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Most spacecrafts are designed to be maneuvered to achieve pointing goals. This is accomplished usually by designing a three-axis
control system, which can achieve arbitrary maneuvers, where the goal is to repoint the spacecraft and match a desired angular
velocity at the end of the maneuver. New control laws are required, however, if one of the three-axis control actuators fails. This
paper explores suboptimal maneuver strategies when only two control torque inputs are available. To handle this underactuated
system control problem, the three-axis maneuver strategy is transformed to two successive independent submaneuver strategies.
The first maneuver is conducted on one of the available torque axes. Next, the secondmaneuver is conducted on the torque available
plane using two available control torques. However, the resulting control law ismore complicated than the general three-axis control
law. This is because an optimal switch time needs to be found for determining the end time for the single-axis maneuver or the
start time for the second maneuver. Numerical simulation results are presented that compare optimal maneuver strategies for both
nominal and failed actuator cases.

1. Introduction

This work addresses the problem of finding suboptimal
spacecraft maneuver control laws for handling underactu-
ated system, with only two control torques available. Many
researchers have considered controlling the attitude of rigid
and flexible spacecrafts when all actuators are available.Many
different control strategies have been introduced for handling
the nominal three-axis control case [1–3]. For underactuated
system control application, more limited literatures exist.
For example, Tsiotras and Longuski [4] have considered the
case designing control strategies for handling situations in
which sensor and actuator failures limit the control options
available for carrying out the original mission objectives.
Keräı [5] has considered a more extreme case in which only
a single control actuator is available but is shown to be
uncontrollable, which is intuitively reasonable. Brockett [6]
has shown that two controls can be made asymptotically
stable about the origin. Tsiotras et al. [7–14] have further
addressed the problem of stabilization of axis-symmetric
spacecraft including tracking control laws. Others [15, 16]
have presented approximate strategies that switch between

two different control laws. Much of the later work has con-
sidered complex mathematical approaches for overcoming
the underactuated spacecraft control problem. Recently, Kim
and Turner [17] have suggested a simple way to handle the
failure control problemby introducing a sequentialmaneuver
approach that avoids exciting nonlinear coupling interaction
effects in the equation of motion and attitude kinematics
during suboptimal maneuvers. Analytically the problem
leads to a high-dimensional optimization problem, where it
is very important to specify accurate starting guesses [18].
The problem becomes computationally challenging, because
of increased number of unknowns and constraints [19]. A
major contribution to this work is the reduction of the
number of unknowns and constraints through two successive
maneuver strategies. Reducing three submaneuvers to two
submaneuvers confirms that the suggested strategy requires
less torque than the three-successive-maneuver strategy.

In this work, we address the problem of formulating and
solving a rigorous nonlinear optimal control problem for-
mulation for handling spacecraft maneuvers where actuator
failures limit the number of control inputs to two axes. First, a
single-axis maneuver is conducted to move the given attitude



2 Mathematical Problems in Engineering

to a torque available plane. Then the general simultaneous
maneuver is conducted for reorienting the spacecraft attitude.
The necessary conditions are developed for two cases, such
as control torque minimization and control torque-rate min-
imization. Unless the closed-loop control is considered, the
second approach provides continuous control time histories
to avoid an unexpected flexible body response [20, 21]. The
nonlinear necessary conditions are handled by introducing
a multiple shooting method [22], which enforces both the
terminal and interior boundary conditions that define the
optimal solution.

An asymmetric rigid spacecraft math model with two
control inputs is assumed. The control design objective is
to avoid the axis where the actuator failure has occurred.
With only two control inputs available, our strategy consists
of carrying out two successive submaneuvers of unknown
duration. For obtaining a suboptimal solution, an optimal
switch time must be found. Provided numerical examples
demonstrate that, if one fails to determine the optimal
switch time, then the impact on the integrated value of the
performance index is very significant. The full nonlinear set
of necessary conditions is solved by introducing a multiple
shooting method that is found to require ∼80 iterations for
convergence.

2. Dynamics and Kinematics for a Rigid Body

In general, the rotational dynamics equation of a rigid
spacecraft is given by [1–3]

�̇� = 𝐽

−1

(− [𝜔
×

] 𝐽𝜔 + U) , (1)

where 𝐽 ∈ R3×3 is the moment of inertia tensor for the
spacecraft, which is assumed to be diagonal, 𝜔 ∈ R3 is
the angular velocity vector of the spacecraft, and U ∈ R3 is
the control torque vector, and the cross-product matrix with
a generic variable k ∈ R3 is define as

[k×] ≜ [
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For describing an actuator failure condition, (1) is modi-
fied as [21]

�̇� ≜ f (u,𝜔) = 𝐽

−1

(− [𝜔
×

] 𝐽𝜔 + 𝑃u) , (3)

where u ∈ R2 is the available control torque vector, and the
control mapping matrix 𝑃 is defined as

𝑃 ≜

[

[

1 0

0 1

0 0

]

]

. (4)

There are various parameters to describe attitude such as
the quaternion, Euler angles, direction cosine matrix, modi-
fiedRodrigues parameters (MRPs), and so forth. Considering
the number of parameters to describe the attitude and
singularity issues, the MRPs are selected to define kinematic

equations. The MRPs are defined in terms of the quaternion
or the principal rotational elements as [23]

𝜎 =

𝜌

1 + 𝑞

4

, (5a)

𝜎 = ê tan Φ

4

, (5b)

where the MRPs have a geometric singularity at Φ = ±2𝜋

radians from (5b).
The kinematic differential equations for the MRPs can be

expressed as

�̇� ≜ r (𝜎,𝜔) = 1

4

[𝐵 (𝜎)]𝜔 , (6)

where

[𝐵 (𝜎)] ≜ (1 − 𝜎
𝑇

𝜎) 𝐼
3×3

+ 2 [𝜎
×

] + 2𝜎𝜎
𝑇

. (7)

3. Problem Formulation for Normal Control

Two quadratic performance indices are introduced for defin-
ing the optimal control problem for the actuator mechanical
failure maneuver case. Both the nominal and failed con-
trol actuator maneuvers are designed to achieve the three-
dimensional rigid body boundary conditions. Two related
control formulations are presented: (i) quadratic penalties on
control, leading to discontinuous control time histories, and
(ii) quadratic penalties on control rate, leading to continuous
control time histories. Both performance indices are defined
as follows:

J
u
≜

1

2
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𝑡𝑓

𝑡0

u𝑇u d𝑡, (8a)

J
u
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1
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𝑡0

u̇𝑇u̇ d𝑡, (8b)

where the time derivative of control torque is defined as

u̇ ≜ g (u̇) ∈ R
2

. (9)

As shown in the numerical results section, (8a) leads
to a discontinuous control solution whereas (8b) leads to a
continuous control solution. With only two control inputs
available for the failed actuator case, one defines first single-
axis maneuver to move given attitude to controllable plane.
By introducing two successive submaneuvers, one must
define an unknown switch time between the first single-axis
maneuver and the following maneuver.

3.1. Optimal Control Formulation. We seek a solution of (3)
and (6) satisfying the prescribed terminal boundary condi-
tions
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(10)
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where the 12 members of (10) are prescribed constants
characterizing the attitude and angular velocity at the initial
and final times. Defining the Hamiltonian for the system

H = L + 𝜉
𝑇r + 𝜇𝑇f , (11)

where the loss function L = u𝑇u/2 and the Lagrange
multipliers are 𝜉 ∈ R3 and 𝜇 ∈ R3, one obtains the
following first-order nonlinear necessary conditions.

State Equations Are

�̇� = H𝜉 = r, (12a)

�̇� = H𝜇 = f , (12b)

where (⋅)𝜁 ≜ 𝜕(⋅)/𝜕𝜁 for a generic variable 𝜁.
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(14)

Stationarity Condition Is

0 = Hu = Lu + f𝑇u 𝜇 = u + 𝑃𝑇𝐽−1𝜇. (15)

Given the fixed initial time 𝑡
0

and final time 𝑡
𝑓

, the initial
states 𝜎(𝑡

0

) and 𝜔(𝑡
0

), and the final states 𝜎(𝑡
𝑓

) and 𝜔(𝑡
𝑓

),
there are no extra boundary conditions. These fixed terminal
boundary conditions define a classical two-point boundary-
value problem.

3.2. Optimal Control-Rate Formulation. We seek a solution of
(3), (6), and (9) satisfying the terminal boundary conditions
in (10) and

u (𝑡
0

) = u
0

, u (𝑡
𝑓

) = u
𝑓

, (16)

where the 16 members of (10) and (16) are prescribed
constants characterizing the attitude, angular velocity, and
control torque at the initial and final times. Defining the
Hamiltonian for the system

H = L + 𝜉
𝑇r + 𝜇𝑇f + 𝜂𝑇g, (17)

where the loss function L = u̇𝑇u̇/2 and the Lagrange
multiplier is 𝜂 ∈ R2, one obtains the following first-order
nonlinear necessary conditions.

State Equations Are
�̇� = H𝜉 = r, (18a)

�̇� = H𝜇 = f , (18b)

u̇ = H𝜂 = g. (18c)

Costate Equations Are
̇

𝜉 = −H𝜎 = −r𝑇𝜎𝜉, (19a)

�̇� = −H𝜔 = −r𝑇𝜔𝜉 − f𝑇𝜔𝜇, (19b)

�̇� = −Hu = −f𝑇u 𝜇 = −𝑃

𝑇

𝐽

−1

𝜇. (19c)
Stationarity Condition Is

0 = Hu = Lu + g𝑇u𝜂 = u + 𝜂. (20)
As described in optimal control formulation, no addi-

tional boundary conditions exist.

4. Problem Formulation for Failure Control

For the underactuated system, a concept of sequential control
is introduced to avoid a control input about the failed control
axis. A sequential Euler angle transformation [23] is used
for determining the MRPs at the switch time. Assuming
that an Euler angle rotation sequence is selected that avoids
the failed actuator axis, one seeks to design two successive
submaneuvers where the maneuver times are unknown. At
the interior switch time, the angular velocity is set to zero
to avoid cross-coupling term’s effect. These control design
assumptions guarantee that the constraints for the states at
the interior switch time are perfectly known.

After developing a strategy for carrying out two succes-
sive submaneuvers, the switch timemust be specified. Failure
to solve the optimal switch time leads to large penalties
in performance indices, which indicates poor maneuver
performance.
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4.1. Switch-Time Boundary Conditions. A free interior switch
time 𝑡

𝑠

is introduced for changing the control actuator
being used; the following unknown boundary conditions are
introduced:

H (𝑡

𝑠

) = H(𝑡) = constant, (21)

since the Hamiltonian is not an explicit function of time.
Because the unknown switch time is defined, a multiple

shootingmethod [22] is applied to find a suboptimal solution,
where the interior point condition [24] is given by

𝑁(z (𝑡
𝑠

)) = 0, (22)

where z is the total states. The interior point condition yields
the following two additional boundary conditions that define
the suboptimal solution
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−

𝑠

) , (23b)

where 𝜅 is the total Lagrange multipliers associated with
the total states and 𝛼 is the another Lagrange multiplier
describing the maneuver switch-time jump conditions.

4.2. Optimal Control Formulation for Failure Control. An
Euler angle transformation algorithm [23] is used to define
the boundary conditions for the MRPs. Unlike the normal
control, the MRPs at the switch time need to be determined.
The boundary conditions for the MRPs are handled by using
an Euler angle rotation sequence that avoids the failed control
actuator axis.

To formulate themathematical structure for the problem,
one now collects all the problem unknowns and constraint
conditions as follows.

19 Unknowns Are

@𝑡

0

: 𝜉 (𝑡
0

) ∈ R
3

, 𝜇 (𝑡
0

) ∈ R
3

, (24a)

@𝑡

𝑠

: 𝛼
1

∈ R
3

, 𝛼
2

∈ R
3

, 𝑡

𝑠

∈ R
1

, (24b)

@𝑡

𝑓

: 𝜉 (𝑡
𝑓

) ∈ R
3

, 𝜇 (𝑡
𝑓

) ∈ R
3

. (24c)
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(25)

The constraints in (25) are particularly challenging
because jump conditions govern the optimality of the result-
ing solutions. The problem is characterized by both high
dimension and nonlinearity, which makes it critically impor-
tant to develop useful approximate starting solutions. The
unknowns in (24a), (24b), and (24c) and the constraints in
(25) are enforced by iteratively solving (12a), (12b), (13a),
(13b), and (15).

Table 1: Numerical simulation parameters.

Parameter Value Unit
Inertia of the spacecraft diag [14.2, 17.3, 20.3] kg⋅m2

Initial angular velocity [0, 0, 0]𝑇 deg/s
Initial control torque [0, 0]𝑇 Nm
Initial Euler angles (1-2-1 set) [15, 30, 45]𝑇 deg
Initial MRPs [0.263, 0.1361, −0.037]𝑇 —
Interior angular velocity [0, 0, 0]𝑇 deg/s
Interior control torque [0, 0]𝑇 Nm
Interior Euler angles (1-2-1 set) [15, 30, 0]𝑇 deg
Interior MRPs [0.064, 0.131, 0.017]𝑇 —
Final angular velocity [0, 0, 0]𝑇 deg/s
Final control torque [0, 0]𝑇 Nm
Final Euler angles (1-2-1 set) [0, 0, 0]𝑇 deg
Final MRPs [0, 0, 0]𝑇 —

4.3. Optimal Control-Rate Formulation for Failure Control.
To formulate the mathematical structure for the problem,
one now collects all the problem unknowns and constraint
conditions as follows.

25 Unknowns Are
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) .
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The unknowns of (26a), (26b), and (26c) and the con-
straints of (27) are enforced by iteratively solving (18a), (18b),
(18c), (19a), (19b), (19c), and (20).

5. Numerical Results

Thenumerical simulation parameters are listed in Table 1. For
asymmetric rigid spacecraft, a diagonal moment of inertia
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b̂2

Figure 1: Initial attitude movement to torque available plane using torque available axis rotation.

Table 2: Comparison between guesses and found values (torque-
rate minimization).

Parameter Guess Found value
𝜇 (𝑡
0

) [0, 0, 0]𝑇 [2.040, 0, 0]𝑇

𝜉 (𝑡
0

) [0, 0, 0]𝑇 [1.117, −0.001, −0.310]𝑇

𝜂 (𝑡
0

) [0, 0]𝑇 [0.310, 0]𝑇

𝜇 (𝑡
𝑓

) [0, 0, 0]𝑇 [−2.898, −0.710, −115.523]𝑇

𝜉 (𝑡
𝑓

) [0, 0, 0]𝑇 [2.528, 3.429, −7.982]𝑇

𝜂 (𝑡
𝑓

) [0, 0]𝑇 [0.310, −0.003]𝑇

𝛼
1

[0, 0, 0]𝑇 [−5.286, −1.983, 148.211]𝑇

𝛼
2

[0, 0, 0]𝑇 [−3.354, −2.203, 6.941]𝑇

𝛼
3

[0, 0]𝑇 [0.146, −0.263]𝑇

𝑡

𝑠

15 12.930

tensor is assumed to model the spacecraft, where all values
of the inertia are different.

Numerical simulations are performed for both nominal
(3-axis controls) and failure control cases (2-axis controls).
For the failure control simulation case, 𝑢

1

and 𝑢

2

are only
available. Using the Euler transformation, the given initial
attitude can be transformed into two possible sets of expres-
sion, such as (1-2-1) and (2-1-2). In this paper, the (1-2-1) set
is studied, and a trend of first single-axis maneuver is shown
in Figure 1. Future workwill develop algorithms for optimally
selecting the Euler angle rotation sequence.

The unknown Lagrange multipliers are selected arbitrar-
ily, and the unknown switch times are initialized by assuming
half of the total simulation time. With this initial guesses, the
Lagrange multipliers and switch time are found and listed in
Tables 3 and 2.

The simulation results for minimizing control torques
are shown in Figures 2–5. Figure 2 shows that all the states
meet the terminal and interior conditions using only two
control torques. Since a single-axis maneuver is conducted
until the switch time, we observe linear control time histories.
Then, two control torques are utilized for reorientation.
Note that discontinuous control time histories are obtained for
torque minimization case. Figure 3 presents time histories of
Lagrange multipliers associated with the states.

The results among the normal control, failure control
using two successive maneuvers, and failure control using

0 13.0079 30
−0.1

0
0.02

0 13.0079 30
−0.1

0
0.1
0.2
0.3

0 13.0079 30
−0.4
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𝜔
(r
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/s

)

𝜎

u
(N

m
)

u1
u2

𝜎1
𝜎2
𝜎3

𝜔1

𝜔2

𝜔3

Figure 2: Time trajectory of states (torque minimization).

three successive maneuvers are compared. Figure 4 presents
the Hamiltonian and performance index time histories. As
defined in (21), it shows that Hamiltonian is constant over
time regardless of normal and failure controls. For the normal
control, the performance index value at final time indicates
the torque consumption. For the failure control, the sum
of the performance index value at switch times and final
time indicates the torque consumption. Figure 5 presents the
principal angle time histories. We observe that the principal
angle path using three successive submaneuvers is the longest.
Thus we can expect that the two-successive-submaneuver
strategy has better performance than the three-successive-
submaneuver strategy.
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Figure 3: Time trajectory of costates (torque minimization).

Table 3: Comparison between guesses and found values (torque
minimization).

Parameter Guess Found value
𝜇 (𝑡
0

) [0, 0, 0]𝑇 [5.616, 0, 0]𝑇
𝜉 (𝑡
0

) [0, 0, 0]𝑇 [3.056, −0.004, −0.849]𝑇

𝜇 (𝑡
𝑓

) [0, 0, 0]𝑇 [−5.549, −1.053, −285.835]𝑇

𝜉 (𝑡
𝑓

) [0, 0, 0]𝑇 [5.929, 6.798, −10.628]𝑇

𝛼
1

[0, 0, 0]𝑇 [−8.389, −5.949, 329.183]𝑇
𝛼
2

[0, 0, 0]𝑇 [−5.322, −4.968, 8.416]𝑇

𝑡

𝑠

15 13.008

The simulation results for minimizing control torque
rates are shown in Figures 6–9. Figure 6 shows that all the
states meet the terminal and interior conditions using only
two control torques. Even though a single-axis maneuver is
conducted until the switch time, different control time histo-
ries are obtained.This is because control rates are minimized
instead of control torques. Also, it leads to continuous control
time histories. Figure 7 presents time histories of Lagrange
multipliers associated with the state.

Similarly, constant Hamiltonian time histories are
obtained in Figure 8. Like the control torque minimization
results of the principal angle path, the three-successive-
submaneuver result has the longest path in Figure 9. For
comparing torque consumptions according to the usage of
control rate as a performance index, Gu

≜ (1/2) ∫

𝑡𝑓

𝑡0
u𝑇u d𝑡

is calculated. For both torque and torque-rate minimization
cases, torque consumptions are compared and listed in
Table 4.
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Figure 4: Time trajectory of Hamiltonian and performance index
(torque minimization).
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Figure 5: Time trajectory of principal angle (torque minimization).

As shown in Table 4, the two-successive-submaneuver
strategy requires less torque than the three-successive-
submaneuver one.

6. Conclusion

The classic spacecraft maneuver problem is generalized to
handle the special case that an actuator failure alters the
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Figure 8: Time trajectory of Hamiltonian and performance index
(torque-rate minimization).
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Figure 9: Time trajectory of principal angle (torque-rate minimiza-
tion).

Table 4: Torque consumption comparison.

Observation Normal 2 man. (ratio) 3 man. (ratio)
Ju 0.0671 0.7820 (11.6502) 1.0432 (15.5414)
Gū 0.0959 1.0525 (10.9700) 1.5348 (15.9965)

hardware capabilities available for repointing the vehicle. A
key objective is to maintain a suboptimal solution strategy
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even during the degraded hardware environment. A solution
strategy is presented that enables two control inputs to
complete the originally defined three-dimensional rigid body
maneuver. Nonlinear necessary conditions are defined for
carrying out a sequence of maneuvers. For a single-axis
and simultaneous submaneuver, an unknown switch time
must be recovered switching between the remaining control
actuators. Two control formulations are presented. The first
approach penalizes the control torques but is shown to lead
to discontinuous control time histories.The second approach
penalizes the control torque rates but is shown to eliminate
the discontinuous control time histories, which is important
for flexible body applications. The problem is defined by
a nonlinear high-dimensional set of necessary conditions,
which are iteratively solved by introducing a multiple shoot-
ing method. On comparing the performance indices for the
nominal and failed actuator cases, it is demonstrated that the
failed actuator case requires ∼20-fold increase in computa-
tional cost. The proposed method is expected to be broadly
useful for spacecraft applications that must deal with actuator
failures on orbit, where optimized approaches are required
for maintaining vehicle pointing goals. Future research will
investigate developing more accurate starting guess solutions
for reducing the number of nonlinear optimization iterations
required.
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