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A noise removal technique using partial differential equations (PDEs) is proposed. It combines a second-order filter with a fourth-
order filter. The combined method takes the advantage of both filters since it can preserve edges and at the same time avoid the
blocky effects in smooth regions. The experimental results illustrate the effectiveness of the model in image restoration.

1. Introduction

In the last two decades, the second-order partial differential
equations have been well studied by many scholars as one
of the useful tools for the image restoration problem. For
instance, the anisotropic diffusion model [1–3], the total
variation models [4], and the curve evolution equations [5],
have been demonstrated to be effective for removing noise
and edge preservation. However, the images resulting from
these second-order models are often piecewise constant, and
therefore, the processed image suffers from the so-called
blocky effects, which make it be visually uncomfortable.

To be precise, we first give a brief description about
the blocky effects associated with anisotropic diffusion. Let
𝑢 denote the image intensity function, 𝑡 the time. The
anisotropic diffusion as formulated by Perona and Malik [1]
can be presented as

𝜕𝑢

𝜕𝑡

= ∇ ⋅ (𝑔 (|∇𝑢|) ∇𝑢) , (1)

where 𝑔 is the diffusion coefficient and ∇⋅ and ∇ denote the
divergence and the gradient, respectively. You et al. [6] carried
out a detailed analysis to show that the solution of (1) is equal
to the minimization of energy functional

𝐸 (𝑢) = ∫

Ω

𝑓 (|∇𝑢|) 𝑑𝑥 𝑑𝑦. (2)

From energy functional, it is obvious that level images are
the global minima of the energy functional. The analysis in
[6] indicates that when there is no backward diffusion, a
level image is the only minimum of the energy functional, so
Perona-Malik’s model will evolve toward the formation of a
level image function. Since Perona-Malik’s model is designed
such that smooth areas are diffused faster than less smooth
ones, blocky effects will appear in the early stage of the
diffusion and will develop as time evolves.

In particular, one of the classical diffusivity functions
defined in [1] is given by

𝑔 (𝑥) =

1

1 + (𝑥/𝑘)
2
, (3)

where 𝑘 is the so-called constant parameter.Then the Perona-
Malik’s model is equivalent to minimizing

𝐸 (𝑢) = ∫

Ω

𝑘
2

2

ln(𝑘2 + |∇𝑢|2) 𝑑𝑥 𝑑𝑦, (4)

where Ω ⊂ 𝑅
2 is the image domain. The energy functional

(4) is minimized when |∇𝑢|
2 is minimum, which leads to

piecewise constant approximation of 𝑢. Therefore, formation
of staircase on the ramp edges is unavoidable.

To reduce the blocky effect, high-order PDEs (typically,
fourth-order PDEs) have been introduced into image restora-
tion [7–18]. In 2000, You and Kaveh [7] proposed a family
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of fourth-order partial differential equations (the You-Kaveh
model). They considered the second-order functional

𝐸 (𝑢) = ∫

Ω

𝑓 (






∇
2
𝑢






) 𝑑𝑥 𝑑𝑦, (5)

where 𝑓(𝑠) = 𝑠𝑔(𝑠) and |∇2𝑢| is simply an absolute value of
Laplacian of 𝑢 approximated by |𝑢

𝑥𝑥
+𝑢
𝑦𝑦
|. For the diffusivity

function in (3), the energy functional (5) is in the form of

𝐸 (𝑢) = ∫

Ω

𝑘
2

2

ln(𝑘2 + 

∇
2
𝑢






) 𝑑𝑥 𝑑𝑦, (6)

meaning that (6) minimized when |∇2𝑢| is minimum.There-
fore, the ramp region of 𝑢 (i.e., the regions where |∇2𝑢| =
0) are fit in the solution of the associate fourth-order PDE.
The solutions of the minimization problem of (5) after
using Euler-Lagrange equation followed by gradient descent
procedure is given by

𝜕𝑢

𝜕𝑡

= −∇
2
(𝑔 (






∇
2
𝑢






) ∇
2
𝑢) . (7)

The You-Kaveh model replaces the gradient operator in the
Perona-Malik’s model with a Laplacian operator. Due to the
fact that the Laplacian of an image at a pixel is zero only if the
image is planar in its neighborhood, the You-Kaveh fourth-
order PDE attempts to remove noise and preserve edge by
approximating an observed image with a piece planar image.
It is well known that piecewise smooth images look more
natural.

The further theoretical analysis in [10, 19] shows that
fourth-order equations have advantages over second-order
equations in some aspects. First, fourth-order linear diffusion
dampens oscillations at high frequencies (i.e., noise) much
faster than second order diffusion. Second, there is the possi-
bility of having schemes that include effects of curvature (i.e.,
the second derivatives of the image) in the dynamics, thus
creating a richer set of functional behaviors [19]. Therefore,
the blocky effect will be reduced and image will look more
natural. However, the fourth-order equation of the type You-
Kaveh model tends to leave images with speckle artifacts.

Therefore, both the Perona-Malik’s model and the You-
Kavehmodel have their strengths and weaknesses depending
on the characteristics of the image of interest.Motivated by [1,
6, 7, 12, 17], the aim of this paper is to generate a new solution
by taking the best from each of the two methods by a convex
combination. For other recent studies on the noise removal by
using the second- or fourth-order diffusion PDEs, we refer to
[20–23].

The outline of this paper is as follows. Section 2 gives
a detailed description of two minimization problems. A
fourth-order PDE together with a second-order is the basic
ingredients in our proposed model. The way these two PDEs
interfere with each other is discussed in Section 3. Section 4
elaborates on the numerical method for our proposedmodel.
And experimental results are provided in Section 5, followed
by some conclusions in Section 6.

2. Description of Two Minimization Problems

We use functionals 𝐸
𝑖
, 𝑖 = 1, 2 to measure the quality of the

restoration process. Smaller values of𝐸
𝑖
correspond to a result

that reflects features (flat, smooth, and jumps) in a better way
than larger values do. Instead of (2), we consider

𝐸
1 (
𝑢) = ∫

Ω

𝑓 (|∇𝑢|) +

𝜆
1

2

(𝑢 − 𝑢
0
)
2
𝑑𝑥 𝑑𝑦, (8)

where Ω ⊂ 𝑅
2, 𝜆
1
is a fixed positive constant that balances

the regularity of the solution and the fidelity.Theminimizing
functional (8) yields the associated Euler-Lagrange equation

∇ ⋅ (𝑔 (|∇𝑢|) ∇𝑢) − 𝜆1
(𝑢 − 𝑢

0
) = 0. (9)

On the other hand, we replace (5) by

𝐸
2 (
𝑢) = ∫

Ω

𝑓 (






∇
2
𝑢






) +

𝜆
2

2

(𝑢 − 𝑢
0
)
2
𝑑𝑥 𝑑𝑦, (10)

where Ω ⊂ 𝑅
2 and 𝜆

2
is a fixed positive constant with

the contribution as 𝜆
1
. Then, the minimizing functional (10)

yields the associated Euler-Lagrange equation

−∇
2
(𝑔 (






∇
2
𝑢






) ∇
2
𝑢) − 𝜆

2
(𝑢 − 𝑢

0
) = 0. (11)

In this section, we have treated 𝐸
1
(𝑢) and 𝐸

2
(𝑢) and their

associated Euler-Lagrange equations separately. However,
we want to establish a positive interaction between these
equations, and that is the topic for the next section.

3. Convex Combination of the Two
Minimization Problems

In this section, we denote the solutions (9), (11) by 𝑢 and
V, respectively. It follows from the Euler-Lagrange variation
principle that the minimizer of 𝑢 and the minimizer of V can
be interpreted as the steady-state solution of the nonlinear
diffusion process

𝑢
𝑡
= ∇ ⋅ (𝑔 (|∇𝑢|) ∇𝑢) − 𝜆1

(𝑢 − 𝑢
0
) , (12)

with initial data 𝑢(𝑥, 𝑦, 0) = 𝑢
0
(𝑥, 𝑦), and

V
𝑡
= −∇
2
(𝑔 (






∇
2V





) ∇
2V) − 𝜆

2
(V − V

0
) , (13)

with the same initial data V(𝑥, 𝑦, 0) = 𝑢
0
(𝑥, 𝑦), respectively.

As mentioned in the last section, each of the above PDEs
substantially suppress noise, but (12) is designed such that
smooth areas are diffused faster than less smooth ones and
thus the blocky effects will appear, while (13) attempts to
preserve edges by approximating an observed image with a
piecewise planar image at the cost of leaving images with
speckle artifacts.Then, we do not expect their solutions 𝑢 and
V to be equal all over the image domainΩ.

Considering that the methods in (12) and (13) have their
strengths and weakness, we try to generate a new model by
a convex combination 𝑤 = 𝛼𝑢 + (1 − 𝛼)V with 𝛼 ∈ [0, 1]

to fully take advantage of the strengths of (12) and (13).
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We prefer that the weighting constant 𝛼 can be found
adaptively. Through several different approaches to calculate
the weighting constant, we have found that the assumption
𝛼 ≤ 1/2 could give good results. Indeed, we will take 𝛼 =

0.315. The details of the algorithm we have used are given in
the next section. We remark that the theoretical analysis of
the best constant 𝛼 for the convex combination is out of the
scope of this paper.

4. Discredited Numerical Scheme

In this section, we use a simple numerical scheme that
discrete (12), (13) and then combine them. For this purpose,
we divide it into three steps.

Firstly, (12) can be discredited on a square lattice with
the horizontal and vertical directions having the same step
of space. Suppose that ℎ denotes the spatial mesh size and
Δ𝑡 the temporal step length. We quantize the space and time
coordinates as follows:

𝑡 = 𝑘
𝑖
∗ Δ𝑡, 𝑘

𝑖
= 0, 1, 2, . . . , (𝑖 = 1, 2) ,

𝑥 = 𝑖 ∗ ℎ, 𝑖 = 0, 1, 2, . . . ,𝑀,

𝑦 = 𝑗 ∗ ℎ, 𝑗 = 0, 1, 2, . . . , 𝑁,

(14)

where𝑀 × 𝑁 is the size of the image, and then a 4-nearest-
neighbors discretization of the Laplacian operator can be
used:

�̃�
𝑘
1
+1

𝑖,𝑗
= 𝑢
𝑘
1

𝑖,𝑗
+ Δ𝑡 ∗ ( (𝑐

𝑁
⋅ ∇
𝑁
𝑢 + 𝑐
𝑆
⋅ ∇
𝑆
𝑢

+ 𝑐
𝐸
⋅ ∇
𝐸
𝑢 + 𝑐
𝑊
⋅ ∇
𝑊
𝑢)
𝑘
1

𝑖,𝑗

−𝜆
1
(𝑢
𝑘
1

𝑖,𝑗
− 𝑢
𝑘
1

0
)) ,

(15)

where

∇
𝑁
𝑢
𝑘
1

𝑖,𝑗
= 𝑢
𝑘
1

𝑖−1,𝑗
− 𝑢
𝑘
1

𝑖,𝑗
, ∇

𝑆
𝑢
𝑘
1

𝑖,𝑗
= 𝑢
𝑘
1

𝑖+1,𝑗
− 𝑢
𝑘
1

𝑖,𝑗
,

∇
𝐸
𝑢
𝑘
1

𝑖,𝑗
= 𝑢
𝑘
1

𝑖,𝑗+1
− 𝑢
𝑘
1

𝑖,𝑗
, ∇

𝑊
𝑢
𝑘
1

𝑖,𝑗
= 𝑢
𝑘
1

𝑖,𝑗−1
− 𝑢
𝑘
1

𝑖,𝑗
,

𝑐
𝑘
1

𝑁
= 𝑔 (








∇
𝑁
𝑢
𝑘
1

𝑖,𝑗








) , 𝑐
𝑘
1

𝑆
= 𝑔 (








∇
𝑆
𝑢
𝑘
1

𝑖,𝑗








) ,

𝑐
𝑘
1

𝐸
= 𝑔 (








∇
𝐸
𝑢
𝑘
1

𝑖,𝑗








) , 𝑐
𝑘
1

𝑊
= 𝑔 (








∇
𝑊
𝑢
𝑘
1

𝑖,𝑗








) .

(16)

Secondly, (13) still can be discredited on a square lattice
as described above. We calculate the Laplacian of the image
intensity function as

∇
2V𝑘2
𝑖,𝑗
= V𝑘2
𝑖+1,𝑗

+ V𝑘2
𝑖−1,𝑗

+ V𝑘2
𝑖,𝑗+1

+ V𝑘2
𝑖,𝑗−1

− 4V𝑘2
𝑖,𝑗

(17)

with symmetric boundary conditions

V𝑘2
−1,𝑗

= V𝑘2
0,𝑗
, V𝑘2
𝑀+1,𝑗

= V𝑘2
𝑀,𝑗

, 𝑗 = 0, 1, . . . , 𝑁,

V𝑘2
𝑖,−1

= V𝑘2
𝑖,0
, V𝑘2
𝑖,𝑁+1

= V𝑘2
𝑖,𝑁
, 𝑖 = 0, 1, . . . ,𝑀.

(18)

Let 𝑐𝑘2
𝑖,𝑗
= 𝑔(|∇

2V𝑘2
𝑖,𝑗
|∇
2V𝑘2
𝑖,𝑗
), which can be discredited as

∇
2
𝑐
𝑘
2

𝑖,𝑗
=

𝑐
𝑘
2

𝑖+1,𝑗
+ 𝑐
𝑘
2

𝑖−1,𝑗
+ 𝑐
𝑘
2

𝑖,𝑗+1
+ 𝑐
𝑘
2

𝑖,𝑗−1
− 4𝑐
𝑘
2

𝑖,𝑗

ℎ
2

,
(19)

with symmetric boundary conditions

𝑐
𝑘
2

−1,𝑗
= 𝑐
𝑘
2

0,𝑗
, 𝑐
𝑘
2

𝑀+1,𝑗
= 𝑐
𝑘
2

𝑀,𝑗
, 𝑗 = 0, 1, . . . , 𝑁,

𝑐
𝑘
2

𝑖,−1
= 𝑐
𝑘
2

𝑖,0
, 𝑐
𝑘
2

𝑖,𝑁+1
= 𝑐
𝑘
2

𝑖,𝑁
, 𝑖 = 0, 1, . . . ,𝑀.

(20)

Thus, the numerical approximation to the differential equa-
tion (13) is given as

Ṽ𝑘2+1
𝑖,𝑗

= V𝑘2
𝑖,𝑗
− Δ𝑡 (∇

2
𝑐
𝑘
2

𝑖,𝑗
− 𝜆
2
(V𝑘2
𝑖,𝑗
− V𝑘2
0
)) . (21)

Thirdly, we deal with the convex combination

𝑢 = 𝛼�̃�
𝑘
1
+1
+ (1 − 𝛼) Ṽ𝑘2+1. (22)

Noticing that 𝑢 and V can be found independently each
other, we can combine them when they are convergent.
Numerical tests indicate that a combination at convergence is
most effective and accurate. Each of the numerical schemes
(12) and (13) is stable if they are solved separately, as long
as Δ𝑡 fulfills the Courant-Friedrichs-Lewy (CFL) condition.
Note that the corresponding algorithm for the Perona-Malik’s
model and the You-Kaveh’s model can be given by setting
𝛼 = 1, 𝜆

1
= 0, and 𝛼 = 0, 𝜆

2
= 0 in (22), respectively.

5. Experimental Results

In this section, we present some of the results obtained by the
proposed model and compare them with the corresponding
ones for the Perona-Malik’s model given by solving PDE (1)
and the You-Kaveh’s model given by solving PDE (7). From
the experimental results, the new model presented in this
paper can performance better than Perona-Malik’s model
and You-Kaveh’s model. In particular, the new model can
reduce the blocky effects appeared in Perona-Malik’s model
and avoid leaving the speckle artifacts appeared in the You-
Kaveh’s model.

Our example is a 256 × 256 sized gray-scale image Lena,
which is displayed in Figure 1(a). Figure 1(b) is its degraded
version corrupted by white random Gaussian noise with
standard deviation 15. Then, Figure 1(c) is the recovered
results by employing the Perona-Malik’s model, Figure 1(d)
is the recovered results by employing the You-Kaveh’s model,
and Figure 1(e) is the recovered results by employing the
proposedmodel. Figure 1(c) is obtainedwithΔ𝑡 = 0.2, 𝑘 = 10
for iteration 25, Figure 1(d) is obtained with Δ𝑡 = 0.2, 𝑘 = 5

for iteration 300, while our result is carried out by setting
𝛼 = 0.315,Δ𝑡 = 0.185, 𝜆

1
= 0.02, 𝜆

2
= 0.002, 𝑘 = 10, 𝑘

1
= 25,

and 𝑘
2
= 100.

In order to better understand the behavior of the pro-
posed model in local regions, especially in regions with
smooth signals and regions with discontinuities, we present
the following zoomed-in local results.

A small part of the Lena image is shown in Figure 2. It is
clear that the Perona-Malik’s model appears obvious blocky
effect and the You-Kaveh model leaves the speckle artifacts.
Our proposed model can avoid the staircase and the speckle
artifacts while removing the noise.
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(a) Original image (b) Noisy image

(c) Perona-Malik’s model (d) You-Kaveh’s model

(e) Our proposed model

Figure 1: Recovered results via our proposed model and compared with the Perona-Malik’s model and the You-Kaveh model.
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(a) Original image (b) Noisy image

(c) Perona-Malik’s model (d) You-Kaveh’s model

(e) Our proposed model

Figure 2: Partially enlarged results are displayed to compare the denoising performance of the Perona-Malik’s model and the You-Kaveh’s
model with our proposed model.
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Table 1: The comparison of the SNRs and PSNRs for experiments.

Image Peronal-Malik’s
model

You-Kaveh’s
model

Our proposed
model

SNR (dB) 23.14387 21.56607 23.29253
PSNR (dB) 28.0408 26.46297 28.18947

The restoration quality can be quantitatively measured by
the signal-to-noise ratio (SNR) and the peak signal-to-noise
ratio (PSNR), which are defined as

SNR =

Variance of image
Variance of noise

,

PSNR = 10 log 10( 255
2

∑
𝑖𝑗
(𝑔
𝑖𝑗
− ℎ
𝑖𝑗
)

2
) ,

(23)

and, respectively, where 𝑔 is the original image, ℎ denotes the
compared image, and the unit of SNR(PSNR) is decibel (dB).

In Table 1, we give the comparison of the SNR and PSNRs
for Figure 1, which shows that our model has the better SNR
and PSNR than those of the Perona-Malik’s model and the
You-Kaveh’s model.

6. Conclusions

This paper proposes a new model for noise removal. The
new model is based on a convex combination of the second-
order filter with the fourth-order filter. We have tested
our algorithm on images consisting of edges and smooth
regions. From these experimental results, we observed that
the proposed method is able to preserve edges while at the
same time avoiding the blocky effects in smooth regions. In a
word, the combinedmodel reaps benefits of both the Perona-
Malik’s model and the You-Kaveh’s model, surpassing each
individually in image restoration.
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