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This paper investigates the problem of finite-time tracking control for nonholonomic mechanical systems with affine constraints.
The control scheme is provided by flexibly incorporating terminal sliding-mode control with the method of relay switching control
and related adaptive technique.The proposed relay switching controller ensures that the output tracking error converges to zero in
a finite time. As an application, a boat on a running river is given to show the effectiveness of the control scheme.

1. Introduction

In recent decades, sliding-mode control (SMC) has received
considerable attention for it is less sensitive to the parameter
variations and noise disturbances, and a great number of
results have been acquired [1–4]. To get more faster error
convergence on the sliding mode, a finite time mechanism,
terminal sliding-mode (TSM) control scheme, was presented
in [5–7]. Based on it, a series of tracking control problems
have been solved in [8–11] and the references therein.

On the other hand, nonholonomic constraints arise in
many mechanical systems when there is a rolling or sliding
contact, such as wheeled mobile robots, 𝑛-trailer systems,
space robots, underwater vehicles, and multifingered robotic
hands. Although considerable effort [11–15] has been made
for nonholonomic systems during the last decades, controller
design for these systems is still a challenging problem owing
to the existence of nonintegrable geometry constraints.

It is worth pointing out that the existing results [12–15]
were mainly aimed at the classic nonholonomic linear
constraints (i.e., 𝐽(𝑞) ̇𝑞 = 0). However, there are rare results
on affine constraints [16, 17] (i.e., 𝐽(𝑞) ̇𝑞 = 𝐴(𝑞)), which are
frequently encountered in some mechanical systems, such as
a running river with the varying stream, ball on rotating table
with invariable angular velocity, and space robot with initial
angular momentum. Therefore, researching the tracking
problem for such systems is an innovatory and significative
work.

This paper, using the terminal sliding-mode technique,
investigates the tracking control problem for a class of
uncertainty nonholonomic mechanical systems with affine
constraints. To achieve the tracking objective, by flexibly
using the algebra processing technique, we triumphantly
reduce the number of state variables which provide a motion
complying with affine constraints. In order to do so with
uncertainties, an appropriate adaptive law is established to
identify uncertainty parameter.Themain contributions of the
paper are briefly characterized by the following features.

(i) Because of the introduction of affine constraints to
mechanical systems, it is difficult to find linearly in-
dependent vector fields to cancel the constraint forces
𝐽(𝑞)𝜆 in dynamic equation. Hence, a new diffeomor-
phism transform is presented to deal with it.

(ii) Based on the asymptotic tracking idea for uncertain
multi-input nonlinear systems, the strategy of termi-
nal sliding-mode control, and related adaptive theory,
an adaptive relay switching tracking controller is
designed which ensures that the output tracking
error converges to zero in a finite time.

(iii) As a practical application, a boat on a running river
with varying stream is given to illustrate the reasona-
bility of the assumptions and the effectiveness of the
control strategy.
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The rest of this paper is organized as follows. System
description is given in Section 2. The design scheme of the
adaptive relay switching controller is addressed in Section 3.
Section 4 gives the main results. As for the application, a
practical example is considered in Section 5. Section 6 pro-
vides some concluding remarks.

2. System Description

2.1. Dynamics Model. In this paper, we consider a class of
nonholonomic mechanical systems described by Euler-La-
grangian formulation:

𝑀(𝑞) ̈𝑞 + 𝑉 (𝑞, ̇𝑞) ̇𝑞 + 𝐺 (𝑞) + Φ
𝑢
(𝜎, 𝑞, ̇𝑞) = 𝑓 + 𝐵 (𝑞) 𝜏,

(1)

𝐽
𝑇

(𝑞) ̇𝑞 = 𝐴 (𝑞) , (2)

where 𝑞 = [𝑞
1
, . . . , 𝑞

𝑛
]
𝑇

∈ R𝑛 is the generalized coordinates
and ̇𝑞, ̈𝑞 ∈ R𝑛 represent the generalized velocity vector and
acceleration vector, respectively; 𝑀(𝑞) ∈ R𝑛×𝑛 is inertia
matrix; 𝑉(𝑞, ̇𝑞) ̇𝑞 ∈ R𝑛 represents the vector of centripetal,
Coriolis forces; 𝐺(𝑞) ∈ R𝑛 represents the vector of gravi-
tational forces; Φ

𝑢
(𝜎, 𝑞, ̇𝑞) represents uncertainty of system;

𝜎 ∈ R𝑙 denotes the unknown parameter vector; 𝐵(𝑞) ∈ R𝑛×𝑟

is an input transformation matrix; 𝑓 ∈ R𝑛 denotes the vector
of constraint forces; 𝐽(𝑞) = [𝑗

1
(𝑞), . . . , 𝑗

𝑚
(𝑞)] ∈ R𝑛×𝑚(𝑚 < 𝑛)

is a constraint matrix with full rank; 𝜏 represents the 𝑟-vector
of the generalized control input with 𝑟 > 𝑛 − 𝑚; 𝐴(𝑞) =

[𝑎
1
(𝑞), . . . , 𝑎

𝑚
(𝑞)]
𝑇

∈ R𝑚 is a known vector function.
Constraint equation (2) is regarded as affine constraints.

When it is imposed on the mechanical system (1), the
constraint (generalized reaction) forces are given by

𝑓 = 𝐽 (𝑞) 𝜆, (3)

where 𝜆 ∈ R𝑚 is a Lagrangian multiplier corresponding to𝑚
nonholonomic affine constraints.

Remark 1. It is worth emphasizing that the system studied
in this paper is more general than that in some existing
literatures such as [12–15], where dynamic equation satisfies
the classical linear constraints. In fact, by taking𝐴(𝑞) = 0, (2)
transforms to linear constraints, whose tracking problem has
been extensively studied in [15, 18–20].

2.2. Reduced Dynamics and State Transformation. This part
mainly focuses on reducing the number of state variables
which provide motion complying with the affine constraints.

It is easy to find a full-rank matrix 𝑆 ∈ R𝑛×(𝑛−𝑚) satisfying

𝐽
𝑇

(𝑞) 𝑆 (𝑞) = 0. (4)

Define 𝜍(𝑡) = [𝑞, −𝑡]
𝑇; then (2) can be expressed concisely as

[𝐽
𝑇

(𝑞) 𝐴 (𝑞)] ̇𝜍 (𝑡) = 0. (5)

Let

𝐸 (𝑞) = [

𝑆 (𝑞) 𝜂 (𝑞)

0 −1
] ∈ R

(𝑛+1)×(𝑛−𝑚+1)

, (6)

where 𝜂(𝑞) ∈ R𝑛 satisfies 𝐽𝑇(𝑞)𝜂(𝑞) = 𝐴(𝑞). One can deduce
that 𝐸(𝑞) is a full rank and satisfies

[𝐽
𝑇

(𝑞) 𝐴 (𝑞)] 𝐸 (𝑞) = 0. (7)

According to (5) and (7), we know that there exists an (𝑛−𝑚+

1)-dimensional vector ̇
𝑧 = [

̇
𝑧

𝑇

𝑛−𝑚
,
̇
𝑧
𝑛−𝑚+1

]
𝑇 such that ̇𝜍 = 𝐸

̇
𝑧,

that is,

[

̇𝑞

−1
] = [

𝑆 (𝑞) 𝜂 (𝑞)

0 −1
] [

̇
𝑧

𝑇

𝑛−𝑚

̇
𝑧
𝑛−𝑚+1

] , (8)

which implies that ̇
𝑧
𝑛−𝑚+1

= 1. For convenience, define 𝑧 ≜

𝑧
𝑛−𝑚

∈ R𝑛−𝑚. In view of the relationship (8), the generalized
velocity vectors can be written as

̇𝑞 = 𝑆 (𝑞) 𝑧̇ + 𝜂 (𝑞) . (9)

It is clear that 𝑧 corresponds to the internal state variable.
Substituting (9) into (1), premultiplying 𝑆

𝑇

(𝑞) on both
sides of it, and using 𝐽

𝑇

(𝑞)𝑆(𝑞) = 0, the dynamics of the
mechanical system made up by (1) and (2) can be described
clearly as

𝑀
1
(𝑞) 𝑧̈ + 𝑉

1
(𝑞, ̇𝑞) 𝑧̇ + 𝐺

1
(𝑞, ̇𝑞) + Φ

1
(𝜎, 𝑞, ̇𝑞) = 𝑢, (10)

where𝑀
1
(𝑞) = 𝑆

𝑇

(𝑞)𝑀(𝑞)𝑆(𝑞), 𝑉
1
(𝑞, ̇𝑞) = 𝑆

𝑇

(𝑞)(𝑀(𝑞) ̇𝑆(𝑞) +

𝑉(𝑞, ̇𝑞)𝑆(𝑞)),𝐺
1
(𝑞, ̇𝑞) = 𝑆

𝑇

(𝑞)(𝑀(𝑞) ̇𝜂(𝑞)+𝑉(𝑞, ̇𝑞)𝜂(𝑞)+𝐺(𝑞)),
Φ
1
(𝜎, 𝑞, ̇𝑞) = 𝑆

𝑇

(𝑞)Φ
𝑢
(𝜎, 𝑞, ̇𝑞), and 𝑢 = 𝑆

𝑇

(𝑞)𝐵(𝑞)𝜏. In order
to guarantee that all (𝑛 − 𝑚) degrees of freedom are actuated
independently, we suppose that 𝑆𝑇(𝑞)𝐵(𝑞) is full rank.

Remark 2. The aforementioned diffeomorphism transform
method differs from the traditional ones in [13, 18–22]. More
specifically, when the affine constraints are imposed on the
mechanical system, it is difficult to find linearly independent
vector fields to proceed with a simple diffeomorphism
transformation for canceling the constraint forces in
dynamic equations. Hence, we present the forementioned
diffeomorphism transform to achieve this goal.

Remark 3. The diffeomorphism transformations consist of
(4) and (9), ensure that the transformed system (10) still
satisfies constraint equation (2), and possess the practical
physical meaning.This can also be confirmed by the practical
example in Section 5.

The control objective of this paper can be specified as
follows. Given the desired trajectories 𝑧

𝑟
(𝑡) and 𝑧̇

𝑟
(𝑡), which

are assumed to be bounded and should satisfy constraint
equation (2), we determine a control law such that all states of
the closed-loop system are globally bounded and the output
tracking error 𝜀(𝑡) ≜ 𝑧(𝑡) − 𝑧

𝑟
(𝑡) and its time derivative ̇𝜀(𝑡)

converge to zero in a finite time.
In order to solve the above tracking problem, wemake the

following reasonable assumption.

Assumption 1. The matrix𝑀
1
is symmetric, positive definite

and there exist two known scalars 𝛼
1
> 0 and 𝛼

2
> 0 such

that 𝜆min[𝑀
−1

1
(𝑞)] ≥ 𝛼

1
, ‖𝑀−1
1
(𝑞)‖ ≤ 𝛼

2
.
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3. Control Design

This subsection will construct a relay switching controller
composed of an adaptive TSMcontroller and an adaptive Pre-
TSM controller. For simplicity, sometimes the arguments of
functions are dropped in the remainder of the paper.

Step 1 (Adaptive TSM Controller Design). Define 𝜉 =

[𝑧
𝑇

, 𝑧̇
𝑇

]
𝑇

∈ R2(𝑛−𝑚); then system (10) can be expressed as

̇
𝜉 = [

𝑧̇

−𝑀
−1

1
(𝑞) [𝑉

1
(𝑞, ̇𝑞) 𝑧̇ + 𝐺

1
(𝑞, ̇𝑞) + Φ

1
(𝜎, 𝑞, ̇𝑞)]

]

+ [

0

𝐼
]𝑀
−1

1
(𝑞) 𝑢.

(11)

The following reference model is chosen as that in [5]:

[

𝑧̇
𝑟

𝑧̈
𝑟

] = [

0 𝐼

𝑅 𝑄
] [

𝑧r
𝑧̇
𝑟

] + [

0

𝐵
1

] 𝑟 (𝑡) ≜ 𝐴𝜉
𝑟
+ 𝐵𝑟 (𝑡) , (12)

where 𝑅, 𝑄, and 𝐵
1
are constant matrices such that system

(12) is stable; 𝐼 is an identity matrix; 𝑧
𝑟
(𝑡), 𝑧̇
𝑟
(𝑡), and 𝑟(𝑡)

aremeasurable and bounded signals. For convenience, define
𝜉
𝑟
= [𝑧
𝑇

𝑟
, 𝑧̇
𝑇

𝑟
]
𝑇

∈ R2(𝑛−𝑚).
Now, we develop the following tracking error system

which will be used in the subsequent controller design and
stability analysis:

𝑒 (𝑡) = 𝜉 (𝑡) − 𝜉
𝑟
(𝑡) = [𝜀

𝑇

(𝑡) , ̇𝜀
𝑇

(𝑡)]

𝑇

. (13)

We directly get the following equations from (11)∼(13):

̇𝑒 (𝑡) =
̇
𝜉 (𝑡) −

̇
𝜉
𝑟
(𝑡)

= 𝐴𝑒 (𝑡) + 𝐵 (𝑀
−1

1
(𝑞) 𝑢 (𝑡) + 𝐿 (𝑞, ̇𝑞, 𝑧, 𝑧̇, 𝑟)) ,

(14)

𝐿 (𝑞, ̇𝑞, 𝑧, 𝑧̇, 𝑟) = −𝑀
−1

1
(𝑞) (𝑉

1
𝑧̇ + 𝐺
1
) − 𝑀

−1

1
(𝑞)Φ
1

− 𝑅𝑧 − 𝑄𝑧̇ − 𝐵
1
𝑟 (𝑡) ,

(15)

where 𝐵 = [0, 𝐼]
𝑇. To ensure that 𝑒(𝑡) reaches zero in finite

time, one defines a fast switching surface as

𝑠
𝑖
= ̇𝜀
𝑖
+ 𝑐
𝑖
𝜀
𝑏/𝑎

𝑖
, 𝜀 = [𝜀

1
, . . . , 𝜀

𝑛−𝑚
]
𝑇

, (16)

where 𝑐
𝑖
, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑛−𝑚, are positive constants and both 𝑎 and 𝑏

are odd and satisfy 𝑏 < 𝑎 < 2𝑏. Define 𝑆 = [𝑠
1
, . . . , 𝑠

𝑛−𝑚
]
𝑇,𝐶 =

diag[𝑐
1
, . . . , 𝑐

𝑛−𝑚
]. Dynamic equation (16) can be rewritten as

𝑆 = ̇𝜀 + 𝐶𝜀
𝑏/𝑎

. (17)

According to the parameter separation technique (Lemma 2.1
in [23]), for uncertain term Φ

1
(𝜎, 𝑞, ̇𝑞) in system (1), there

exist an unknown constant Θ ≥ 1 and a known smooth
function Φ(𝑞, ̇𝑞) ≥ 1, such that ‖Φ

1
(𝜎, 𝑞, ̇𝑞)‖ ≤ ΘΦ(𝑞, ̇𝑞).

Then, choose a continuously differentiable, positive definite
and radially unbounded function 𝑉

1
as

𝑉
1
=

1

2

𝑆
𝑇

𝑆 +

𝛾

2

Θ̃
2

, (18)

where 𝛾 is a design parameter and Θ̃(𝑡) = Θ−Θ̂(𝑡) represents
parameter estimation error.

According to (9) and the definition of 𝑉
1
(𝑞, ̇𝑞), 𝐺

1
(𝑞, ̇𝑞),

we have ‖𝑉
1
(𝑞, ̇𝑞)𝑧̇ +𝐺

1
(𝑞, ̇𝑞)‖ < Ψ(𝑞, ̇𝑞, 𝑧̇), whereΨ(𝑞, ̇𝑞, 𝑧̇) is

a known positive smooth function. Taking the time derivative
of 𝑉
1
, using Assumption 1 and substituting (14)–(17) into it

result in the following:

𝑉̇
1
= 𝑆
𝑇

[

𝑏

𝑎

𝐶 diag (𝜀(𝑏/𝑎)−1
𝑖

) ̇𝜀] + 𝑆
𝑇

[0, 𝐼]

× [𝐴𝑒 (𝑡) + 𝐵 (𝑀
−1

(𝑞) 𝑢 + 𝐿 (𝑞, ̇𝑞, 𝑧, 𝑧̇, 𝑟))] − 𝛾Θ̃
̇

Θ̂

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑇
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑏

𝑎

𝐶 diag (𝜀(𝑏/𝑎)−1
𝑖

) ̇𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑇
󵄩
󵄩
󵄩
󵄩
󵄩

×
󵄩
󵄩
󵄩
󵄩
[0, 𝐼] 𝐴𝑒 (𝑡) − (𝑅𝑧 + 𝑄𝑧̇ + 𝐵

1
𝑟)
󵄩
󵄩
󵄩
󵄩

+ 𝛼
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑇
󵄩
󵄩
󵄩
󵄩
󵄩
Ψ (⋅) + 𝑆

𝑇

𝑀
−1

1
𝑢 + 𝛼
2
Θ

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑇
󵄩
󵄩
󵄩
󵄩
󵄩
Φ (⋅) − 𝛾Θ̃

̇
Θ̂

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑇
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑏

𝑎

𝐶 diag (𝜀(𝑏/𝑎)−1
𝑖

) ̇𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑇
󵄩
󵄩
󵄩
󵄩
󵄩

×
󵄩
󵄩
󵄩
󵄩
[0, 𝐼] 𝐴𝑒 (𝑡) − (𝑅𝑧 + 𝑄𝑧̇ + 𝐵

1
𝑟)
󵄩
󵄩
󵄩
󵄩
+ 𝛼
2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑇
󵄩
󵄩
󵄩
󵄩
󵄩
Ψ (⋅)

+ 𝑆
𝑇

𝑀
−1

1
𝑢 + 𝛼
2
Θ̂

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑇
󵄩
󵄩
󵄩
󵄩
󵄩
Φ (⋅) + 𝛼

2
Θ̃

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑇
󵄩
󵄩
󵄩
󵄩
󵄩
Φ (⋅)

− 𝛾Θ̃
̇

Θ̂ ≜

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑇
󵄩
󵄩
󵄩
󵄩
󵄩
Υ (⋅) + 𝑆

𝑇

𝑀
−1

1
𝑢 + 𝛼
2
Θ̃

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑇
󵄩
󵄩
󵄩
󵄩
󵄩
Φ (⋅)

− 𝛾Θ̃
̇

Θ̂,

(19)

whereΥ = ‖(𝑏/𝑎)𝐶 diag(𝜀(𝑏/𝑎)−1
𝑖

) ̇𝜀‖+‖[0, 𝐼]𝐴𝑒(𝑡)−(𝑅𝑧+𝑄𝑧̇+

𝐵
1
𝑟)‖ + 𝛼

2
Ψ(⋅) + 𝛼

2
Θ̂Φ(⋅).

Now, if an FTC control law 𝑢
𝐹𝑇
(𝑡) is taken as

𝑢
𝐹𝑇

(𝑡) = −

𝑆

𝛼
1
‖𝑆‖

(Υ + 1) (20)

with the following adaptive law:

̇
Θ̂ (𝑡) =

𝛼
2

𝛾

Φ (𝑞, ̇𝑞) ‖𝑆‖ , (21)

then the following expression can be obtained from (19):

𝑉̇
1
≤ − ‖𝑆‖ . (22)

Remark 4. The FTC controller composed of (20) and (21)
may cause the singularity of closed-loop (14)∼(21) due to the
existence of the term diag(𝜀(𝑏/𝑎)−1

𝑖
), since diag(𝜀(𝑏/𝑎)−1

𝑖
) ̇𝜀 may

be sufficiently large if 𝜀
𝑖
(𝑡) is sufficiently small. However, on

the sliding surfaces, the singularity does not occur. Since, on
the sliding mode, 𝑆 = 0 implies ̇𝜀

𝑖
= −𝑐
𝑖
𝜀
𝑏/𝑎

𝑖
, then one can

further get

diag (𝜀(𝑏/𝑎)−1
𝑖

) ̇𝜀 = − [𝑐
1
𝜀
(2𝑏/𝑎)−1

1
, . . . , 𝑐

𝑛−𝑚
𝜀
(2𝑏/𝑎)−1

𝑛−𝑚
] . (23)

This shows that each component of diag(𝜀(𝑏/𝑎)−1
𝑖

) ̇𝜀 is bounded
as 𝜀(𝑡) is sufficiently small for 2𝑏 > 𝑎. Consequently, once the
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trajectory of 𝑒(𝑡) arrives on the sliding surfaces, the control
law is bounded and does not cause the singularity. However,
when 𝑒(𝑡) moves to the switching surface, singularity may
occur. To avoid this phenomenon, we introduce the following
controller.

Step 2 (adaptive pre-TSM controller design). Firstly, defineΩ
as

Ω ≜ {𝑒 :
󵄩
󵄩
󵄩
󵄩
𝑒 − 𝑒
∗󵄩
󵄩
󵄩
󵄩
< 𝜀
0
≪ 1} , (24)

where 𝑒∗ is a fixed point on the switching surface 𝑆 = 0 and
𝜀
0
is a sufficiently small constant.
Let us construct an augmented linear system as

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵V (𝑡) , (25)

where

V (𝑡) =

{
{
{

{
{
{

{

𝐵
𝑇

𝑒
−𝐴
𝑇
𝑡

𝐺
𝑇

𝑐
(0, 𝑡
𝑓
)

× [𝑒
−𝐴
𝑇
𝑡𝑓
𝑥 (𝑡
𝑓
) − 𝑥 (0)] , 0 ≤ 𝑡 ≤ 𝑡

𝑓
,

0, 𝑡 > 𝑡
𝑓
,

(26)

where 𝐺𝑇
𝑐
(0, 𝑡
𝑓
) is the controllable gramian matrix with the

following form:

𝐺
𝑇

𝑐
(0, 𝑡
𝑓
) = ∫

𝑡𝑓

0

𝑒
−𝐴𝑡

𝐵𝐵
𝑇

𝑒
−𝐴
𝑇
𝑡d𝑡. (27)

Based on linear system theory, under the control law V(𝑡),𝑥(𝑡)
starting from any initial state vector 𝑥(0) can be transferred
to any given final state 𝑥(𝑡

𝑓
) at time 𝑡

𝑓
. Here, let the final state

𝑥(𝑡
𝑓
) be on the nonlinear switching surface 𝑆 = 0 and 𝑥(𝑡

𝑓
) =

𝑒
∗.

The remaining task is to design the preterminal sliding-
mode controller which guarantees that an arbitrary point in
the space R2𝑛−𝑚 arrives atΩ in a finite time.

Define

󰜚 (𝑡) = 𝑒 (𝑡) − 𝑥 (𝑡) , 󰜚 (0) = 𝑒 (0) = 󰜚
0
. (28)

Equations (14) and (25) give rise to

̇󰜚 (𝑡) = 𝐴󰜚 (𝑡) + 𝐵 [𝑀
−1

1
(𝑞) 𝑢 + 𝐿 (⋅) − V (𝑡)] , (29)

where 𝐿(⋅) is given in (15). Because of the stabilization of 𝐴,
there exists a positive definite matrix 𝑃 such that

𝐴
𝑇

𝑃 + 𝑃𝐴 = −𝐼. (30)

Choose a candidate Lyapunov function 𝑉
2
as

𝑉
2
=

1

2

󰜚
𝑇

𝑃󰜚 +

𝜅

2

Θ̃
2

, (31)

where 𝜅 is a design parameter. In view of Assumption 1, the
time derivative of 𝑉

2
satisfies

𝑉̇
2
= −

1

2

󰜚
𝑇

󰜚 + 󰜚
𝑇

𝑃𝐵 [𝑀
−1

1
(𝑞) 𝑢 + 𝐿 (𝑞, ̇𝑞, 𝑧, 𝑧̇, 𝑟) − V (𝑡)]

− 𝜅Θ̃
̇

Θ̂

≤ −

1

2

󰜚
𝑇

󰜚 + 󰜚
𝑇

𝑃𝐵𝑀
−1

1
(𝑞) 𝑢

+

󵄩
󵄩
󵄩
󵄩
󵄩
󰜚
𝑇

𝑃𝐵

󵄩
󵄩
󵄩
󵄩
󵄩
[𝛼
2
Ψ (⋅) +

󵄩
󵄩
󵄩
󵄩
𝑅𝑧 + 𝑄𝑧̇ + 𝐵

1
𝑟
󵄩
󵄩
󵄩
󵄩
+ 𝛼
2
Θ̂Φ (⋅)

+ ‖V (𝑡)‖ ] + 𝛼
2
Θ̃Φ (⋅)

󵄩
󵄩
󵄩
󵄩
󵄩
󰜚
𝑇

𝑃𝐵

󵄩
󵄩
󵄩
󵄩
󵄩
− 𝜅Θ̃

̇
Θ̂.

(32)

If we take a pre-terminal controller as

𝑢pr (𝑡) = −

(󰜚
𝑇

𝑃𝐵)

𝑇

𝛼
1

󵄩
󵄩
󵄩
󵄩
󰜚
𝑇
𝑃𝐵

󵄩
󵄩
󵄩
󵄩

× [‖V (𝑡)‖ + 𝛼
2
Ψ (⋅) +

󵄩
󵄩
󵄩
󵄩
𝑅𝑧 + 𝑄𝑧̇ + 𝐵

1
𝑟
󵄩
󵄩
󵄩
󵄩
+ 𝛼
2
Θ̂Φ (⋅)]

(33)

with adaptive law

̇
Θ̂ =

𝛼
2

𝜅

Φ (𝑞, ̇𝑞)

󵄩
󵄩
󵄩
󵄩
󵄩
󰜚
𝑇

𝑃𝐵

󵄩
󵄩
󵄩
󵄩
󵄩
, (34)

then (32) reduces to

𝑉̇
2
≤ −

1

2

󰜚
𝑇

󰜚. (35)

4. Main Results

Firstly, let us recapitulate how to manipulate the fore-men-
tioned two adaptive controllers to realize the control objec-
tive.

(i) According to (29), design a preterminal controller
made up by (33) and (34) such that the trajectory of
𝑒(𝑡) in (14) enters Ω in a given finite time.

(ii) Design the TSM controller formed by (20) and (21)
such that the trajectory of 𝑒(𝑡) starting from Ω first
reaches switching surface 𝑆 = 0 and then moves to
zero in a finite time along this surface.

Next, we present the following theorem, which summarizes
the main results of this paper.

Theorem 5. Suppose that Assumption 1 holds for the nonholo-
nomic mechanical system described by (1) and (2), then for a
desired trajectory 𝑧

𝑟
(𝑡) satisfying the constraint equation (2),

according to the above manipulations (i) and (ii), the following
are guaranteed:

(a) all states of the closed-loop system are globally bounded;
(b) the output tracking errors 𝜀(𝑡) and ̇𝜀(𝑡) converge to zero

in a finite time.



Mathematical Problems in Engineering 5

Proof . From (35), one knows that 𝑉
2
is monotonically

decreasing, that is, 𝑉
2
(𝑡) ≤ 𝑉

2
(0), for all 𝑡 ≥ 0, which results

in ‖󰜚(𝑡)‖ ≤ √2𝑉
2
(0)/‖𝑃‖ < ∞ and |Θ̃(𝑡)| ≤ √2𝑉

2
(0)/𝜅 <

∞. Therefore, it follows that 𝑒(𝑡) is bounded from (25)∼(28).
Moreover, the boundedness of 𝑧

𝑟
(𝑡), 𝑧̇
𝑟
(𝑡) shows that 𝑧(𝑡) and

𝑧̇(𝑡) are bounded, so are 𝑢(𝑡) in (33) and ̇󰜚(𝑡). In addition,
integrating on (35) from 0 to ∞ and using the boundedness
of 𝑉
2
, we have ∫∞

0

󰜚
𝑇

󰜚d𝜏 < ∞. The boundedness of 󰜚𝑇(𝑡) ̇󰜚(𝑡)

means that 󰜚𝑇(𝑡)󰜚(𝑡) is uniformly continuous. According to
the Barbalat lemma [24], one has lim

𝑡→∞
󰜚(𝑡)
𝑇

󰜚(𝑡) = 0 and
lim
𝑡→∞

󰜚(𝑡) = 0. Therefore, there exists a finite time 𝑇
0
=

𝑇
0
(󰜚
0
) such that ‖󰜚(󰜚

0
, 𝑡)‖ ≤ 𝜀

0
, 𝑡 ≥ 𝑇

0
. If one selects 𝑡

𝑓
= 𝑇
0
,

then

󰜚 (󰜚
0
, 𝑡
𝑓
) = 󰜚 (󰜚

0
, 𝑇
0
) = 𝑒 (𝑡

𝑓
) − 𝑥 (𝑡

𝑓
) = 𝑒 (𝑡

𝑓
) − 𝑒
∗

,

𝑒 (𝑡
𝑓
) ∈ Ω.

(36)

This shows that under the action of the pre-terminal control
law (33), 𝑒(𝑡) starting from any initial state vector 𝑒(0) enters
the small neighborhood Ω of 𝑒∗ after time 𝑡

𝑓
. On the other

hand, (18) and (22) imply that the trajectory of the system
globally asymptotically converges to 𝑆 = 0. In the following,
we will talk about the convergence rate of dynamic surface 𝑆.
(18) and (22) result in

𝑉̇
1
= 𝑆
𝑇
̇𝑆 − 𝛾Θ̃

̇
Θ̂ = 𝑆

𝑇
̇𝑆 − 𝑎
2
Θ̃Φ (𝑞, ̇𝑞) ‖𝑆‖ ≤ − ‖𝑆‖ . (37)

It is equivalent to
󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑇
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩

̇𝑆

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝑎
2
Θ̃Φ (𝑞, ̇𝑞) ‖𝑆‖ ≥ ‖𝑆‖ , (38)

or
󵄩
󵄩
󵄩
󵄩
󵄩

̇𝑆

󵄩
󵄩
󵄩
󵄩
󵄩
≥ 1 − 𝑎

2
Θ̃Φ (𝑞, ̇𝑞) ≜ 𝐿, when ‖𝑆‖ ̸= 0. (39)

Integrating on both sides of (21) and according to the defini-
tion of Θ̃, one has

Θ̃ = −∫

𝑡

0

𝑎
2

𝛾

Φ (𝑞, ̇𝑞) ‖𝑆‖ d𝜏 − Θ̂ (0) + Θ. (40)

This ensures Θ̃ < 0 by appropriately choosing Θ̂(0). Hence,
one further gets 𝐿 > 0. ‖ ̇𝑆‖ > 𝐿 means that ∑𝑛−𝑚

1
̇𝑠
2

𝑖
> 𝐿
2;

without loss of generality, suppose ̇𝑠
2

𝑖
> 𝐿
2

/(𝑛 − 𝑚). ̇𝑠
𝑖
>

𝐿/√𝑛 − 𝑚 and ̇𝑠
𝑖
< −𝐿/√𝑛 − 𝑚 can conclude (𝐿/√𝑛 − 𝑚)𝑡 +

𝑠
𝑖
(0) < 𝑠

𝑖
(𝑡) and (𝐿/√𝑛 − 𝑚)𝑡 − 𝑠

𝑖
(0) < −𝑠

𝑖
(𝑡), respectively.

In both cases, one can deduce that 𝑠
𝑖
(𝑡) tends to zero in a

finite time on account of the convergence of 𝑆. In view of the
above analysis, one knows that 𝑆(𝑡) tends to zero in finite time;
that is, the error dynamic 𝑒(𝑡) reaches the nonlinear switching
surface 𝑆 = 0 in a finite time.

Next, we prove that the singularity cannot occur by using
the above proposed relay switching controller.

Specifically, given a specified initial value 𝑒(0), the trajec-
tory of error dynamics 𝑒(𝑡) can be divided into two stages in
which it firstly moves to the switching surface in a certain
time interval [0, 𝑡

𝑓
] and then slides along 𝑆 = 0 to the origin at

a finite time. According to Remark 4, once error 𝑒(𝑡) arrives

to the sliding surface, the singularity may not occur. In the
following, one can prove that under control law composed of
(20) and (21), the trajectory 𝑒(𝑡) initiating from the open set
Ω cannot escape to infinity. For this purpose, we assume that
at some time instant 𝑡∗

0
, 𝑒(𝑡∗
0
) = 𝑒

∗

0
∈ Ω. By (18) and (22),

𝑆(𝑒(𝑡)) can be close to zero in a finite time. Since 𝑆(𝑒∗) = 0,
𝑒
∗

0
∈ Ω and 𝜀

0
is sufficiently small; ‖𝑆(𝑒∗

0
)‖ is very small, which

guarantees that ‖𝑆(𝑒(𝑡))‖ is sufficiently smal1. Therefore, by
(17), one has

̇𝜀 (𝑡) = −𝐶𝜀
𝑏/𝑎

(𝑡) + 𝑆 (𝑡) ≈ −𝐶𝜀
𝑏/𝑎

(𝑡) . (41)

Consequently, 𝑒∗
0
is far away from the origin when 𝑒

∗ is
away from the origin. This shows that the initial value 𝜀(𝑡∗

0
)

is away from zero. By solving the inequalities (22) and (41)
in time interval [𝑡∗

0
,∞) and by considering the initial values

𝜀(𝑡
∗

0
) and ‖𝑆(𝑒(𝑡

∗

0
))‖, we conclude that ‖𝑆(𝑒(𝑡))‖ reaches zero

firstly before 𝜀
𝑖
(𝑡) becomes very small. As shown previously,

on the switching surface 𝑆 = 0, the control signal is bounded.
This illustrates that the control law 𝑢(𝑡) given in (20) and (21)
is bounded if the starting state of the trajectories 𝑒(𝑡) is in a
sufficiently small neighborhood of Ω, and in this sense, the
singularity is avoided.

Altogether, we consider the trajectories of (14) in time
intervals [0, 𝑡

𝑓
] and [𝑡

𝑓
,∞). In view of the above analysis,

as 𝑡
𝑓
is fixed, [0, 𝑡

𝑓
] is a finite one. Equations (31) and (32)

guarantee that 𝑒(𝑡) arrives atΩ and does not escape to infinite
in [0, 𝑡

𝑓
]. When 𝑡 ≥ 𝑡

𝑓
, the controller is switched to the TSM

controller under which the trajectory arrives at the switching
surface 𝑆 = 0 first and then moves along this surface to the
origin in a finite time.The TSM controller has been proved to
be bounded in time interval [0, 𝑡

𝑓
] and all the signals in the

closed loop are bounded on the switching surface 𝑆 = 0. Till
now, the theorem is proved completely.

Remark 6. If one adopts a general finite time controller in
[5], the control signals may tend to infinity before the state of
the error system reaches the switching surface. For instance,
the term ‖ diag(𝜀(𝑏/𝑎)−1

1
, . . . , 𝜀

(𝑏/𝑎)−1

𝑛−𝑚
) ̇𝜀‖ in controller (20) is

infinity, if 𝜀
𝑖
(𝑖 = 1, . . . , 𝑛 − 𝑚) are all sufficiently small for

𝑏 < 𝑎 < 2𝑏.Therefore, one proposed a relay switching control
scheme to avoid this phenomenon.

5. Simulation

Consider a boat on a running river (see Figure 1). The 𝑥-axis
and 𝑦-axis denote the transverse direction and the down-
stream direction of the river, respectively. According to the
motion of the boat on the river, one can get the following
kinematic equations:

𝑥̇ = 𝑉 cos 𝜃 − 𝐶 (𝑥) cos 𝜃 sin 𝜃,

̇𝑦 = 𝑉 sin 𝜃 + 𝐶 (𝑥) cos2𝜃,
(42)

where𝐶(𝑥) and𝑉denote the streamof the river and the speed
of the boat, respectively. After some simple calculations, the
affine constraints can be obtained as follows:

̇𝑦 cos 𝜃 − 𝑥̇ sin 𝜃 = 𝐶 (𝑥) cos 𝜃. (43)
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Figure 1: Boat on a running river.
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e1
e3

Figure 2: The trajectories of 𝑒
1
(𝑡) and 𝑒

3
(𝑡).

From the above equation, the following can be obtained:

𝑞 = [𝑦, 𝑥, 𝜃]
𝑇

,

𝐽 (𝑞) = [cos 𝑞
3
, − sin 𝑞

3
, 0]
𝑇

,

𝐴 (𝑞) = 𝐶 (𝑞
2
) cos 𝑞

3
.

(44)

The dynamics model of the boat on a running river can be
expressed as

𝑚
1
̈𝑦 + 𝜎
1
̇𝑦 = 𝜆 cos 𝜃 + 𝜏

1
sin 𝜃,

𝑚
1
𝑥̈ + 𝜎
2
𝑥̇ = − 𝜆 sin 𝜃 + 𝜏

1
cos 𝜃,

𝐼
1

̈
𝜃 = 𝜏
2
,

(45)

1
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Time (s)
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1.5

Figure 3: The trajectories of 𝑒
2
(𝑡) and 𝑒

4
(𝑡).
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Figure 4: The trajectories of 𝑢
1
(𝑡) and 𝑢

2
(𝑡).

where 𝑚
1
is the mass of the boat and 𝐼

1
is the inertia of the

boat; 𝜎
1
̇𝑦 and 𝜎

2
𝑥̇ denote the external resistance, where 𝜎

1

and 𝜎
2
are unknown. In this simulation, let 𝐶(𝑞

2
) = 𝑞
2
, and

choose

𝑆 (𝑞) =
[

[

sin 𝑞
3
0

cos 𝑞
3
0

0 1

]

]

,

𝜂 (𝑞) = [𝑞
2
, 0, 2√2𝑞

2
]

𝑇

.

(46)
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Figure 5: The trajectory of Θ̂(𝑡).
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Figure 6: The trajectories of 𝑒
1
(𝑡) and 𝑒

3
(𝑡).

It follows from the procedure of the aforementioned diffeo-
morphism transformation that

̇𝑞
1
= 𝑧̇
1
sin 𝑞
3
+ 𝑞
2
,

̇𝑞
2
= 𝑧̇
1
cos 𝑞
3
,

̇𝑞
3
= 𝑧̇
2
+ 2√2𝑞

2
.

(47)

Then, the original dynamics system can be converted into the
following form:

[

𝑧̈
1

𝑧̈
2

] + [

̇𝑞
2
sin 𝑞
3

2√2 ̇𝑞
2

] + [

𝜎
1
̇𝑞
1
sin 𝑞
3
+ 𝜎
2
̇𝑞
2
cos 𝑞
3

0
] = [

𝜏
1

𝜏
2

] .

(48)
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Figure 7: The trajectories of 𝑒
2
(𝑡) and 𝑒

4
(𝑡).
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Figure 8: The trajectories of 𝑢
1
(𝑡) and 𝑢

2
(𝑡).

For the given 𝐽(𝑞), 𝑆(𝑞), and 𝜂(𝑞), the desired trajec-
tory 𝑞

𝑑
= [𝜋/3, 𝑒

−𝑡

, 𝜋/4]
𝑇 satisfies kinematic constraint

𝐽
𝑇

(𝑞
𝑑
) ̇𝑞
𝑑

= 𝐴(𝑞
𝑑
) and diffeomorphism transform ̇𝑞

𝑑
=

𝑆(𝑞
𝑑
)𝑧̇
𝑑
+ 𝜂(𝑞

𝑑
) with 𝑧

𝑟
= [√2𝑒

−𝑡

, 2√2𝑒
−𝑡

]
𝑇. The control

objective, based on the proposed scheme, is to determine an
adaptive relay switching control law such that the trajectory 𝑧
follows 𝑧

𝑟
. According to [𝑧̇𝑇

𝑟
, 𝑧̈
𝑇

𝑟
]
𝑇

= 𝐴[𝑧
𝑇

𝑟
, 𝑧̇
𝑇

𝑟
]
𝑇, the reference

model is chosen as

̇
𝜉
𝑟
= 𝐴𝜉 + 𝐵𝑟, (49)
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Figure 9: The trajectory of Θ̂(𝑡).

where

𝜉
𝑟
=

[

[

[

[

𝑧
1𝑟

𝑧
2𝑟

𝑧̇
1𝑟

𝑧̇
2𝑟

]

]

]

]

, 𝐴 =

[

[

[

[

0 0 1 0

0 0 0 1

−1 0 −2 0

0 −1 0 −2

]

]

]

]

,

𝐵 =

[

[

[

[

0 0

0 0

1 0

0 1

]

]

]

]

, 𝑟 (𝑡) = [

2

2
] .

(50)

In this simulation, the parameters in the system are
selected as 𝑚 = 1 kg, 𝐼 = 1 kg ⋅ m2, 𝜎

1
= 𝜎
2
= 1, 𝛼

1
= 0.5,

𝛼
2
= 2, 𝛾 = 𝜅 = 15, 𝑎 = 3, 𝑏 = 5, 𝑐

1
= 𝑐
2
= 1, 𝜀

0
= 0.01,

𝑥(𝑡
𝑓
) = [−1, −1, 1, 1]

𝑇, and 𝑡
𝑓

= 5. In order to eliminate
the effects of the chattering, we replace 𝑠

𝑖
/‖𝑆‖ by 𝑠

𝑖
/(‖𝑆‖ +

0.005).The results of the simulation are shown in Figures 2–9.
Specifically, Figures 2 and 3 show that output tracking errors
go toΩ at time instant 𝑡 = 5 under the action of adaptive Pre-
TSM controller. Figures 4 and 5 show that both the adaptive
pre-TSM controller 𝑢(𝑡) and state Θ̂(𝑡) are bounded. On the
other hand, the satisfactory results of TSM design scheme
after 𝑡 = 5 are presented in Figures 6–9. Figures 6 and 7 show
that the errors 𝑒(𝑡) become zero at approximate time instant
𝑡 = 7.4. Figures 8 and 9 show that the adaptive TSMcontroller
𝑢(𝑡) and Θ̂(𝑡) tend to the steady state and both of them are
bounded.Thereby, the practical simulation example confirms
the validity of the proposed algorithm.

6. Conclusions

This paper studies tracking problem for a class of uncertain
nonholonomic mechanical systems based on the idea of
terminal sliding-mode control. The adaptive relay switching
tracking controller guarantees that output tracking error
converges to zero in a finite time and avoids the singularity

problem.Apracticalmechanicalmodel is constructed to con-
firm the reasonability of the assumption and the effectiveness
of the control scheme.
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