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In practical geotechnical engineering, most of rock masses with multiple cracks exist in water environment. Under such
circumstance, these adjacent cracks could interact with each other. Moreover, the seepage pressure, produced by the high water
pressure, can change cracks’ status and have an impact on the stress state of fragile rocks. According to the theory of fracture
mechanics, this paper discusses the law of crack initiation and the evolution law of stress intensity factor at the tip of a wing crack
caused by compression-shear stress and seepage pressure. Subsequently, considering the interaction of the wing cracks and the
additional stress caused by rock bridge damage, this paper proposes the intensity factor evolution equation under the combined
action of compression-shear stress and seepage pressure. In addition, this paper analyzes the propagation of cracks under different
seepage pressure which reveals that the existence of seepage pressure facilitates the wing crack’s growth. The result indicates that
the high seepage pressure converts wing crack growth from stable form to unstable form. Meanwhile, based on the criterion and
mechanism for crack initiation and propagation, this paper puts forward the mechanical model for different fracture transfixion
failure modes of the crag bridge under the combined action of seepage pressure and compression-shear stress. At the last part, this
paper, through investigating the flexibility tensor of the rock mass’s initial damage and its damage evolution in terms of jointed
rockmass’s damagemechanics, deduces the damage evolution equation for the rockmass with multiple cracks under the combined
action of compression-shear stress and seepage pressure. The achievement of this investigation provides a reliable theoretical
principle for quantitative research of the fractured rock mass failure under seepage pressure.

1. Introduction

In recent years, rock mechanics is supposed to consider
the most striking feature of rock masses that their blocky
structures are caused by the discontinuity surfaces such as
joints, cracks, and faults. As frictional force is overcome
by shear stress induced by far-field stresses near the crack
surface, the crack surface is inclined to slide over each other,
which induces stress concentration on tip of crack and leads
to the initiation and splitting propagation of the wing crack
at last [1–3]. Worse, the existence of seepage pressure could
reinforce the trend of themicrofracture and fault degradation
to fractured rock masses. With the development of rock
mechanics engineering, increasing number of situations is

involved in seepage pressure which results in numerous
engineering accidents around the world [4, 5]. Hence,
researches on rock mechanics referring to seepage pressure
are gradually becoming a hot spot in the area of geotechnical
engineering. A vast number of scholars havemade great effort
in developing crack propagation theories [6–8] or developing
techniques to calculate the stress intensity factors of crack tips
[9–12], or studying the relationship between microdamage
development and macrodeformation of rock under uniaxial
compression [13–15]. Nevertheless, the former studies mainly
focus onmechanicalmechanism of special single crack rather
than the effect of seepage pressure. Besides, there are few
reasonable models for evolution laws of stress intensity factor
for the branch crack tip in the multicrack rock mass, as well
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Figure 1: Sketch of wing cracks seeding and propagation.

as studies of the damage and fracture evolutionmechanism of
the fractured rock mass with multiple cracks under seepage
pressure.

As for the multicrack rock mass, the mechanical state
on the crack surface could be changed by the action of
seepage pressure. As the branch crack expands, the inter-
action of cracks leads to the continuous degradation of the
macroscopic mechanical properties of the rock mass [8]. The
interaction theory of multiple cracks in rock masses is a key
factor in the analysis of microdamage mechanism.Therefore,
based on previous studies and the rock fracture mechanics
criterion, this paper proposes the mechanical model of the
multicrack rock mass under the action of seepage pressure
and investigates traits of gradual fracture and damage evo-
lution of the multicrack rock under seepage pressure on the
basis of exploring the law of the compression-shear crack
initiation, branch crack growth, and rock bridge connection.
Then, this paper applies the self-consistent theory to setting
up the constitutive and damage evolution equation for the
multicrack rock mass under seepage pressure.

2. Analysis of Compression-Shear Multicrack
Damage Fracture Models

2.1. Crack Initiation. Theunderground rock usually exists in a
compression stress state, and a lot of testing results and theo-
retical calculation prove that cracks expand approximately in
the direction perpendicular to the maximum principal stress
[16, 17] as shown in Figure 1.

Firstly, this paper assumes that the rock mass is catego-
rized as crisp flexible, meeting the theory of linear elastic
fracture mechanics, and the seepage pressure is equal in
every directions along the crack. The fractured rock mass
is under the remote field stress 𝜎

1
and 𝜎

3
, where 𝜎

1
is the

maximum principal stress, 𝜎
1
≥ 𝜎
3
. The angle between

the crack and vertical stress 𝜎
1
is 𝜓, and there is a seepage

pressure𝑝 in the crack.Thenormal stress on the crack surface
is compressive stress. The shear stress forces the crack to
slide which generates a friction 𝜇𝜎

𝑛𝑒
+ 𝐶 owing to the part

closure of the crack, where 𝜇 is the friction coefficient on
the crack surface and 𝐶 is the cohesion on the crack surface.
Meanwhile, introducing the coefficient 𝛽 which presents the
ratio of the connected area to the total area, the seepage
pressure contributes𝛽𝑝 to the surface.Therefore, the effective
shear driving force 𝜏eff and effective normal stress 𝜎

𝑛𝑒
appear

in following formulas [18] (here the compressive stress is
positive):

𝜎
𝑛𝑒
= 𝜎
𝑛
− 𝛽𝑝 = (1 − 𝐶

𝑛
) (𝜎
1
sin2𝜓 + 𝜎

3
cos2𝜓) − 𝛽𝑝, (1a)

𝜏eff = (1 − 𝐶V)
𝜎
1
− 𝜎
3

2

sin2𝜓 − 𝜇𝜎
𝑛𝑒
− 𝐶, (1b)

𝐶
𝑛
=

𝜋𝑎

𝜋𝑎 + (𝐸
0
/ (1 − V2

0
)𝐾
𝑛
)

,

𝐶V =
𝜋𝑎

𝜋𝑎 + (𝐸
0
/ (1 − V2

0
)𝐾
𝑠
)

,

(1c)

where𝐶
𝑛
and𝐶V are the compression transmitting factor and

shearing transmitting factor, respectively, which are resulted
from the part closure of the crack.

According to the maximum circumferential stress cri-
terion, the initial crack extends along the direction of the
maximum normal stress. Thus, the cracking angle 𝜃

3
can be

obtained (𝜃
3
= 70.5

∘) [19]. Then, the stress intensity factor at
the wing crack initiation can be concluded as [20]

𝐾
𝐼
=

2

√3

𝜏eff√𝜋𝑎. (2)

Making 𝐾
𝐼
= 𝐾
𝐼𝐶

in (2), 𝐾
𝐼𝐶

is the fracture toughness,
the biggest crack stress intensity factor. It is easy to get the
ultimate strength 𝜎

11
of the fracture rock under seepage

pressure

𝜎
11
=

√3𝐾
𝐼𝐶
/√𝜋𝑎 + 2𝐶 − 2𝜇𝛽𝑝 + 𝐵𝜎

3

𝐴

, (3a)

𝐴 = −𝜇 (1 − 𝐶
𝑛
) (1 − cos2𝜓) + (1 − 𝐶V) sin

2
𝜓,

𝐵 = 𝜇 (1 − 𝐶
𝑛
) (1 + cos2𝜓) + (1 − 𝐶V) sin

2
𝜓.

(3b)
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Figure 2: Schematic drawing ofmultiple interacting cracks.𝐹 is the horizontal stress in the crack. 𝜎󸀠
3
is the horizontal stress in the rock bridge,

and 𝑡 is the length of the rock bridge.

From (3a), it is clear to see that the ultimate strength 𝜎
11

decreases linearly with the increase of the seepage pressure
𝑝.

As for multicrack rock masses, when at the initial stage of
crack expansion or the crack space is relatively large, it can
be treated as the wing crack propagation of a single crack.
Under such circumstance, the stress intensity factor𝐾

𝐼
at the

crack tip could be defined through the revised wing crack
calculation model [21]. Considering the additional seepage
pressure in the crack, the stress intensity factor 𝐾

𝐼
consists

of the stress intensity factor produced by the effective shear
driving force 𝑇

𝑒
and the remote field stress 𝜎

1
and 𝜎

3
, and it

can be shown as in (4)

𝐾
𝐼
= 3𝜏
𝑛𝑒
√
𝑎𝑙
𝑡𝑦

𝜋

sin−1 ( 1

𝑙
𝑡𝑦

) sin 𝜃 cos 𝜃
2

−

1

2

[(𝜎
1
+ 𝜎
3
) + (𝜎

1
− 𝜎
3
) cos2 (𝜃 + 𝛽)]√𝜋𝑙 + 𝑝√𝜋𝑙,

(4)

where 𝑙
𝑡𝑦
is the impact factor which is the function of thewing

crack length 𝑙, wing crack azimuth 𝜃, and main crack length
𝑎, as shown in (5)

𝑙
𝑡𝑦
= [1 +

9𝑙

4𝑎

cos2 (𝜃
2

)] (1 − 𝑒
−𝑙/𝑎

) + 0.667 sec2 (𝜃
2

) 𝑒
−𝑙/𝑎

.

(5)

The wing crack extends approximately in the direction
perpendicular to the maximum principal stress until 𝐾

𝐼
=

𝐾
𝐼𝐶
, and then the wing crack propagation length 𝑙 under

the combined action of compression-shear stress and seepage
pressure can be calculated as shown in (6)

𝑙 =

6𝜏
𝑛𝑒
√(𝑎𝑙
𝑡𝑦
/𝜋)sin−1 (1/𝑙

𝑡𝑦
) sin 𝜃 cos (𝜃/2) − 2𝐾

𝐼𝐶

[(𝜎
1
+ 𝜎
3
) + (𝜎

1
− 𝜎
3
) cos2 (𝜃 + 𝛽) − 2𝑝]√𝜋

.
(6)

2.2. The Multicrack Interaction Models. As the crack expands
or when the crack space is relatively small, the interaction
between cracks leads to a damaged connection and unstable
break of the rock bridge [22]. The rock bridge interaction
mechanical model of the multicrack rock mass with the wing
crack expansion is shown in Figure 2.

Assuming that the number of the compression-shear
cracks per unit area is 𝑁

𝐴
, the length between main crack

centers and the rock bridge lengths between wing cracks,
respectively, are presented as follows:

𝑆 =

1

√𝑁
𝐴

,

𝑇 = 𝑆 − 2 (𝑙 + 𝑎 cos𝜓) .

(7)

In Figure 2, 𝐹 = 𝑇
𝑒
sin𝜓 is balanced by the tensile stress

𝜎
󸀠

3
in the rock bridge together with seepage pressure 𝑝in the

wing crack:

𝜎
󸀠

3
=

𝑇
𝑒
sin𝜓 + 2𝑝𝑙

𝑆 − 2 (𝑙 + 𝑎 cos𝜓)
, (8)

where 𝑇
𝑒
= 2𝑎𝜏

𝑛𝑒
.

Acting on the wing crack, 𝜎󸀠
3
produces an additional

intensity factor at the crack tip [23]:

𝐾
󸀠

𝐼
= −𝜎
󸀠

3
√𝜋𝑙 =

𝑎 (𝜎
1
− 𝜎
3
) sin2𝜓 sin𝜓 + 2𝑝𝑙

𝑁
−1/2

𝐴
− 2 (𝑙 + 𝑎 cos𝜓)

√𝜋𝑙. (9)
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Considering the damage to the rock bridge caused by the
wing crack interaction, the stress intensity factor at the wing
crack tip is composed of (4) and (9) as follows:

𝐾
𝐼
= 𝐾
𝐼
+ 𝐾
󸀠

𝐼
= 3𝜏
𝑛𝑒
√
𝑎𝑙
𝑡𝑦

𝜋

sin−1 ( 1

𝑙
𝑡𝑦

) sin 𝜃 cos 𝜃
2

−

1

2

[(𝜎
1
+ 𝜎
3
) + (𝜎

1
− 𝜎
3
) cos2 (𝜃 + 𝛽)]√𝜋𝑙

+ 𝑝√𝜋𝑙 +

𝑎 (𝜎
1
− 𝜎
3
) sin2𝜓 sin𝜓 + 2𝑝𝑙

𝑁
−1/2

𝐴
− 2 (𝑙 + 𝑎 cos𝜓)

√𝜋𝑙.

(10)

From (10), it is clear to see that the interaction of multiple
wing cracks in rock bridge damage makes the stress intensity
factor at the crack tip larger than that at a single wing crack.

The process of rock fracture is the one of the increasing
damage and inherent fracture in rock and is the coupling
damage result of the microdamage and macrodamage. There
are many ways to define the damage variable, such as the
cracks quantity crack length, crack area, and crack density.
Here, the cracks quantity is adopted to define𝐷

0
for the initial

damage of the rockmass and𝐷 for the damagewhen thewing
crack expands to 𝑙:

𝐷
0
= 𝜋(𝑎 cos𝜓)2𝑁

𝐴
,

𝐷 = 𝜋(𝑙 + 𝑎 cos𝜓)2𝑁
𝐴
.

(11)

Substituting (11) into (8), the fellow equation can be easily
obtained

𝜎
󸀠

3
= −

(𝜏
𝑛𝑒
tan𝜓 + 2𝑝𝑙) (𝐷

0
/𝜋)
1/2

𝑎 (1 − 2(𝐷/𝜋)
1/2
)

. (12)

Combining (10), (11), and (12), the relation curves
between the damage variables 𝐷 and dimensionless stress
intensity factor (𝐾

𝐼
/𝜎
1
√𝜋𝑎) at the wing crack tip with

different crack density are shown in Figure 3.
The graph reveals that with the increase of the damage

variables, the dimensionless stress intensity factor𝐾
𝐼
/𝜎
1
√𝜋𝑎

at the crack tip under seepage pressure decreases at the
very beginning but rises gradually when the equivalent crack
length is 0.5 (𝑙/𝑎). The graph also illustrates that the sparser
of the cracks are, the higher of the stress intensity at the wing
crack will be when the rock bridge is connected. During the
wing crack expansion process, the damage variable 𝐷 varies
from𝐷

0
to 1. When𝐷 = 1 and the wing crack stress intensity

factor𝐾
𝐼
⩾ 𝐾
𝐼𝐶

at the crack tip, the wing crack connects, the
rock bridge cracks, and the rock mass loses bearing capacity.

Figure 4 shows the relationship between the stress inten-
sity factor at the crack tip and the equivalent crack prop-
agation length under different seepage pressure. It can
be concluded that when the seepage pressure is rela-
tively low (𝑝 = 0MPa), the wing crack expands stably
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Figure 3: The relationship between damage variables and intensity
factor at the crack tip of the branch stress.

(𝜕𝐾
𝐼
/𝜕𝐿 < 0). While when the seepage pressure is relatively

high (𝑝 = 15MPa), the wing crack tends to expand unstably.
Besides, there is the expansion stage that 𝜕𝐾

𝐼
/𝜕𝐿 > 0 under

such condition and the growth rate of wing crack stress
intensity factor becomes greater with the increase of seepage
pressure 𝑝. It indicates that under high seepage pressure, the
compressive-shear rock crack expands at a high speed as long
as it cracks, namely, and the high seepage pressure contributes
to unstable expansion.

3. Wing Crack Connection Model and
Damage Criteria

As the branch crack expands, the interaction of the crack
results in the continuous degradation of the macroscopic
mechanical properties of the rock mass. The wing crack
initiation from microcracks to the completely damage of the
rock mass is a process of evolution and accumulation of the
rock mass damage, as well as a process of the fracture of the
connection between cracks [24]. It has been proved by many
experimental researches that the gradual damage process of
the cracks generally has two forms [25, 26]: (1) the rock bridge
axial transfixion failure and (2) the tension-shear compound
failure. According to the branch crack propagation evolution
mechanism, this paper studies the gradual damage features of
those damage models.

3.1. The Axial Transfixion Failure. Whenever the wing crack
extends stably or unstably, the tension wing crack connects
the main crack in another row, as shown in Figure 5. When
the wing crack reaches the critical length 𝑙

1𝑐
= 𝐷/ sin𝜓,

𝐿
1𝐶

= 𝑙
1𝑐
/𝑎, the rock bridge starts to damage in the form

of axial transfixion failure. Taking the stress intensity at the
crack tip as the criterion when the wing crack reaches the
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critical length 𝑙
1𝑐
= 𝐷/ sin𝜓, this paper establishes the failure

criteria:

𝐾
𝐼
= 3𝜏
𝑛𝑒
√
𝑎𝑙
𝑡𝑦

𝜋

sin−1 ( 1

𝑙
𝑡𝑦

) sin 𝜃 cos 𝜃
2

−

1

2

[(𝜎
1
+ 𝜎
3
) + (𝜎

1
− 𝜎
3
) cos2 (𝜃 + 𝛽)]√𝜋𝑙

1𝑐

+ 𝑝√𝜋𝑙
1𝑐
+

𝑎 (𝜎
1
− 𝜎
3
) sin2𝜓 sin𝜓 + 2𝑝𝑙

1𝑐

𝑁
−1/2

𝐴
− 2 (𝑙
1𝑐
+ 𝑎 cos𝜓)

√𝜋𝑙
1𝑐
.

(13)

When 𝐾
𝐼
(𝐿
1𝐶
) ≥ 𝐾

𝐼𝐶
, axial transfixion failure occurs in the

rock bridge.

3.2. The Tension-Shear Compound Failure. With the expan-
sion of wing cracks under seepage pressure, the cut-resistant
capacity of the rock bridge is increasingly weakened. When
the wing crack expands to a certain degree; the rock bridge
at the crack tip between adjacent wing cracks is cut off by
the shear stress, consequently, the crack is connected in the
shear direction [27]. The mechanical analyzing diagram for
the element of the rock bridge composite failure is shown in
Figure 6, where 𝐴𝐵 is 1/2 the length of the bottom crack, 𝐸𝐹
is 1/2 the length of the upper crack, 𝐶𝐷 is the rock bridge,
𝐵𝐶 and 𝐸𝐷 are the wing cracks produced by effective shear
driving force of the main crack 𝐴𝐵 and 𝐸𝐹, 𝜃 is the angle
between rock bridge and the maximum principal stress, and
𝜎
𝐶𝐷

and 𝜏
𝐶𝐷

are the normal stress and shear stress acting on
the rock bridge, respectively.

According to the element shown in Figure 6 and the
principle of mechanics balance, it could be deduced as
follows:

∑𝐹
𝑥
= 0, ∑𝐹

𝑦
= 0,

2𝑟
3
𝜎
3
− 2𝑎 (𝜏

𝑛𝑒
sin𝜓 + 𝜎

𝑛𝑒
cos𝜓)

− 2𝑟
2
(𝜏
𝐶𝐷

sin 𝜃 + 𝜎𝐶𝐷
𝑛

cos 𝜃) − 2𝑝𝑙 = 0,

2𝑟
1
𝜎
1
+ 2𝑎 (𝜏

𝑛𝑒
cos𝜓 − 𝜎

𝑛𝑒
sin𝜓)

+ 2𝑟
2
(𝜏
𝐶𝐷

cos 𝜃 − 𝜎𝐶𝐷
𝑛

sin 𝜃) = 0,

(14)

where

𝑟
1
= 𝑎 sin𝜓 + 1

2

√𝑑
2
+ ℎ
2 sin 𝜃,

𝑟
2
=

√𝑑
2
+ ℎ
2 cos 𝜃 − 2𝑙

2 cos 𝜃
,

𝑟
3
= 𝑎 cos𝜓 + 1

2

√𝑑
2
+ ℎ
2 cos 𝜃,

𝜃 = 𝜓 − arctan 𝑑
ℎ

.

(15)

Then, the following equation can be obtained

𝜏
𝐶𝐷

=

2𝐴
1
tan 𝜃 − 2𝐵

1

(√𝑑
2
+ ℎ
2 cos 𝜃 − 2𝑙) (1 + tan2𝜃)

,

𝜎
𝐶𝐷

=

2𝐴
1
+ 2𝐵
1
tan 𝜃

(√𝑑
2
+ ℎ
2 cos 𝜃 − 2𝑙) (1 + tan2𝜃)

,

(16)

𝐴
1
= 𝑟
3
𝜎
3
− 𝑎 (𝜏

𝑛𝑒
sin𝜓 + 𝜎

𝑛𝑒
cos𝜓) − 𝑝𝑙,

𝐵
1
= 𝑟
1
𝜎
1
+ 𝑎 (𝜏

𝑛𝑒
cos𝜓 − 𝜎

𝑛𝑒
sin𝜓) .

(17)

Assuming that the rock bridge shear damage follows the
Mohr-Coulomb strength criterion, conditions for the damage
are

𝜏
𝐶𝐷

− 𝑐 − 𝜎
𝐶𝐷

tan𝜑 ⩾ 0. (18)

Substituting (16) into (18), the fellow equation can be
easily obtained as follows:

(

1

2

√𝑑
2
+ ℎ
2 cos 𝜃 − 𝑙) 𝑐 tan2 𝜃 + (𝐵

1
tan𝜑 − 𝐴

1
) tan 𝜃

+ 𝐴
1
tan𝜑 + 𝐵 + 1

2

𝑐√𝑑
2
+ ℎ
2 cos 𝜃 − 𝑐𝑙 ⩽ 0.

(19)

When angle 𝜃 meets the rock bridge shear failure condi-
tion and the wing crack propagation length reaches critical
value 𝑙

2𝑐
, the angle 𝜃 between the rock bridge and 𝜎

1
also

reaches their critical value, and then

𝜃
𝑐
= arctan

𝐴
1
− 𝐵
1
tan𝜑 + √Δ

(√𝑑
2
+ ℎ
2 cos 𝜃 − 2𝑙

2𝑐
) 𝑐

. (20)

As the geometric relations show in Figure 6, it is easy to
see that

tan 𝜃
𝑐
=

√𝑑
2
+ ℎ
2 sin 𝜃

(√𝑑
2
+ ℎ
2 cos 𝜃 − 2𝑙

2𝑐
)

. (21)

Combined (20) and (21), the critical length of the wing
crack can be defined as:

𝑙
2𝑐
=

𝐴
2
− √𝐴

2

2
− 4 (𝑐 + 𝑝 tan𝜑) 𝐵

2

2 (𝑐 + 𝑝 tan𝜑)
,

(22)

where

𝐴
2
= 𝑟
3
𝜎
3
tan𝜑 − 𝑎 (𝜏

𝑛𝑒
sin𝜓 + 𝜎

𝑛𝑒
cos𝜓) tan𝜑 + 𝐵

1

+

1

2

√𝑑
2
+ ℎ
2
[(2𝑐 − 𝑝 tan𝜑) cos 𝜃 + 𝑝 sin 𝜃] ,

𝐵
2
=

1

4

(𝑑
2
+ ℎ
2
) 𝑐 +

1

2

√𝑑
2
+ ℎ
2

×[(𝑟
3
𝜎
3
− 𝑎𝜏
𝑛𝑒
sin𝜓 − 𝑎𝜎

𝑛𝑒
cos𝜓) (cos 𝜃 tan𝜑 − sin 𝜃)

+𝐵
1
(sin 𝜃 tan𝜑 + cos 𝜃)] .

(23)
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Figure 4: The relationship between intensity factor at the crack tip
wing stress and crack propagation length.

Meanwhile, this paper gets the stress intensity factor at the
crack tip when the wing reaches the critical length as follows:

𝐾
𝐼
(𝑙
2𝑐
) = 𝐾

𝐼
+ 𝐾
󸀠

𝐼
= 3𝜏eff

√
𝑎𝑙
𝑡𝑦

𝜋

sin−1 ( 1

𝑙
𝑡𝑦

) sin (𝜃) cos (𝜃)

−

1

2

[(𝜎
1
+ 𝜎
3
) + (𝜎

1
− 𝜎
3
) cos2 (𝜃 + 𝛽)]√𝜋𝑙

2𝑐

+ 𝑝√𝜋𝑙
2𝑐
+

𝑎 (𝜎
1
− 𝜎
3
) sin2𝜓 sin𝜓 + 2𝑝𝑙

2𝑐

2 (𝑙
2𝑐
+ 𝑎 cos𝜓) − 𝑁−1/2

𝐴

√𝜋𝑙
2𝑐
.

(24)

4. The Damage Evolution Mechanism of
Multicrack Rock Masses

The macroscopic mechanical effect of fractured rock would
be reflected by the change of its flexibility, and then the
damage tensor 𝐷 can be determined by the elastic flexibility
tensor𝐶0 and the equivalent damage flexibility tensor𝐶𝑑 [28]

𝐷 = 𝐼 −

(𝐶
𝑑
)

−1

𝐶
0

,
(25)

where 𝐼 is the fourth-order unit tensor and𝐷 is a tensor of the
fourth order for the 3D anisotropy mode of fractured rock.

In terms of the complete rock, the elastic flexibility tensor
𝐶
0 can be expressed as [29]

𝐶
0

𝑖𝑗𝑘𝑙 =

1 + V
0

𝐸
0

𝛿
𝑖𝑘
𝛿
𝑗𝑙
−

V
0

𝐸
0

𝛿
𝑖𝑗
𝛿
𝑘𝑙
, (26)

where𝐸
0
and V
0
represented the elasticmodulus andPoisson’s

ratio of the rock, respectively.
The equivalent damage flexibility tensor𝐶𝑑 can be drawn

from Betti energy reciprocal theorem. Hence, based on self-
consistent method and strain energy equivalence in solid

mechanics, the equivalent damage flexibility tensor 𝐶𝑑𝑖𝑗𝑘𝑙 is
acquired through calculating the equivalent elastic strain
energy.

4.1.The Equivalent Damage Flexibility Tensor Based on Equiv-
alent Elastic Strain Energy. The flexibility matrix of the crack
in compression shear state is [30]

[𝐶
0
] = [

[

𝐶
0
11 𝐶
0
11 0

𝐶
0
21 𝐶
0

22
0

0 0 𝐶
0

33

]

]

. (27)

Based onBetti’s theorem, that is,Maxwell-Betti reciprocal
work theorem, the work done by one set of forces through
the displacements produced by another set of forces is equal
to the work done by the latter set of forces through the
displacements produced by the former set of forces.

(1)When 𝜎
𝑥
= 𝜏
𝑥𝑦
= 0, 𝜎

𝑦
̸= 0,

𝑊
12
= (2𝑏𝜎

𝑦
− 2𝑎𝑝) (𝐶

22
𝜎
󸀠

𝑦
2𝑑) = 4 (𝑏𝜎

𝑦
− 𝑎𝑝) 𝜎

󸀠
𝑑𝐶
22
,

𝑊
21
= (2𝑏𝜎

󸀠

𝑦
) (𝜎
𝑦
− 𝑝)𝐶

0

22

2𝑑 + Δ𝑊
𝑐
,

(28)

where Δ𝑊
𝑐
= (2𝑎𝜎

󸀠

𝑦
)(𝜎
𝑦
− 𝑝)𝐶

𝑛
/𝐾
𝑛
.

Then, we get

𝑊
21
= 4𝜎
󸀠

𝑦
𝑑𝑏𝐶
0

22

(𝜎
𝑦
− 𝑝) +

2𝑎𝜎
󸀠

𝑦
(𝜎
𝑦
− 𝑝)𝐶

𝑛

𝐾
𝑛

. (29)

According to 𝑊
21

= 𝑊
12
, whilst, the crack size can be

neglected compared to the size of the rock mass,

𝐶
22
= (1 − 𝑅) (𝐶

0

22

+

𝑎𝐶
𝑛

2𝐾
𝑛
𝑏𝑑

) , (30)

where 𝑅 = 𝑝/𝜎
𝑦
.

(2)When 𝜎
𝑥
= 𝜎
𝑦
= 0, 𝜏
𝑥𝑦

̸= 0,

𝑊
12
= (𝜏2𝑑) (𝐶

33
𝜏
󸀠
2𝑏) = 4𝐶

33
𝜏
󸀠
𝑏𝑑,

𝑊
21
= (𝜏
󸀠
2𝑑) (𝐶

33
𝜏2𝑏) + Δ𝑊

𝑐
= 4𝜏𝐶

33
𝜏
󸀠
𝑏𝑑 + Δ𝑊

𝑐
,

Δ𝑊
𝑐
=

𝜏
󸀠
2𝑎𝜏𝐶
𝑠

𝐾
𝑠

.

(31)

Then, we obtain the following equation:

𝑊
21
= 4𝜏
󸀠
𝜏𝑑𝑏𝐶
0

33
+

2𝑎𝜏
󸀠
𝜏𝐶
𝑠

𝐾
𝑠

. (32)

According to𝑊
21
= 𝑊
12
, we get

𝐶
33
= 𝐶
0

33

+

𝑎𝐶
𝑠

2𝐾
𝑠
𝑏𝑑

. (33)

Thus, the parameters of the equivalent damage flexibility
matrix [𝐶𝑑] can be expressed as follows:

[𝐶
𝑑
] =

[
[
[
[
[

[

0 0 0

0

𝑎𝐶
𝑛
(1 − 𝑅)

2𝐾
𝑛
𝑏𝑑

− 𝑅𝐶
0

22
0

0 0

𝑎𝐶
𝑠

𝐾
𝑠
2𝑏𝑑

]
]
]
]
]

]

. (34)



Mathematical Problems in Engineering 7

4.2.TheEquivalent Damage Flexibility Tensor Based onCrack’s
Elastic Strain Energy. The strain energy of single crack is
assumed as [29]

𝑈
(𝑖)

𝑑
= 2∫

𝑎

0

𝐺𝑑Γ = 2

1 − ]2
0

𝐸
0

∫

𝑎

0

(𝐾
2

𝐼
+ 𝐾
2

𝐼𝐼
) 𝑑𝑎, (35)

where Γ is the line length of cracks.
Integrating over the line length, the stress intensity factors

of type 𝐼 or type 𝐼𝐼 for the crack under seepage pressure are

𝐾
(𝑖)

𝐼
= 𝜎
(𝑖)

𝑓

√
𝜋𝑎
(𝑖)
, 𝐾

(𝑖)

𝐼𝐼
= 𝜏
(𝑖)

𝑞
√
𝜋𝑎
(𝑖)
, (36)

where 𝜎(𝑖)
𝑓

is the normal stress of the crack and 𝜏
(𝑖)

𝑞
is the

tangential shear stress. Combining the former equation, then
we get

𝑈
(𝑖)

𝑑
=

1 − ]2
0

𝐸
0

𝜋𝑎
(𝑖)2

[𝜎
(𝑖)2

𝑓
+ 𝜏
(𝑖)2

𝑞
] . (37)

By assuming there are 𝑛 groups of cracks in the fractured
rock mass, the strain energy of the fractured rock mass will
be

𝑈
𝑑
=

𝑛

∑

𝑖=1

𝑈
(𝑖)

𝑑
=

1 − ]2
0

𝐸
0

𝜋

𝑛

∑

𝑖=1

𝑎
(𝑖)2
𝜌
(𝑖)
[𝜎
(𝑖)2

𝑓
+ 𝜏
(𝑖)2

𝑞
] . (38)

Set the equation 𝐻 = ((1 − ]2
0
)/𝐸
0
)𝜋, 𝐴(𝑖) = 𝑎

(𝑖)2
𝜌
(𝑖), in

which 𝜌(𝑖) is the density of cracks, then

𝑈
𝑑
= 𝐻

𝑛

∑

𝑖=1

𝐴
(𝑖)
[𝜎
(𝑖)2

𝑓
+ 𝜏
(𝑖)2

𝑞
] . (39)

Rewrite (39) into the tensor expression

𝑈
𝑑
=

1

2

𝜎
𝑖𝑗
𝐶
𝑑

𝑖𝑗𝑘𝑙
𝜎
𝑘𝑙
= 𝐻

𝑛

∑

𝑖=1

𝐴
(𝑖)
[𝜎
(𝑖)

𝑓
𝜎
(𝑖)

𝑓
+ 𝜏
(𝑖)

𝑞
𝜏
(𝑖)

𝑞
] . (40)

According to the hydrostatic pressure principle and
Cauchy criterion, the remote field stress is denoted as 𝜎

𝑖𝑗
, and

the stress matrix on the surface can be defined as [31]

[

[

𝑇
V
𝑥

𝑇
V
𝑦

]

]

= [

𝜎
𝑥𝑥
− 𝑝 𝜎

𝑥𝑦

𝜎
𝑦𝑥

𝜎
𝑥𝑥
− 𝑝

] [

]
𝑥

]
𝑦

] . (41)

Defining 𝑛
𝑖
𝑛
𝑖
= 1, authors rewrite the equation into the

tensor expression

𝑇
(𝑖)

𝑖
= (𝜎
(𝑖)

𝑖𝑗
− 𝛿
𝑖𝑗
𝑝) 𝑛
(𝑖)

𝑗
= 𝜎
(𝑖)

𝑖𝑗
𝑛
(𝑖)

𝑗
− 𝑝𝑛
(𝑖)

𝑖
. (42)

Considering the compression transferring coefficient 𝐶
𝑛
,

the equivalent normal stress on the surface of the crack can
be expressed as

𝜎
(𝑖)

𝑓
= 𝑇
(𝑖)

𝑖
𝑛
(𝑖)

𝑗
= (1 − 𝐶

(𝑖)

𝑛
) 𝜎
(𝑖)

𝑖𝑗
𝑛
(𝑖)

𝑗
𝑛
(𝑖)

𝑖
− 𝛽
(𝑖)
𝑝,

(𝜎
(𝑖)

𝑓
)
𝑖
= (1 − 𝐶

𝑛
) 𝜎
(𝑖)

𝑗𝑘
𝑛
(𝑖)

𝑗
𝑛
(𝑖)

𝑘
𝑛
(𝑖)

𝑖
− 𝛽
(𝑖)
𝑝𝑛
(𝑖)

𝑖
.

(43)

Considering the shear transferring coefficient 𝐶
𝑠
again,

the shear stress on the crack surface can be expressed as

(𝜏
(𝑖)

𝑓
)
𝑖
= 𝑇
(𝑖)

𝑖
− (𝜎
(𝑖)

𝑓
)
𝑖
= (1 − 𝐶

(𝑖)

𝑛
) 𝜎
(𝑖)

𝑗𝑘
𝑛
(𝑖)

𝑗
(𝛿
𝑘𝑙
− 𝑛
(𝑖)

𝑘
𝑛
(𝑖)

𝑖
) .

(44)

Then, we get

(𝜎
(𝑖)

𝑓
)
𝑖
(𝜎
(𝑖)

𝑓
)
𝑖
= ((1 − 𝐶

(𝑖)

𝑛
) 𝜎
(𝑖)

𝑗𝑘
𝑛
(𝑖)

𝑗
𝑛
(𝑖)

𝑘
𝑛
(𝑖)

𝑖
− 𝛽
(𝑖)
𝑝𝑛
(𝑖)

𝑖
)

× ((1 − 𝐶
(𝑖)

𝑛
) 𝜎
(𝑖)

𝑠𝑡
𝑛
(𝑖)

𝑠
𝑛
(𝑖)

𝑡
𝑛
(𝑖)

𝑖
− 𝛽
(𝑖)
𝑝𝑛
(𝑖)

𝑖
) .

(45)

Considering the symmetry of 𝜎
𝑖𝑗
, the following equations

can be deduced:

(𝜎
(𝑖)

𝑓
)
𝑖
(𝜎
(𝑖)

𝑓
)
𝑖
= (1 − 𝐶

(𝑖)

𝑛
)

2

𝜎
(𝑖)

𝑗𝑘
𝑛
(𝑖)

𝑗
𝑛
(𝑖)

𝑘
𝑛
(𝑖)

𝑠
𝑛
(𝑖)

𝑡
𝜎
(𝑖)

𝑠𝑡

− (1 − 𝐶
(𝑖)

𝑛
) 𝜎
(𝑖)

𝑗𝑘
𝑛
(𝑖)

𝑗
𝑛
(𝑖)

𝑘
𝑝

− (1 − 𝐶
(𝑖)

𝑛
) 𝜎
(𝑖)

𝑠𝑡
𝑛
(𝑖)

𝑠
𝑛
(𝑖)

𝑡
𝑝 + 𝛽
(𝑖)
2

𝑝
2
,

(𝜏
(𝑖)

𝑓
)
𝑖
(𝜏
(𝑖)

𝑓
)
𝑖
= (1 − 𝐶

(𝑖)

𝑠
)

2

𝜎
(𝑖)

𝑗𝑘
𝑛
(𝑖)

𝑗
(𝛿
𝑘𝑙
− 𝑛
(𝑖)

𝑘
𝑛
(𝑖)

𝑖
) 𝜎
(𝑖)

𝑠𝑡
𝑛
(𝑖)

𝑠

× (𝛿
𝑡𝑖
− 𝑛
(𝑖)

𝑖
𝑛
(𝑖)

𝑖
)

= (1 − 𝐶
(𝑖)

𝑠
)

2

𝜎
(𝑖)

𝑗𝑘

× (𝛿
𝑘𝑙
𝑛
(𝑖)

𝑗
𝑛
(𝑖)

𝑠
− 𝑛
(𝑖)

𝑗
𝑛
(𝑖)

𝑘
𝑛
(𝑖)

𝑠
𝑛
(𝑖)

𝑡
) 𝜎
(𝑖)

𝑠𝑡
.

(46)

Supposing the proportion coefficient 𝑅 = 𝑝/𝜎, 𝜎 is the
average stress, 𝜎 = (1/2)𝜎

𝑖𝑖
, 𝜎
𝑖𝑖
is the first invariant stress.

Then, the seepage pressure can be transformed to

𝑝 = 𝑝

𝜎
𝑠𝑠

𝜎
𝑠𝑠

= 𝜎
𝑠𝑡
𝛿
𝑠𝑡

𝑝

2𝜎

=

1

2

𝜎
𝑠𝑡
𝛿
𝑠𝑡
𝑅,

𝑝
2
= 𝑝
2 𝜎𝑘𝑘

𝜎
𝑘𝑘

𝜎
𝑠𝑠

𝜎
𝑠𝑠

= 𝜎
𝑘𝑗
𝛿
𝑘𝑗
𝜎
𝑠𝑡
𝛿
𝑡𝑠

𝑝

2𝜎

𝑝

2𝜎

=

1

4

𝜎
𝑘𝑗
𝛿
𝑘𝑗
𝜎
𝑠𝑡
𝛿
𝑡𝑠
𝑅
2
.

(47)

Then, we get

(𝜎
(𝑖)

𝑓
)
𝑖
(𝜎
(𝑖)

𝑓
)
𝑖

= (1 − 𝐶
(𝑖)

𝑛
)

2

𝜎
(𝑖)

𝑗𝑘
𝑛
(𝑖)

𝑗
𝑛
(𝑖)

𝑘
𝑛
(𝑖)

𝑠
𝑛
(𝑖)

𝑡
𝜎
(𝑖)

𝑠𝑡

−

1

2

(1 − 𝐶
(𝑖)

𝑛
) 𝑅𝜎
(𝑖)

𝑗𝑘

× (𝑛
(𝑖)

𝑗
𝑛
(𝑖)

𝑘
𝜎
(𝑖)

𝑠𝑡
+ 𝛿
𝑗𝑘
𝑛
(𝑖)

𝑠
𝑛
(𝑖)

𝑡
)

+

1

4

(𝛽
(𝑖)
𝑅)

2

𝜎
(𝑖)

𝑗𝑘
𝜎
(𝑖)

𝑠𝑡
𝜎
𝑡𝑠
,
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Tension crack
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Figure 5: Failure characteristic of crag bridge shearing.

𝑈
𝑑
=

1

2

𝜎
𝑗𝑘
𝐶
𝑑

𝑗𝑘𝑠𝑡
𝜎
𝑠𝑖

= 𝐻

𝑛

∑

𝑖=1

𝐴
(𝑖)
𝜎
(𝑖)

𝑗𝑘
[(1 − 𝐶

(𝑖)

𝑛
)

2

𝑛
(𝑖)

𝑗
𝑛
(𝑖)

𝑘
𝑛
(𝑖)

𝑠
𝑛
(𝑖)

𝑡

−

1

2

(1 − 𝐶
(𝑖)

𝑛
) 𝛽
(𝑖)
𝑅𝜎
(𝑖)

𝑗𝑘

× (𝑛
(𝑖)

𝑗
𝑛
(𝑖)

𝑘
𝜎
(𝑖)

𝑠𝑡
+ 𝛿
𝑗𝑘
𝑛
(𝑖)

𝑠
𝑛
(𝑖)

𝑡
)

+

1

4

(𝑅𝛽
(𝑖)
)

2

𝜎
(𝑖)

𝑗𝑘
𝜎
(𝑖)

𝑠𝑡
𝜎
𝑡𝑠
+ (1 − 𝐶

(𝑖)

𝑠
)

2

× (𝛿
𝑘𝑡
𝑛
(𝑖)

𝑗
𝑛
(𝑖)

𝑠
− 𝑛
(𝑖)

𝑗
𝑛
(𝑖)

𝑘
𝑛
(𝑖)

𝑠
𝑛
(𝑖)

𝑡
) ] 𝜎
(𝑖)

𝑠𝑡
.

(48)

Finally, it is clear to conclude the additional flexibility
tensor of fractured rock mass under seepage pressure as
follows:

𝐶
𝑑
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2
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𝑡
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2
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𝑛
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𝑘
𝑛
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𝑛
(𝑖)

𝑡
) .

(49)

4.3.The Fracture Damage Evolution Equation. The additional
elastic strain energy density 𝑢𝑖

𝑘𝑧

produced by the wing crack
is [32]

𝑢
(𝑖)

𝑘𝑧
=

4

𝐸
0

𝜌
(𝑖)

V 𝑎
(𝑖)2
(

5

2

𝜎
(𝑖)

eff𝐿
(𝑖)
+

2

√3

𝜏
(𝑖)

eff)
2

, (50)

where 𝐿(𝑖) is the equivalent length for the crack.

Assuming there are 𝑛 groups of cracks in the fractured
rock mass, the additional elastic strain energy density of the
fractured rock 𝑈

𝑘𝑧
is

𝑈
𝑘𝑧
=

𝑛

∑

𝑖=1

𝑢
(𝑖)

𝑘𝑧
=

1

2

𝜎
𝑖𝑗
𝐶
𝑘𝑧

𝑖𝑗𝑘𝑙
𝜎
𝑘𝑙
. (51)

Crack extension reduces the stiffness of rock masses and
increases its flexibility. Through the derivative of 𝑈

𝑘𝑧
with

respect to the stress tensor, we can get the additional flexibility
tensor of fractured rock masses in the damage evolution
process

𝜕𝑈
𝑘𝑧

𝜕𝜎
𝑖𝑗

= 𝐶
𝑘𝑧

𝑖𝑗𝑘𝑙
𝜎
𝑘𝑙
. (52)

At the same time, by calculating the partial derivative
of 𝐿(𝑖), 𝜎(𝑖)eff, and 𝜏

(𝑖)

eff with respect to 𝜎
𝑖𝑗
, respectively, and

considering the symmetry of 𝐶𝑘𝑧
𝑖𝑗𝑘𝑙

, we can get the following
results:
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(53)
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Figure 6: Failure characteristic of crag bridge shearing.

where

𝑀
(𝑖)

1
= (20𝜎

(𝑖)

eff𝐿
(𝑖)
+

16

√3

𝜏
(𝑖)

eff)

× [

1

𝜎
(𝑖)

𝑛

(

5

2

𝐿
(𝑖)
+

2

√3

𝑓)

−

1

𝜏
(𝑖)

𝑛

(

5

2

cot 𝜃(𝑖)𝐿(𝑖) + 2

√3

𝑓) +

5

2

𝜎
(𝑖)

eff𝑁
(𝑖)

1
] ,

𝑀
(𝑖)

2
= (5𝜎

(𝑖)

eff𝐿
(𝑖)
+

4

√3

𝜏
(𝑖)

eff)

× [

1

𝜏
(𝑖)

𝑛

(

5

2

cot 𝜃(𝑖)𝐿(𝑖) + 2

√3

𝑓) +

5

2

𝜎
(𝑖)

eff𝑁
(𝑖)

2
] ,

𝑀
(𝑖)

3
= (20𝜎

(𝑖)

eff𝐿
(𝑖)
+

16

√3

𝜏
(𝑖)

eff)

× [

2

√3

𝑓 +

5

2

(𝜎
(𝑖)

eff𝑁
(𝑖)

3
+ 𝐿
(𝑖)
)] ,

𝑁
(𝑖)

1
=
√
𝐿
(𝑖)
[−4𝑎
(𝑖) cos 𝜃(𝑖)𝜎(𝑖)2eff (𝑓𝜏

(𝑖)

𝑛
− 𝜎
(𝑖)

𝑛
)

− (𝐾
(𝑖)2

𝐼𝐶
− 4𝑎
(𝑖) cos 𝜃(𝑖)𝜎(𝑖)eff

− 2
√
𝜋𝑎
(𝑖)
𝐴
(𝑖)
𝐾
(𝑖)

𝐼𝐶
𝜎
(𝑖)

eff )

× (𝜏
(𝑖)

𝑛
− 𝜎
(𝑖)

𝑛
cot𝜃(𝑖))]

× (2𝜋𝑎
(𝑖)
𝐴
(𝑖)
𝜎
(𝑖)

eff𝜎
(𝑖)

𝑛
𝜏
(𝑖)

𝑛
)

−1

,

𝑁
(𝑖)

2
=
√
𝐿
(𝑖)
[−4𝑎
(𝑖) cos 𝜃(𝑖)𝜎(𝑖)2eff

− (𝐾
(𝑖)

𝐼𝐶

2

− 4𝑎
(𝑖) cos 𝜃(𝑖)𝜎(𝑖)eff𝜏

(𝑖)

eff

−2
√
𝜋𝑎
(𝑖)
𝐴
(𝑖)
𝐾
(𝑖)

𝐼𝐶
𝜎
(𝑖)

eff) cot 𝜃
(𝑖)
]

× (2𝜋𝑎
(𝑖)
𝐴
(𝑖)
𝜎
(𝑖)

eff𝜎
(𝑖)

𝑛
𝜏
(𝑖)

𝑛
)

−1

,

𝑁
(𝑖)

3

=[

[

−(−2(

𝐾
(𝑖)

𝐼𝐶

√𝜋𝑎
(𝑖)

)

2

𝜎
(𝑖)3

eff −
2

𝜋

cos 𝜃(𝑖)(
𝑓

𝜎
(𝑖)

eff

−

𝜏
(𝑖)

eff

𝜎
(𝑖)2

eff

))]

]

×

√𝐿
(𝑖)

𝐴
(𝑖)

−

2𝐾
(𝑖)

𝐼𝐶
√𝐿
(𝑖)

𝜎
(𝑖)2

eff
√2𝜋𝑎

(𝑖)

,

𝐴
(𝑖)
= √

𝐾
(𝑖)

𝐼𝐶

2𝜎
(𝑖)2

eff
√2𝜋𝑎

(𝑖)

−

2

𝜋

cos 𝜃(𝑖)
𝜏
(𝑖)

eff

𝜎
(𝑖)2

eff

.

(54)

Then, we can get the flexibility tensor 𝐶𝑘𝑧
𝑖𝑗𝑘𝑙

due to the
damage evolution of fractured rock masses as follows:
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(55)

4.4. The Constitutive Equation of the Multicrack Rock Mass.
To sum up, combining the initial damage and damage
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evolution tensor, we can get the flexibility tensor of the
fractured rock mass under seepage pressureas follows:

𝐶
𝑖𝑗𝑘𝑙

= 𝐶
0

𝑖𝑗𝑘𝑙
+ 𝐶
𝑑

𝑖𝑗𝑘𝑙
+ 𝐶
𝑘𝑧

𝑖𝑗𝑘𝑙
, (56)

where𝐶0
𝑖𝑗𝑘𝑙

is the elastic flexibility tensor of the complete rock,
𝐶
𝑑

𝑖𝑗𝑘𝑙
is the initial equivalent damage flexibility tensor of the

fractured rock mass under seepage pressure, and 𝐶𝑘𝑧
𝑖𝑗𝑘𝑙

is the
additional damage flexibility tensor with crack propagation
of the fractured rock mass under seepage pressure.

According to generalized Hooke’s law [33]:

𝜀
𝑖𝑗
= 𝐶
𝑖𝑗𝑘𝑙
𝜎
𝑘𝑙
,

𝜎
𝑖𝑗
= 𝐸
𝑖𝑗𝑘𝑙
𝜀
𝑘𝑙
= (𝐶
𝑖𝑗𝑘𝑙
)

−1

𝜀
𝑘𝑙
,

(57)

and this paper sets up the constitutive relation of the multi-
crack rock mass under seepage pressure.

5. Conclusions

After discussing the damage and fracture evolution mecha-
nism of the multicrack rock mass under compression-shear
stress and seepage pressure, the following main conclusions
are drawn.

(1) Through proposing the fractured damage model of
the multicrack rock mass under the combined action
of compression-shear stress and seepage pressure,
this paper discusses the law of crack initiation and
the evolution law of stress intensity factor at the tip
of a wing crack. The interaction of multiple cracks
makes the stress intensity factor at the crack tip
larger than that of a single wing crack. Regarding the
seepage pressure, the existence of that reinforces the
wing crack’s propagation. Moreover, the high seepage
pressure converts wing crack growth from stable form
to unstable form.

(2) The wing crack initiation from microcracks to the
completely damage of the rock mass is a process
of evolution and accumulation of the rock mass
damage, as well as a process of the fracture of the
connection between cracks. Based on the criterion
and mechanism for crack initiation and propagation,
this paper puts forward the mechanical model for
different fracture transfixion failuremodes of the crag
bridge under the combined action of seepage pressure
and compression-shear stress.

(3) According to the strain energy equivalent principle,
this paper applies Betti’s reciprocal work theorem of
the fractured rock mass to study the flexibility tensor
of the rock mass’s initial damage and its damage evo-
lution and deduces the damage constitutive equations
for the elastic-plastic fracture and damage evolution.
The theory provides a reliable theoretical principle
for quantitative research of the fractured rock mass
failure under seepage pressure.
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