sensor networks with uncertain communication
channels,” Mathematical Problems in Engineering, vol. 2012,
Article ID 238597, 12 pages, 2012.

L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Communications of the ACM, vol. 21, no.
7, pp. 558-565, 1978.

G. Ricartand A. K. Agrawala, “An optimal algorithm for mutual
exclusion in computer networks,” Communications of the ACM,
vol. 24, no. 1, pp. 9-17, 1981.

I. Suzuki and T. Kasami, “A distributed mutual exclusion
algorithm,” ACM Transactions on Computer Systems, vol. 3, no.
4, pp. 344-349, 1985.

K. Raymond, “A tree-based algorithm for distributed mutual
exclusion,” ACM Transactions on Computer Systems, vol. 7, no.
1, pp. 61-77, 1989.

M. Singhal, “A heuristically-aided algorithm for mutual exclu-
sion for distributed systems,” IEEE Transactions on Computers,
vol. 38, no. 5, pp. 70-78, 1989.

M. Maekawa, “A root N algorithm for mutual exclusion in
decentralized systems,” ACM Transactions on Computer Sys-
tems, vol. 3, no. 2, pp. 145-159, 1985.

D. Agrawal and A. El Abbadi, “An efficient solution to the
distributed mutual exclusion problem,” ACM Transactions on
Computer Systems, vol. 9, no. 1, pp. 1-20, 1991.

S.Lodhaand A. Kshemkalyani, “A fair distributed mutual exclu-
sion algorithm,” IEEE Transactions on Parallel and Distributed
Systems, vol. 11, no. 6, pp. 537-549, 2000.

O. S. E Carvalho and G. Roucairol, “On mutual exclusion in
computer networks,” Communications of the ACM, vol. 26, no.
2, pp. 146-147, 1983.

A. Goscinski, “Two algorithms for mutual exclusion in real-
time distributed computer systems,” Journal of Parallel and
Distributed Computing, vol. 9, no. 1, pp. 77-82,1990.

Y. Chang, “Design of mutual exclusion algorithms for real-
time distributed systems,” Journal of Inforamtion Science and
Engineering, vol. 11, no. 4, pp. 527-548, 1994.

M. Challenger, P. Bayat, and M. R. Meybodi, “A reliable
optimization on distributed mutual exclusion algorithm,” in
Proceedings of the 2nd International Conference on Testbeds and
Research Infrastructures for the Development of Networks and
Communities (TRI-DENTCOM °06), pp. 566-574, Barcelona,
Spain, 2006.

M. Challenger, V. Khalilpour, P. Bayat, and M. R. Meibodi, “A
new robust centralized DMX algorithm,” in Proceedings of the
IASTED International Conference on Parallel and Distributed
Computing and Networks (PDCN °07), pp. 367-374, Innsbruck,
Austria, February 2007.

A. S. Tanenbaum, Distributed Operating System, Pearson Educa-
tion, 2007.

G. Hosseinabadi and N. H. Vaidya, “Exploiting opportunistic
overhearing to improve performance of mutual exclusion in
wireless Ad Hoc networks,” in Wired/Wireless Internet Commu-
nication, vol. 7277 of Lecture Notes in Computer Science, pp. 162—
173, 2012.

(18]

(19]

[20]

(21]

(25]

[26]

[27]

(30]

(31]

15

P. Chaudhuri and T. Edward, “An O(~/n) distributed mutual
exclusion algorithm using queue migration,” Journal of Univer-
sal Computer Science, vol. 12, no. 2, pp. 140-159, 2006.

E. Mueller, “Prioritized token-based mutual exclusion for dis-
tributed systems,” in Proceedings of the 12th International Par-
allel Processing Symposium and 9th Symposium on Parallel and
Distributed Processing, pp. 791-795, April 1998.

M. L. Neilsen and M. Mizuno, “A dag-based algorithm for
distributed mutual exclusion,” in Proceedings of the 1ith Inter-
national Conference on Distributed Computing Systems, pp. 354—
360, May 1991.

M. Naimi and M. Trehel, “A distributed algorithm for mutual
exclusion based on data structures and fault tolerance,” in
Proceedings of the 6th International Phoenix IEEE International
Conference on Computer Communications, pp. 35-39, Scotts-
dale, Ariz, USA, 1987.

M. Naimi, M. Trehel, and A. Arnold, “A log (N) distributed
mutual exclusion algorithm based on path reversal,” Journal of
Parallel and Distributed Computing, vol. 34, no. 1, pp. 1-13,1996.
J. Edmondson, D. Schmidt, and A. Gokhale, “QoS-enabled
distributed mutual exclusion in public clouds,” in On the Move
to Meaningful Internet Systems: OTM, vol. 7045 of Lecture Notes
in Computer Science, pp. 542-559, 2011.

M. Chen, W. Cai, and L. Ma, “Cloud computing platform for
an online model library system,” Mathematical Problems in
Engineering, vol. 2013, Article ID 369056, 7 pages, 2013.

G. Wen and Z. Duan, “Dynamics behaviors of weighted local-
world evolving networks with extended links,” International
Journal of Modern Physics C, vol. 20, no. 11, pp. 1719-1735, 2009.

K. Erciyes, D. Ozsoyeller, and O. Dagdeviren, “Distributed algo-
rithms to form cluster based spanning trees in wireless sensor
networks,” in Proceedings of the 8th International Conference of
Computational Science (ICCS ’08), vol. 5101 of Lecture Notes in
Computer Science, pp. 519-528, Springer, 2008.

Q.Minand R. Zimmermann, “VCA: an energy-efficient voting-
based clustering algorithm for sensor networks,” Journal of
Universal Computer Science, vol. 13, no. 1, pp. 87-109, 2007.

E Chung and L. Lu, “The average distance in a random graph
with given expected degrees,” Internet Mathematics, vol. 1, no. 1,
pp. 91-113, 2003.

S. Kanrar and N. Chaki, “Modified Raymond’s algorithm
for priority (MRA-P) based mutual exclusion in distributed
systems,” in Proceedings of the 3rd International Conference on
Distributed Computing and Internet Technology (ICDCIT ’06),
pp. 325-332, 2006.

A. Swaroop and A. K. Singh, “A token-based group mutual
exclusion algorithm for cellular wireless networks,” in Proceed-
ings of the Annual IEEE India Conference (IN-DICON "09), pp.
1-4, 2009.

A. Housni and M. Trehel, “Distributed mutual exclusion token-
permission based by prioritized groups,” in Proceedings of the
ACS/IEEE International Conference on Computer Systems and

Applications, pp. 253-259, 2001.

Advances in Advances in Journal of Journal of
Operations Research lied Mathematics ability and Statistics

il
PR
S Rt
£ 2 §

\ ‘

The Scientific
\{\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

Advances in

Mathematical Physics

%

Journal of : Mathematical Problems Abstract and Discrete Dynamics in
Mathematics in Engineering Applied Analysis Nature and Society

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

al of Journal of

Function Spaces Stochastic Analysis Optimization

Journal of International Jo

