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We introduce two methods based on higher order compact finite differences for solving boundary layer problems. The methods
called compact finite difference relaxation method (CFD-RM) and compact finite difference quasilinearization method (CFD-
QLM) are an alternative form of the spectral relaxation method (SRM) and spectral quasilinearization method (SQLM). The SRM
and SQLM are Chebyshev pseudospectral-basedmethods which have been successfully used to solve boundary layer problems.The
main objective of this paper is to give a comparison of the compact finite difference approach against the pseudo-spectral approach
in solving similarity boundary layer problems. In particular, we seek to identify the most accurate and computationally efficient
method for solving systems of boundary layer equations in fluid mechanics. The results of the two approaches are comparable in
terms of accuracy for small systems of equations. For larger systems of equations, the proposed compact finite difference approaches
are more accurate than the spectral-method-based approaches.

1. Introduction

Low-order (second or lower) finite difference schemes are not
accurate enough for solvingmany problems in fluid dynamics
and other areas. Recently the focus has shifted to higher-
order compact finite difference (CFD) schemes. Researchers
have found significant improvement to the accuracy of
numerical solutions by using fourth or sixth-order CFD
schemes compared to the convectional second order finite
central difference scheme [1]. Various CFD schemes used for
applications such as interpolation, filtering, and evaluating
high-order derivatives were discussed in detail by Lele [2].
CFD schemes have largely been applied to solve partial
differential equations, for example, Burger’s equation [3, 4],
Navier-Stokes equation [5], Korteweg-de Vries equation [6],
Black-Scholes equation [7], andmanymore [8–10]. A limited
number of researchers have utilised the CFD schemes in
ordinary differential equations. For example in [11], Zhao
solved two-point boundary value problems. In [12], Zhao and
Corless used the CFD schemes to solve integro-differential
equations.

The advantage of the higher-order CFD schemes is
that they give high accuracy on coarser grids with greater
computational efficiency [13]. The difficulty that comes with
the higher order CFD schemes especially near the boundaries
makes many researchers shy away from using them in
practical computations. To retain the accuracy of the schemes
at the boundaries, the schemes are adjusted for the boundary
points.

When compared to spectral methods, compact schemes
are more flexible in terms of application to complex geome-
tries and boundary conditions. Lele [2] pointed out that the
use of spectral methods in turbulent fluid flows is limited
to flows in simple domains and simple boundary condi-
tions. Spectral methods become less accurate for problems
with complex geometries. Rai [14] gave a comprehensive
comparison between results obtained using finite differences
and spectral methods for direct simulation of turbulent
flows. They used high-order accurate upwind schemes. They
concluded that the spectral method is extremely accurate but
it has restrictions on the type of geometry and grids that
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can be efficiently handled. They further state that unlike the
spectral methods, the finite difference method can be used
efficiently with curvilinear grids.

In recent years Motsa and his coworkers [15–18] have
developed successful methods based on the spectral method
to solve nonlinear similarity boundary layer problems.
The methods include, among others, the spectral relax-
ation method (SRM) [15, 19, 20], the spectral successive
linearisation method [21–23], spectral homotopy analysis
method [24–27], and the spectral quasilinearisation method
(SQLM) [16]. The SRM is based on simple decoupling and
rearrangement of the governing equations and numerically
integrating the resulting equations using the Chebyshev
spectral collocation method.The SQLM combines the quasi-
linearization technique developed by Bellman and Kalaba
[28] to linearize nonlinear differential equations and solve the
resulting equations using the spectral method. In this work
we present alternative approach to the implementation of the
SRM and SQLM. Instead of using the spectral method in
these methods, we use the higher order CFD schemes, and
hence the resulting methods are the compact finite difference
relaxation method (CFD-RM) and compact finite difference
quasilinearization method (CFD-QLM), respectively.

The main objective of this work is to compare the
spectral-method-based and the CFD-based methods dis-
cussed above. We compare the performance of the methods
in terms of accuracy and computational speed when solving
nonlinear boundary layer problems in one dimension and
three dimensions. We first consider the flow of a viscous
incompressible electrically conducting fluid over a contin-
uously shrinking sheet which is governed by a third-order
nonlinear differential equation. The known exact analytical
solution [29, 30] of this problem is used as a benchmark to
validate the accuracy of the proposed algorithm discussed in
this work. We also consider a a three-equation system that
models the problem of unsteady free convective heat and
mass transfer on a stretching surface in a porous medium in
the presence of a chemical reaction [23, 31].

2. Description of the Methods of Solution

This section presents a brief description of how the proposed
iterative methods of solution are developed for a general
system of 𝑚 nonlinear ordinary differential equations in 𝑚
unknown functions.

2.1. Spectral Relaxation Method. The spectral relaxation
method (SRM) is a new method that has been introduced
recently by Motsa et al. [15, 19, 20] to solve initial and
boundary value problems. The method is based on simple
decoupling and rearrangement of the governing equations
and numerically integrating the resulting equations using the
Chebyshev spectral collocation method. The algorithm for
the method is summarized as follows.

(1) Arrange the governing nonlinear equations in a
particular order, placing the equations with the least
unknowns at the top of the equations list.

(2) Assign the labels 𝑍
1
, 𝑍
2
, 𝑍
3
, . . . to the ordered equa-

tions obtained in the above step, where each 𝑍
𝑖
(𝑖 =

1, 2, 3, . . .) is an unknown function which, in the
𝑖th equation, is identified as the unknown function
associated with the highest-order derivative.

(3) In the equation for 𝑍
1
(1st equation), the iteration

scheme is developed by assuming that only linear
terms in𝑍

1
are to be evaluated at the current iteration

level (denoted by 𝑟 + 1) and all other terms (linear
and nonlinear) in𝑍

2
, 𝑍
3
, . . . are assumed to be known

from the previous iteration (denoted by 𝑟). In addition
nonlinear terms in 𝑍

1
are also evaluated at the

previous iteration. Furthermore, all derivative terms
in 𝑍
1
are assumed to be known from the previous

iteration.
(4) Similarly, in developing the iteration scheme in the

equation for 𝑍
2
(2nd equation), only linear terms in

𝑍
2
are evaluated at the current iteration level (𝑟 + 1)

with all other terms evaluated at the previous level,
except 𝑍

1
which is now known from the solution of

the first equation.
(5) This process is repeated in the 𝑖th equation (𝑖 =

3, 4, . . .) using the updated solutions for𝑍
𝑖−1

obtained
from the previous 𝑖 − 1 equations.

The resulting iteration scheme is integrated using the Cheby-
shev spectral method.The region of integration is discretized
using the Gauss-Lobatto points defined by

𝜏
𝑗
= cos(

𝜋𝑗

𝑁

) , 𝑗 = 1, 2, 3, . . . , 𝑁, (1)

where 𝑁 is the number of collocation points used. The
Chebyshev spectral collocation method is based on the idea
of introducing a differentiation matrix 𝐷 which is used
to approximate the derivatives of the unknown variables
𝑍
𝑖
(𝑥) (𝑖 = 1, 2, 3, . . .) at the collocation points as the matrix

vector product

𝑑𝑍
𝑖

𝑑𝑥

=

𝑁

∑

𝑘=0

D
𝑗𝑘
𝑍
𝑖
= DZ

𝑖
, 𝑗 = 1, 2, . . . , 𝑁, (2)

where Z
𝑖
= [𝑍
𝑖
(𝜏
0
), 𝑍
𝑖
(𝜏
1
), . . . , 𝑍

𝑖
(𝜏
𝑁
)] is the vector function

at the collocation points 𝜏
𝑗
.

2.2. Compact Finite Difference Relaxation Method. The com-
pact finite difference relaxation method (CFD-RM) uses the
same procedure followed in the SRM. The difference is that
instead of using spectral methods to solve the resulting
iteration schemes, higher order compact finite difference
schemes are used. In this work we use sixth-order CFD
schemes.

In the derivation of the CFD schemes we consider a one-
dimensional uniformmesh on the region [𝑎, 𝑏]with nodes 𝑥

𝑖

(𝑖 = 1, 2, . . . , 𝑁) where

𝑎 = 𝑥
1
< 𝑥
2
< ⋅ ⋅ ⋅ < 𝑥

𝑁
= 𝑏 (3)

and a corresponding function 𝑦
𝑖
= 𝑦(𝑥

𝑖
) at the nodes. The

distance between any two successive nodes is a constant ℎ =
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𝑥
𝑖
−𝑥
𝑖−1

. Sixth-order approximations of the first, second, and
third derivatives at interior nodes can be obtained using the
following schemes (see [2] for details):

1

3

𝑦
󸀠

𝑖−1
+ 𝑦
󸀠

𝑖
+

1

3

𝑦
󸀠

𝑖+1

=

14

9

𝑦
𝑖+1
− 𝑦
𝑖−1

2ℎ

+

1

9

𝑦
𝑖+2
− 𝑦
𝑖−2

4ℎ

,

(4)

2

11

𝑦
󸀠󸀠

𝑖−1
+ 𝑦
󸀠󸀠

𝑖
+

2

11

𝑦
󸀠󸀠

𝑖+1

=

12

11

𝑦
𝑖+1
− 2𝑦
𝑖
+ 𝑦
𝑖−1

ℎ
2

+

3

11

𝑦
𝑖+2
− 2𝑦
𝑖
+ 𝑦
𝑖−2

4ℎ
2

,

(5)

7

16

𝑦
󸀠󸀠󸀠

𝑖−1
+ 𝑦
󸀠󸀠󸀠

𝑖
+

7

16

𝑦
󸀠󸀠󸀠

𝑖+1

= 2

𝑦
𝑖+2
− 2𝑦
𝑖+1
− 2𝑦
𝑖−1
− 𝑦
𝑖−2

2ℎ
3

−

1

8

𝑦
𝑖+3
− 3𝑦
𝑖+1
− 3𝑦
𝑖−1
− 𝑦
𝑖−3

8ℎ
3

.

(6)

For illustrative purposes we describe the application of
the CFD schemes to second-order differential equations for
𝑦(𝑥) with known boundary conditions at 𝑦(𝑎) and 𝑦(𝑏).
Consider the nonlinear differential equations

𝑦
󸀠󸀠
+ 𝑝 (𝑥) 𝑦

󸀠
+ 𝑞 (𝑥) 𝑦 (𝑥) + 𝑓 (𝑥, 𝑦, 𝑦

󸀠
) = 0,

𝑦 (𝑎) = 𝑦
𝑎
, 𝑦 (𝑏) = 𝑦

𝑏
,

(7)

where 𝑓(𝑥, 𝑦, 𝑦󸀠) is a nonlinear function, 𝑝(𝑥) and 𝑞(𝑥) are
known functions of 𝑥, and 𝑦

𝑎
and 𝑦
𝑏
are known constants. In

solving (7), we apply the CFD approximation for the first and
second derivatives given by (4) and (5), respectively, at the
interior nodes (𝑖 = 2, . . . , 𝑁 − 1). Since we know boundary
conditions at 𝑖 = 1 and 𝑖 = 𝑁, the CFD schemes must be
adjusted for the nodes near the boundary points. In order to
maintain the order 𝑂(ℎ6) accuracy at the boundary points as
in the interior points and to maintain the same tridiagonal
format, we use the following one-sided scheme at 𝑖 = 2:

𝑦
󸀠

2
+

1

3

𝑦
󸀠

3
=

1

ℎ

(𝑎
1
𝑦
1
+ 𝑎
2
𝑦
2
+ 𝑎
3
𝑦
3

+𝑎
4
𝑦
4
+ 𝑎
5
𝑦
5
+ 𝑎
6
𝑦
6
+ 𝑎
7
𝑦
7
) ,

(8)

and when 𝑖 = 𝑁 − 1, we use

1

3

𝑦
󸀠

𝑁−2
+ 𝑦
󸀠

𝑁−1

=

1

ℎ

(𝑏
1
𝑦
𝑁
+ 𝑏
2
𝑦
𝑁−1

+ 𝑏
3
𝑦
𝑁−3

+ 𝑏
4
𝑦
𝑁−4

+𝑏
5
𝑦
𝑁−5

+ 𝑏
6
𝑦
𝑁−6

+ 𝑏
7
𝑦
𝑁−7

) ,

(9)

where 𝑎
𝑖
, 𝑏
𝑖
(𝑖 = 1, . . . , 7) are constants to be determined. To

obtain a sixth-order accurate scheme, we use Taylor series

expansion about 𝑥
1
and 𝑥

𝑁
up to 𝑂(ℎ

7
), in (8) and (9),

respectively, and equate terms of order ℎ. In each case, we
obtain a system of seven linear algebraic equations in seven
unknowns which are solved to give

𝑎
1
= −

7

45

, 𝑎
2
= −

17

12

, 𝑎
3
=

83

36

,

𝑎
4
= −

11

9

, 𝑎
5
=

2

3

,

𝑎
6
= −

37

180

, 𝑎
7
=

1

36

,

𝑏
𝑘
= −𝑎
𝑘
, 𝑘 = 1, 2, . . . , 7.

(10)

Similarly, for the second derivatives, we use

𝑦
󸀠󸀠

2
+

2

11

𝑦
󸀠󸀠

3
=

1

ℎ
2
(𝑐
1
𝑦
1
+ 𝑐
2
𝑦
2
+ 𝑐
3
𝑦
3
+ 𝑐
4
𝑦
4

+𝑐
5
𝑦
5
+ 𝑐
6
𝑦
6
+ 𝑐
7
𝑦
7
+ 𝑐
8
𝑦
8
) ,

(11)

at 𝑖 = 2 and

2

11

𝑦
󸀠󸀠

𝑁−2
+ 𝑦
󸀠󸀠

𝑁−1

=

1

ℎ
2
(𝑑
1
𝑦
𝑁
+ 𝑑
2
𝑦
𝑁−1

+ 𝑑
3
𝑦
𝑁−3

+ 𝑑
4
𝑦
𝑁−4

+𝑑
5
𝑦
𝑁−5

+ 𝑑
6
𝑦
𝑁−6

+ 𝑑
7
𝑦
𝑁−7

+ 𝑑
8
𝑦
𝑁−8

)

(12)

at 𝑖 = 𝑁 − 1. The parameters 𝑐
𝑖
, 𝑑
𝑖
can be determined

by expanding (11) and (12) using Taylor series and equating
powers of ℎ and subsequently solving the resulting equations.
This gives

𝑐
1
=

31

45

, 𝑐
2
= −

19

110

, 𝑐
3
= −

339

110

,

𝑐
4
=

1933

396

, 𝑐
5
= −

40

11

,

𝑐
6
=

96

55

, 𝑐
7
= −

479

990

, 𝑐
8
=

13

220

,

𝑑
𝑖
= 𝑐
𝑖
, 𝑖 = 1, 2, . . . , 8.

(13)
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Using the above equations, the equations for approximat-
ing the first- and second-order derivatives can be expressed
as

𝐴
2
𝑌
󸀠󸀠
= 𝐵
2
𝑌 + 𝐾

2
, 𝐴

1
𝑌
󸀠
= 𝐵
1
𝑌 + 𝐾

1
, (14)

where

𝐴
1
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1

1

3

1

3

1

1

3

1

3

1

1

3

d d d

1

3

1

1

3

1

3

1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

](𝑁−2)×(𝑁−2)

,

𝐾
1
=

1

ℎ

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑎
1
𝑦
1

−

𝑦
1

36

0

...

...
0

𝑦
𝑁

36

−𝑎
1
𝑦
𝑁

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

](𝑁−2)×1

,

(15)

𝐵
1
=

1

ℎ

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑎
2

𝑎
3

𝑎
4

𝑎
5

𝑎
6

𝑎
7

−

7

9

0

7

9

1

36

−1

36

−

7

9

0

7

9

1

36

d d d d d

−1

36

−

7

9

0

7

9

1

36

−1

36

−

7

9

0

7

9

−𝑎
7
−𝑎
6
−𝑎
5
−𝑎
4
−𝑎
3
−𝑎
2

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

](𝑁−2)×(𝑁−2)

,

(16)

𝐴
2
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1

2

11

2

11

1

2

11

2

11

1

2

11

d d d

2

11

1

2

11

2

11

1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

](𝑁−2)×(𝑁−2)

,

𝐾
2
=

1

ℎ
2

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑐
1
𝑦
1

3𝑦
1

44

0

...

...
0

3𝑦
𝑁

44

𝑐
1
𝑦
𝑁

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

](𝑁−2)×1

,

𝐵
2

=

1

ℎ
2

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑐
2

𝑐
3

𝑐
4

𝑐
5

𝑐
6

𝑐
7

𝑐
8

12

11

−

51

22

12

11

3

44

3

44

12

11

−

51

22

12

11

3

44

d d d d d

3

44

12

11

−

51

22

12

11

3

44

3

44

12

11

−

51

22

12

11

𝑐
8

𝑐
7

𝑐
6

𝑐
5

𝑐
4

𝑐
3

𝑐
2

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]
(𝑁−2)×(𝑁−2)

𝑌
󸀠
= [𝑦
󸀠

2
, 𝑦
󸀠

3
, . . . , 𝑦

󸀠

𝑁−2
, 𝑦
󸀠

𝑁−1
]

𝑇

,

𝑌
󸀠󸀠
= [𝑦
󸀠󸀠

2
, 𝑦
󸀠󸀠

3
, . . . , 𝑦

󸀠󸀠

𝑁−2
, 𝑦
󸀠󸀠

𝑁−1
]

𝑇

.

(17)

For the purposes of the examples given in this work, we
also illustrate the application of the CFD schemes for the
following set of boundary conditions:

𝑦 (𝑎) = 𝑦
𝑎
, 𝑦

󸀠
(𝑎) = 𝑦

𝑑𝑎
, 𝑦

󸀠
(𝑏) = 𝑦

𝑑𝑏
. (18)

We adjust the schemes near the boundary points as
discussed above. In this case, the schemes at 𝑖 = 𝑁−2 are also
adjusted. At 𝑖 = 2, we use the following one-sided scheme:

𝑦
󸀠

2
+

1

3

𝑦
󸀠

3
= 𝑎
1
𝑦
󸀠

1
+

1

ℎ

(𝑎
2
𝑦
1
+ 𝑎
3
𝑦
2

+𝑎
4
𝑦
3
+ 𝑎
5
𝑦
4
+ 𝑎
6
𝑦
5
+ 𝑎
7
𝑦
6
) .

(19)

At 𝑖 = 𝑁 − 1, we use

1

3

𝑦
󸀠

𝑁−2
+ 𝑦
󸀠

𝑁−1

= 𝑏
1
𝑦
󸀠

𝑁
+

1

ℎ

(𝑏
2
𝑦
𝑁−1

+ 𝑏
3
𝑦
𝑁−2

+ 𝑏
4
𝑦
𝑁−3

+𝑏
5
𝑦
𝑁−4

+ 𝑏
6
𝑦
𝑁−5

+ 𝑏
7
𝑦
𝑁−6

) ,

(20)
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and at 𝑖 = 𝑁 − 2, we use

1

3

𝑦
󸀠

𝑁−3
+ 𝑦
󸀠

𝑁−2
+

1

3

𝑦
󸀠

𝑁−1

= 𝑐
1
𝑦
󸀠

𝑁
+

1

ℎ

(𝑐
2
𝑦
𝑁−1

+ 𝑐
3
𝑦
𝑁−2

+ 𝑐
4
𝑦
𝑁−3

+𝑐
5
𝑦
𝑁−4

+ 𝑐
6
𝑦
𝑁−5

+ 𝑐
7
𝑦
𝑁−6

)

(21)

with the constants given by

𝑎
1
= −

1

6

, 𝑎
2
= −

203

360

, 𝑎
3
= −

5

12

,

𝑎
4
=

19

18

, 𝑎
5
= −

1

9

, 𝑎
6
=

1

24

,

𝑎
7
= −

1

80

,

𝑏
1
=

4

63

, 𝑏
2
=

151

84

, 𝑏
3
= −

701

252

,

𝑏
4
=

311

189

, 𝑏
5
= −

19

21

, 𝑏
6
=

71

252

,

𝑏
7
= −

29

756

,

𝑐
1
=

5

441

, 𝑐
2
=

373

441

, 𝑐
3
= −

25

294

,

𝑐
4
= −

929

1323

, 𝑐
5
= −

31

441

, 𝑐
6
= −

2

147

,

𝑐
7
= −

5

2646

.

(22)

Similarly for the second derivative, we use

𝑦
󸀠󸀠

2
+

2

11

𝑦
󸀠󸀠

3
=

𝑑
1
𝑦
󸀠

1

ℎ

+

1

ℎ
2
(𝑑
2
𝑦
1
+ 𝑑
3
𝑦
2
+ 𝑑
4
𝑦
3
+ 𝑑
5
𝑦
4

+𝑑
6
𝑦
5
+ 𝑑
7
𝑦
6
+ 𝑑
8
𝑦
7
) ,

(23)

at 𝑖 = 2. At 𝑖 = 𝑁 − 1, we use

2

11

𝑦
󸀠󸀠

𝑁−2
+ 𝑦
󸀠󸀠

𝑁−1

=

𝑒
1
𝑦
󸀠

𝑁

ℎ

+

1

ℎ
2
(𝑒
2
𝑦
𝑁−1

+ 𝑒
3
𝑦
𝑁−2

+ 𝑒
4
𝑦
𝑁−3

+𝑒
5
𝑦
𝑁−4

+ 𝑒
6
𝑦
𝑁−5

+ 𝑒
7
𝑦
𝑁−6

+ 𝑒
8
𝑦
𝑁−7

) ,

(24)

and at𝑁 − 3,

2

11

𝑦
󸀠󸀠

𝑁−3
+ 𝑦
󸀠󸀠

𝑁−2
+

2

11

𝑦
󸀠󸀠

𝑁−1

=

𝑓
1
𝑦
󸀠

𝑁

ℎ

+

1

ℎ
2
(𝑓
2
𝑦
𝑁−1

+ 𝑓
3
𝑦
𝑁−2

+ 𝑓
4
𝑦
𝑁−3

+ 𝑓
5
𝑦
𝑁−4

+ 𝑓
6
𝑦
𝑁−5

+ 𝑓
7
𝑦
𝑁−6

+𝑓
8
𝑦
𝑁−7

) .

(25)

The constants are found to be

𝑑
1
=

91

220

, 𝑑
2
=

6341

3600

, 𝑑
3
= −

135

44

,

𝑑
4
=

111

88

, 𝑑
5
=

1

18

, 𝑑
6
= −

3

176

,

𝑑
7
=

9

1100

, 𝑑
8
= −

1

792

,

𝑒
1
=

17591

24352

, 𝑒
2
=

55117

32670

, 𝑒
3
= −

63941

10890

,

𝑒
4
=

312887

39204

, 𝑒
5
= −

19475

3267

, 𝑒
6
=

3116

1089

,

𝑒
7
= −

77801

99010

, 𝑒
8
=

6341

65340

,

𝑓
1
=

1925

6088

, 𝑓
2
=

1697

1331

, 𝑓
3
= −

3453

1331

,

𝑓
4
=

5581

3993

, 𝑓
5
= −

431

2662

, 𝑓
6
=

147

1331

,

𝑓
7
= −

245

7986

, 𝑓
8
=

5

1331

.

(26)

Combining the schemes for approximating the first and
second derivatives at interior points with (19)–(23), the
equations for approximating the first and second derivatives
are given by

𝐴
1
𝑌
󸀠
= 𝐵
1
𝑌 + 𝐾

1
+ 𝐾
󸀠

1
,

𝐴
2
𝑌
󸀠󸀠
= 𝐵
2
𝑌 + 𝐾

2
+ 𝐾
󸀠

2
,

(27)

where 𝐴
1
and 𝐴

2
are the same as in (14),

𝐵
1
=

1

ℎ

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑎
3

𝑎
4

𝑎
5

𝑎
6

𝑎
7

−

7

9

0

7

9

1

36

−1

36

−

7

9

0

7

9

1

36

d d d d d

−1

36

−

7

9

0

7

9

1

36

𝑐
7

𝑐
6

𝑐
5

𝑐
4

𝑐
3

𝑐
1

𝑏
7

𝑏
6

𝑏
5

𝑏
4
𝑏
3
𝑏
2

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

](𝑁−2)×(𝑁−2)

,
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𝐾
1
=

1

ℎ

[

[

[

[

[

[

[

[

[

[

𝑎
2
𝑦
1

−

𝑦
1

36

0

...
0

]

]

]

]

]

]

]

]

]

](𝑁−2)×1

,

𝐾
󸀠

1
=

[

[

[

[

[

[

[

[

[

[

[

𝑎
1
𝑦
󸀠

1

0

...
𝑐
1
𝑦
󸀠

𝑁

𝑏
1
𝑦
󸀠

𝑁

]

]

]

]

]

]

]

]

]

]

]
(𝑁−2)×1

,

𝐵
2

=

1

ℎ
2

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑑
3

𝑑
4

𝑑
5

𝑑
6
𝑑
7

𝑑
8

12

11

−

51

22

12

11

3

44

3

44

12

11

−

51

22

12

11

3

44

d d d d d

3

44

12

11

−

51

22

12

11

3

44

𝑓
8

𝑓
7

𝑓
6
𝑓
5

𝑓
4

𝑓
3
𝑓
2

𝑒
8

𝑒
7

𝑒
6

𝑒
5

𝑒
4

𝑒
3

𝑒
2

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]
(𝑁−2)×(𝑁−2)

,

𝐾
2
=

1

ℎ
2

[

[

[

[

[

[

[

[

[

[

[

𝑐
2
𝑦
1

3𝑦
1

44

0

...
0

]

]

]

]

]

]

]

]

]

]

](𝑁−2)×1

,

𝐾
󸀠

2
=

1

ℎ

[

[

[

[

[

[

[

[

[

[

[

[

𝑐
1
𝑦
󸀠

1

0

...
𝑓
1
𝑦
󸀠

𝑁

𝑒
1
𝑦
󸀠

𝑁

]

]

]

]

]

]

]

]

]

]

]

](𝑁−2)×1

.

(28)

Similarly, third derivatives can be expressed in the form

𝐴
3
𝑌
󸀠󸀠󸀠
= 𝐵
3
𝑌 + 𝐾

3
+ 𝐾
󸀠

3
. (29)

2.3. Spectral Quasilinearization Method. In this section we
give a brief description of the spectral quasilinearization
method (SQLM). In this method we make use of the
quasilinearization method (QLM) and spectral method. The

QLM was initially proposed by Bellman and Kalaba [28] to
solve nonlinear boundary layer problems. To develop the
SQLM, we consider a system of 𝑚 nonlinear differential
equations in 𝑚 unknowns 𝑧

𝑖
(𝜂) (𝑖 = 1, 2, . . . , 𝑚) where 𝜂 is

the independent variable.The system can be written as a sum
of its linear 𝐿 and nonlinear components𝑁 as

𝐿 [𝑧
1
(𝜂) , 𝑧

2
(𝜂) , . . . , 𝑧

𝑚
(𝜂)]

+ 𝑁 [𝑧
1
(𝜂) , 𝑧

2
(𝜂) , . . . , 𝑧

𝑚
(𝜂)] = 𝐻 (𝜂) .

(30)

Define the vector 𝑍
𝑖
to be the vector of the derivatives of the

variable 𝑧
𝑖
with respect to the independent variable 𝜂; that is,

𝑍
𝑖
= [𝑧
(0)

𝑖
, 𝑧
(1)

𝑖
, . . . , 𝑧

(𝑛𝑖)

𝑖
] , (31)

where 𝑧(0)
𝑖
= 𝑧
𝑖
, 𝑧(𝑝)
𝑖

is the 𝑝th derivative of 𝑧
𝑖
with respect to

𝜂, and 𝑛
𝑖
(𝑖 = 1, 2, . . . , 𝑚) is the highest derivative order of the

variable 𝑧
𝑖
appearing in the system of equations. In addition,

we define 𝐿
𝑖
and𝑁

𝑖
to be the linear and nonlinear operators,

respectively, that operate on the 𝑍
𝑖
for 𝑖 = 1, 2, . . . , 𝑚. With

these definitions (30) can be written as

𝐿
𝑖
[𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑚
] + 𝑁
𝑖
[𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑚
]

=

𝑚

∑

𝑗=1

𝑛𝑖

∑

𝑝=0

𝛼
[𝑝]

𝑖𝑗
𝑍
(𝑝)

𝑗
+ 𝑁
𝑖
[𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑚
]

= 𝐻
𝑖
,

(32)

where 𝛼[𝑝]
𝑖,𝑗

are the constant coefficients of 𝑧(𝑝)
𝑗
, the derivative

of 𝑧
𝑗
(𝑗 = 1, 2, . . . , 𝑚) that appears in the 𝑖th equation for 𝑖 =

1, 2, . . . , 𝑚. Assume that the solution 𝑧
𝑖
(𝜂) of (32) at the (𝑟 +

1)th iteration is 𝑧
𝑖,𝑟+1

. If the solution at the previous iteration
𝑧
𝑖,𝑟
(𝜂) is sufficiently close to 𝑧

𝑖,𝑟+1
, the nonlinear component

𝑁
𝑖
of (32) can be linearised using one-term Taylor series for

multiple variables, so that (32) can be approximated as

𝐿
𝑖
[𝑍
1,𝑟+1

, . . . , 𝑍
𝑚,𝑟+1

] + 𝑁
𝑖 [
⋅ ⋅ ⋅ ]

+

𝑚

∑

𝑗=1

𝑛𝑖

∑

𝑝=0

(𝑍
(𝑝)

𝑗,𝑟+1
− 𝑍
(𝑝)

𝑗,𝑟
)

𝜕𝑁
𝑖

𝜕𝑍
(𝑝)

𝑗

[⋅ ⋅ ⋅ ]

= 𝐻
𝑖
,

(33)

where

[⋅ ⋅ ⋅ ] = [𝑍1,𝑟
, 𝑍
2,𝑟
, . . . , 𝑍

𝑚,𝑟
] . (34)

Equation (33) can be rewritten as

𝐿
𝑖
[𝑍
1,𝑟+1

, . . . , 𝑍
𝑚,𝑟+1

] +

𝑚

∑

𝑗=1

𝑛𝑖

∑

𝑝=0

𝑍
(𝑝)

𝑗,𝑟+1

𝜕𝑁
𝑖

𝜕𝑍
(𝑝)

𝑗

[⋅ ⋅ ⋅ ]

= 𝐻
𝑖
+

𝑚

∑

𝑗=1

𝑛𝑖

∑

𝑝=0

𝑍
(𝑝)

𝑗,𝑟

𝜕𝑁
𝑖

𝜕𝑍
(𝑝)

𝑗

[⋅ ⋅ ⋅ ] − 𝑁𝑖 [
⋅ ⋅ ⋅ ] .

(35)

To solve the iteration scheme (35), we use the Chebyshev
spectral collocation method.
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2.4. Compact Finite Difference Quasilinearization Method.
Using compact finite difference schemes to solve the QLM
scheme (35) results in the compact finite difference quasilin-
earization method (CFD-QLM). We will use the sixth-order
finite difference schemes the same way we used them for the
CFD-RM.

3. Examples

In this section, two numerical examples are discussed to
compare the CFD results against spectral method results. We
consider one-dimensional and three-dimensional problems.

3.1. MHD Boundary Layer Flow over a Shrinking Sheet. We
first consider a steady one-dimensional laminar flow of a
viscous incompressible electrically conducting fluid over a
continuously shrinking sheet. The governing equation is
given (see, e.g., [29, 30]) in similarity form as

𝑓
󸀠󸀠󸀠
+ 𝑓𝑓
󸀠󸀠
− 𝑓
󸀠2
−𝑀
2
𝑓
󸀠
= 0 (36)

subject to

𝑓 (0) = 0, 𝑓
󸀠
(0) = −1, 𝑓

󸀠
(∞) = 0, (37)

where𝑓 = 𝑓(𝜂) and𝑀 is themagnetic interaction parameter.
The analytical solution for (36) is given by

𝑓 (𝜂) =

1

𝛼

(𝑒
−𝛼𝜂

− 1) , 𝛼 = √𝑀
2
− 1. (38)

We solve (36) using the SRM and CFD-RM and the
SQLMandCFD-QLM. In the next subsectionswe explain the
development of each of the methods for the solution of (36).

3.1.1. SRM and CFD-RM. To apply the SRM andCFD-RMon
(36), we first set 𝑓󸀠(𝜂) = 𝑔(𝜂) and write the equation as the
following system of equations:

𝑓
󸀠
= 𝑔,

𝑔
󸀠󸀠
+ 𝑓𝑔
󸀠
− 𝑔
2
−𝑀
2
𝑔 = 0

(39)

with the boundary conditions

𝑓 (0) = 0, 𝑔 (0) = −1, 𝑔 (∞) = 0. (40)

Applying the SRM and CFD-RM on (36), we obtain the
following iteration scheme:

𝑓
󸀠

𝑟+1
= 𝑔
𝑟
, 𝑓

𝑟+1
(0) = 0, (41)

𝑔
󸀠󸀠

𝑟+1
+ 𝑓
𝑟+1
𝑔
󸀠

𝑟+1
−𝑀
2
𝑔
𝑟+1

= 𝑔
2

𝑟
,

𝑔
𝑟+1
(0) = −1, 𝑔

𝑟+1
(∞) = 0.

(42)

The SRM and CFD-RM schemes that result from applying
the spectral method and compact finite difference schemes
on (41)-(42), respectively, are given by

𝑋
1
𝑓
𝑟+1

= 𝑌
1
, 𝑓

𝑟+1
(𝜏
𝑁
) = 0,

𝑋
2
𝑔
𝑟+1

= 𝑌
2
, 𝑔

𝑟+1
(𝜏
𝑁
) = −1,

𝑔
𝑟+1
(𝜏
0
) = 0,

(43)

where for the SRM,

𝑋
1
= D, 𝑌

1
= 𝑔
𝑟
,

𝑋
2
= D2 + diag [𝑓

𝑟+1
]D −𝑀

2I, 𝑌
2
= 𝑔
2

𝑟
,

(44)

where I is an (𝑁 + 1) × (𝑁 + 1) identity matrix and diag is a
function that places a vector [ ] on the main diagonal of an
(𝑁+1)×(𝑁+1)matrix of zeros. For the CFD-RM, we obtain

𝑋
1
= 𝐸
1
, 𝑌

1
= 𝑔
𝑟
− 𝐴
−1

1
𝐾
1
,

𝑋
2
= 𝐸
2
+ diag [𝑓

𝑟+1
] 𝐸
1
−𝑀
2
𝐼,

𝑌
2
= 𝑔
2

𝑟
− 𝐴
−1

2
𝐾
2
− 𝐴
−1

1
𝐾
1
,

(45)

where 𝐸
1
= 𝐴
−1

1
𝐵
1
and 𝐸

2
= 𝐴
−1

2
𝐵
2
. 𝐼 is an (𝑁 − 1) × (𝑁 − 1)

identity matrix.

3.1.2. SQLM and CFD-QLM. To solve (36) using the SQLM
and CFD-QLM, we first linearize the equation using the
quasilinearization method. We first reduce the order of the
equation by setting 𝑓󸀠(𝜂) = 𝑔(𝜂) and write it as the following
system of equations:

𝑓
󸀠
= 𝑔,

𝑔
󸀠󸀠
+ 𝑓𝑔
󸀠
− 𝑔
2
−𝑀
2
𝑔 = 0

(46)

with the boundary conditions

𝑓 (0) = 0, 𝑔 (0) = −1, 𝑔 (∞) = 0. (47)

Applying the quasilinearization method on (46), we
obtain

𝑓
󸀠

𝑟+1
− 𝑔
𝑟+1

= 0, (48)

𝑔
󸀠

𝑟
𝑓
𝑟+1

+ 𝑔
󸀠󸀠

𝑟+1
+ 𝑓
𝑟
𝑔
󸀠

𝑟+1
− (2𝑔

𝑟
+𝑀
2
) 𝑔
𝑟+1

= 𝑓
𝑟
𝑔
󸀠

𝑟
− 𝑔
2

𝑟

(49)

subject to

𝑓
𝑟+1
(0) = 0, 𝑔

𝑟+1
(0) = −1, 𝑔

𝑟+1
(0) = 0. (50)

The SQLM and CFD-QLM schemes that result from
applying the spectral method and compact finite difference
schemes on (48)-(49), respectively, are given by

[

Δ
1,1

Δ
1,2

Δ
2,1

Δ
2,2

] [

𝑓
𝑟+1

𝑔
𝑟+1

] = [

Φ
1,𝑟

Φ
2,𝑟

] , (51)

where in the framework of the SQLM,

Δ
1,1
= D,

Δ
1,2
= −I,

Δ
2,1
= diag [𝑔󸀠

𝑟
] ,

Δ
2,2
= D2 + diag [𝑓

𝑟
]D − diag [2𝑔

𝑟
+𝑀
2
] ,

Φ
1,𝑟
= O,

Φ
2,𝑟
= 𝑓
𝑟
𝑔
󸀠

𝑟
− 𝑔
2

𝑟
,

(52)
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Table 1: Comparison of the SRM and CFD-RM results for the solution of 𝑓󸀠󸀠(0) in Example 1.

𝑀 Exact SRM CFD6-RM
𝑁 𝑓

󸀠󸀠
(0) CPU time 𝑁 𝑓

󸀠󸀠
(0) CPU time

2 1.732050808 40 1.732050808 0.04 270 1.732050808 0.23
5 4.898979486 40 4.898979486 0.01 550 4.898979486 1.11
10 9.949874371 40 9.949874371 0.01 700 9.949874371 2.19

whereO is an (𝑁 + 1) × 1 zero vector. For the CFD-QLM, we
have

Δ
1,1
= 𝐸
1
,

Δ
1,2
= −𝐼,

Δ
2,1
= diag [𝑔󸀠

𝑟
] ,

Δ
2,2
= 𝐸
2
+ diag [𝑓

𝑟
] 𝐸
1
− diag [2𝑔

𝑟
+𝑀
2
] ,

Φ
1,𝑟
= −𝐴
−1

1
𝐾
1
,

Φ
2,𝑟
= 𝑓
𝑟
𝑔
󸀠

𝑟
− 𝑔
2

𝑟
− 𝐴
−1

2
𝐾
2
− diag [𝑓

𝑟
] (𝐴
−1

1
𝐾
1
) .

(53)

3.2. Unsteady Free Convective Heat and Mass Transfer on a
Stretching Surface in a Porous Medium with Suction/Injection.
In this sectionwe consider a three-equation system thatmod-
els the problem of unsteady free convective heat and mass
transfer on a stretching surface in a porous medium in the
presence of a chemical reaction.The governing equations [23,
31] for this problem are given as the following dimensionless
system of equations and boundary conditions:

𝑓
󸀠󸀠󸀠
+ 𝑓𝑓
󸀠󸀠
− (𝑓
󸀠
)

2

− 𝐾𝑓
󸀠
− 𝐴(𝑓

󸀠
+

𝜂

2

𝑓
󸀠󸀠
)

+ Gr𝜃 + Gc𝜙 = 0,

1

Pr
𝜃
󸀠󸀠
− 𝑓
󸀠
𝜃 + 𝑓𝜃

󸀠
− 𝐴(𝜃 +

1

2

𝜂𝜃
󸀠
) = 0,

1

Sc
𝜙
󸀠󸀠
− 𝑓
󸀠
𝜙 + 𝑓𝜙

󸀠
− 𝐴(𝜙 +

1

2

𝜂𝜙
󸀠
) − 𝛾𝜙 = 0

(54)

subject to

𝑓 (0) = 𝑓
𝑤
, 𝑓

󸀠
(0) = 1,

𝜃 (0) = 1, 𝜙 (0) = 1,

𝑓
󸀠
(∞) = 0, 𝜃 (∞) = 0, 𝜙 (∞) = 0,

(55)

where𝑓(𝜂), 𝜃(𝜂), and𝜙(𝜂) are, respectively, the dimensionless
velocity, temperature, and concentration, 𝑓

𝑤
is the suc-

tion/injection parameter, 𝛾 is the chemical reaction constant,
Pr is the Prandtl number, Sc is the Schmidt number, 𝐾 is the
permeability parameter, and Gr and Gc are the temperature-
and concentration-dependentGrashof numbers, respectively.

3.2.1. SRMandCFD-RM. To apply the SRMandCFD-RMon
(54), we set 𝑓󸀠(𝜂) = 𝑔(𝜂) and obtain the following iteration
scheme:

𝑓
󸀠

𝑟+1
= 𝑔
𝑟
,

𝑔
󸀠󸀠
𝑟 + 1 + 𝑓

𝑟+1
𝑔
󸀠

𝑟+1
− (𝐴 + 𝐾) 𝑔

𝑟+1
+

𝜂

2

𝑔
󸀠

𝑟+1

= 𝑔
2

𝑟
− 𝐺
𝑟
𝜃
𝑟
− 𝐺
𝑐
𝜙
𝑟
,

1

𝑃
𝑟

𝜃
𝑟+1

− 𝑔
𝑟+1
𝜃
𝑟+1

+ 𝑓
𝑟+1
𝜃
󸀠

𝑟+1
− 𝐴(𝜃

𝑟+1
+

𝜂

2

𝜃
𝑟+1
) = 0,

1

𝑆
𝑐

𝜙
𝑟+1

− 𝑔
𝑟+1
𝜙
𝑟+1

+ 𝑓
𝑟+1
𝜙
󸀠

𝑟+1

− (𝐴 + 𝛾) 𝜙
𝑟+1

− 𝐴

𝜂

2

𝜙
󸀠

𝑟+1
= 0

(56)

subject to

𝑓
𝑟+1
(0) = 𝑓

𝑤
, 𝑔

𝑟+1
(0) = 1,

𝑔
𝑟+1
(∞) = 0, 𝜃

𝑟+1
(0) = 1,

𝜃
𝑟+1
(∞) = 0, 𝜙

𝑟+1
(0) = 1,

𝜙
𝑟+1
(∞) = 0.

(57)

Applying the Chebyshev pseudo-spectral method and
finite difference schemes, we obtain

𝑋
1
𝑓
𝑟+1

= 𝑌
1
, 𝑓
𝑟+1
(0) = 𝑓

𝑤
,

𝑋
2
𝑔
𝑟+1

= 𝑌
2
, 𝑔
𝑟+1
(𝜏
0
) = 1, 𝑔

𝑟+1
(𝜏
𝑁
) = 0,

𝑋
3
𝜃
𝑟+1

= 𝑌
3
, 𝜃
𝑟+1
(𝜏
0
) = 1, 𝜃 (𝜏

𝑁
) = 0,

𝑋
4
𝜙
𝑟+1

= 𝑌
4
, 𝜙
𝑟+1
(𝜏
0
) = 1, 𝜙 (𝜏

𝑁
) = 0.

(58)

For the SRM, we have

𝑋
1
= D, 𝑌

1
= 𝑔
𝑟
,

𝑋
2
= D2 + diag [𝑓

𝑟+1
− 𝐴

𝜂

2

]D − (𝐾 + 𝐴) I,

𝑌
2
= 𝑔
2

𝑟
− 𝐺
𝑟
𝜃
𝑟
− 𝐺
𝑐
𝜙
𝑟
,
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Table 2: Comparison of the SQLM and CFD-QLM results for the solution of 𝑓󸀠󸀠(0) in Example 1.

𝑀 Exact SQLM CFD6-QLM
𝑁 𝑓

󸀠󸀠
(0) CPU time 𝑁 𝑓

󸀠󸀠
(0) CPU time

2 1.732050808 40 1.732050808 0.06 270 1.732050808 0.31
5 4.898979486 40 4.898979486 0.03 550 4.898979486 1.87
10 9.949874371 40 9.949874371 0.01 700 9.949874371 2.84

Table 3: Comparison of the SRM and CFD-RM results for the solution of 𝑓󸀠󸀠(0) in Example 2.

𝐴 𝑓
𝑤

Gr 𝐾

SRM CFD-RM
𝑁 𝑓

󸀠󸀠
(0) CPU time 𝑁 𝑓

󸀠󸀠
(0) CPU time

0 0 1 1 40 −0.63371481 0.43 250 −0.63371481 0.86
2 0 1 1 40 −1.30748109 0.50 200 −1.30748109 0.26
4 0 1 1 40 −1.79277127 0.55 230 −1.79277127 0.26
1 1 1 1 40 −1.55880093 0.12 210 −1.55880093 0.34
1 2 1 1 40 −2.31812942 0.23 340 −2.31812942 0.88
1 4 1 1 40 −4.14430512 0.29 410 −4.14430512 1.02
1 0 0 1 40 −1.32052206 0.11 180 −1.32052206 0.19
1 0 5 1 40 0.17151463 0.28 280 0.17151463 1.09
1 0 10 1 40 1.49371495 0.52 500 1.49371495 8.47
1 0 1 2 40 −0.61644148 0.18 200 −0.61644148 0.44
1 0 1 4 40 −1.84589956 0.27 310 −1.84589956 0.74
1 0 1 8 40 −2.65350852 0.36 620 −2.65350852 6.12

𝑋
3
=

1

𝑃
𝑟

D2 + diag [𝑓
𝑟+1

− 𝐴

𝜂

2

]D − diag [𝑔
𝑟+1
] − 𝐴I,

𝑌
3
= O,

𝑋
4
=

1

𝑆
𝑐

D2 + diag [𝑓
𝑟+1

− 𝐴

𝜂

2

]D − diag [𝑔
𝑟+1
] − (𝐴 + 𝛾) I,

𝑌
4
= O,

(59)

whereO is an (𝑁 + 1) × 1 zero vector.
For the CFD-RM, we have

𝑋
1
= 𝐸
1
,

𝑋
2
= 𝐸
2
+ diag [𝑓

𝑟+1
− 𝐴

𝜂

2

]𝐸
1
− (𝐾 + 𝐴) 𝐼,

𝑋
3
=

1

𝑃
𝑟

𝐸
2
+ diag [𝑓

𝑟+1
− 𝐴

𝜂

2

]𝐸
1
− diag [𝑔

𝑟+1
] − 𝐴𝐼,

𝑋
4
=

1

𝑆
𝑐

𝐸
2
+ diag [𝑓

𝑟+1
− 𝐴

𝜂

2

]𝐸
1
− diag [𝑔

𝑟+1
] − (𝐴 + 𝛾) 𝐼,

𝑌
1
= 𝑔
𝑟
− 𝐴
−1

1
𝐾
1
,

𝑌
2
= 𝑔
2

𝑟
− 𝐺
𝑟
𝜃
𝑟
− 𝐺
𝑐
𝜙
𝑟
− 𝐴
−1

2
𝐾
2

− diag [𝑓
𝑟+1

− 𝐴

𝜂

2

] (𝐴
−1

1
𝐾
1
) ,

𝑌
3
= −

1

𝑃
𝑟

(𝐴
−1

2
𝐾
2
) − diag [𝑓

𝑟+1
− 𝐴

𝜂

2

] (𝐴
−1

1
𝐾
1
) ,

𝑌
4
= −

1

𝑆
𝑐

(𝐴
−1

2
𝐾
2
) − diag [𝑓

𝑟+1
− 𝐴

𝜂

2

] (𝐴
−1

1
𝐾
1
) .

(60)

3.2.2. SQLM and CFD-QLM. To apply the SQLM and CFD-
QLM on (54), we first apply the quasilinearization method
and obtain the following iteration scheme:

𝑓
󸀠󸀠󸀠

𝑟+1
+ (𝑓
𝑟
− 𝐴

𝜂

2

)𝑓
󸀠󸀠

𝑟+1
− (2𝑓

󸀠

𝑟
+ 𝐾 + 𝐴)𝑓

󸀠

𝑟+1

+ 𝑓
󸀠󸀠

𝑟
𝑓
𝑟+1

+ 𝐺
𝑟
𝜃
𝑟+1

+ 𝐺
𝑐
𝜙
𝑟+1

= 𝑓
𝑟
𝑓
󸀠󸀠

𝑟
− 𝑓
󸀠2

𝑟
,

1

𝑃
𝑟

𝜃
󸀠󸀠

𝑟+1
+ (𝑓
𝑟
− 𝐴

𝜂

2

) 𝜃
󸀠

𝑟+1
− (𝑓
󸀠

𝑟
+ 𝐴) 𝜃

𝑟+1
− 𝜃
𝑟
𝑓
󸀠

𝑟+1

+ 𝜃
󸀠

𝑟
𝑓
𝑟+1

= 𝜃
󸀠

𝑟
𝑓
𝑟
− 𝑓
󸀠

𝑟
𝜃
𝑟
,

1

𝑆
𝑐

𝜙
󸀠󸀠

𝑟+1
+ (𝑓
𝑟
− 𝐴

𝜂

2

) 𝜙
󸀠

𝑟+1
− (𝑓
󸀠

𝑟
+ 𝐴 + 𝛾) 𝜙

𝑟+1

− 𝜙
𝑟
𝑓
󸀠

𝑟+1
+ 𝜙
󸀠

𝑟
𝑓
𝑟+1

= 𝜙
󸀠

𝑟
𝑓
𝑟
− 𝑓
󸀠

𝑟
𝜙
𝑟

(61)

subject to

𝑓
𝑟+1
(0) = 𝑓

𝑤
, 𝑓

󸀠

𝑟+1
(0) = 1,

𝜃
𝑟+1
(0) = 1, 𝜙

𝑟+1
(0) = 1,

𝑓
󸀠

𝑟+1
(∞) = 0, 𝜃

𝑟+1
(∞) = 0, 𝜙

𝑟+1
(∞) = 0.

(62)
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Figure 1: 𝑓(𝜂) and the velocity profile 𝑓󸀠(𝜂) for𝑀 = 2, 5, 10.
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Figure 2: Effect of varying𝑀 on the error for the CFD-RM and CFD-QLM.

Applying the spectral method and compact finite differ-
ence schemes, we obtain the SQLM and CFD-QLM iteration
schemes, respectively. In matrix form, the SQLM and CFD-
QLM schemes are given by

[

[

Δ
1,1

Δ
1,2

Δ
1,3

Δ
2,1

Δ
2,2

Δ
2,3

Δ
3,1

Δ
3,2

Δ
3,3

]

]

[

[

𝑓
𝑟+1

𝜃
𝑟+1

𝜙
𝑟+1

]

]

=
[

[

Φ
1,𝑟

Φ
2,𝑟

Φ
3,𝑟

]

]

. (63)

For the SQLM, we have

Δ
1,1
= D3 − diag [𝑓

𝑟
− 𝐴

𝜂

2

]D2 − diag [2𝑓󸀠
𝑟
+ 𝐾 + 𝐴]D

+ diag [𝑓󸀠󸀠
𝑟
] ,

Δ
1,2
= 𝐺
𝑟
I,

Δ
1,3
= 𝐺
𝑐
I,
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Figure 3: Velocity 𝑓(𝜂), temperature 𝜃(𝜂), and concentration 𝜙(𝜂) profiles in Example 2 for various values of Gr (Gr = 0, 5, 20) when Pr =
0.72, Sc = 0.6, 𝐴 = 0.5, 𝛾 = 1, Gc = 1, 𝑓𝑤 = 1, and 𝐾 = 1.

Δ
2,1
= − diag [𝜃

𝑟
]D + diag [𝜃󸀠

𝑟
] ,

Δ
2,2
=

1

𝑃
𝑟

D2 + diag [𝑓
𝑟
− 𝐴

𝜂

2

]D − 𝐴I − diag [𝑓󸀠
𝑟
] ,

Δ
2,3
= O,

Δ
3,1
= − diag [𝜙

𝑟
]D + diag [𝜙󸀠

𝑟
] ,

Δ
3,2
= O,

Δ
3,3
=

1

𝑆
𝑐

D2 + diag [𝑓
𝑟
− 𝐴

𝜂

2

]D − (𝐴 + 𝛾) I − diag [𝑓󸀠
𝑟
] ,

Φ
1,𝑟
= 𝑓
𝑟
𝑓
󸀠󸀠

𝑟
− 𝑓
󸀠2

𝑟
,

Φ
2,𝑟
= 𝑓
𝑟
𝜃
󸀠

𝑟
− 𝑓
󸀠

𝑟
𝜃
𝑟
,

Φ
3,𝑟
= 𝑓
𝑟
𝜙
𝑟
− 𝑓
󸀠

𝑟
𝜙
𝑟
,

(64)

whereO is an (𝑁+1)×(𝑁+1) zero matrix, and for the CFD-
QLM, we have

Δ
1,1
= 𝐸
3
− diag [𝑓

𝑟
− 𝐴

𝜂

2

]𝐸
2
− diag [2𝑓󸀠

𝑟
+ 𝐾 + 𝐴]𝐸

1

+ diag [𝑓󸀠󸀠
𝑟
] ,
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Figure 4: Velocity 𝑓(𝜂), temperature 𝜃(𝜂), and concentration 𝜙(𝜂) profiles in Example 2 for various values of 𝑓
𝑤
(𝑓
𝑤
= 0, 2, 4) when Pr =

0.72, Sc = 0.6, 𝐴 = 0.5, 𝛾 = 1,Gc = 1,Gr = 1, and 𝐾 = 1.
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Figure 5: Effect of varying Gr on the errors for the CFD-RM and the CFD-QLM.

Δ
1,2
= 𝐺
𝑟
𝐼,

Δ
1,3
= 𝐺
𝑐
𝐼,

Δ
2,1
= − diag [𝜃

𝑟
] 𝐸
1
+ diag [𝜃󸀠

𝑟
] ,

Δ
2,2
=

1

𝑃
𝑟

𝐸
2
+ diag [𝑓

𝑟
− 𝐴

𝜂

2

]𝐸
1
− 𝐴𝐼 − diag [𝑓󸀠

𝑟
] ,

Δ
2,3
= 𝑂,

Δ
3,1
= − diag [𝜙

𝑟
] 𝐸
1
+ diag [𝜙󸀠

𝑟
] ,

Δ
3,2
= 𝑂,

Δ
3,3
=

1

𝑆
𝑐

𝐸
2
+ diag [𝑓

𝑟
− 𝐴

𝜂

2

]𝐸
1
− (𝐴 + 𝛾) 𝐼 − diag [𝑓󸀠

𝑟
] ,

Φ
1,𝑟
= 𝑓
𝑟
𝑓
󸀠󸀠

𝑟
− 𝑓
󸀠2

𝑟
− 𝐴
−1

3
𝐾
3
− 𝐴
−1

3
𝐾
󸀠

𝑟

− diag [𝑓
𝑟
− 𝐴

𝜂

2

] (𝐴
−1

2
𝐾
2
)

− diag [𝑓
𝑟
− 𝐴

𝜂

2

] (𝐴
−1

2
𝐾
󸀠

2
)

+ diag [2𝑓󸀠
𝑟
] (𝐴
−1

1
𝐾
1
) − (𝐴 + 𝐾) (𝐴

−1

1
𝐾
1
)

+ diag [2𝑓󸀠
𝑟
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Figure 6: Effect of varying 𝑓
𝑤
on the errors for the CFD-RM and the CFD-QLM.

Table 4: Comparison of the SQLM and CFD-QLM results for the solution of 𝑓󸀠󸀠(0) in Example 2.

𝐴 𝑓
𝑤

Gr 𝐾

SQLM CFD-QLM
𝑁 𝑓

󸀠󸀠
(0) CPU time 𝑁 𝑓

󸀠󸀠
(0) CPU time

0 1 1 1 200 −0.63371481 64.49 210 −0.63371481 0.27
2 1 1 1 200 −1.44059181 23.20 490 −1.30748109 1.68
4 1 1 1 200 −3.62469942 20.89 650 −1.79277127 3.60
1 1 1 1 200 −1.55886443 64.09 230 −1.55880093 0.35
1 2 1 1 200 −2.31813091 85.57 310 −2.31812942 0.83
1 4 1 1 200 −4.14430509 105.76 440 −4.14430512 2.03
1 1 0 1 200 −1.32106621 26.51 300 −1.32052206 0.69
1 1 5 1 200 0.17105418 33.92 300 0.17151463 0.67
1 1 10 1 200 1.49345960 36.09 420 1.49371495 1.77
1 1 1 2 200 −0.61872790 31.20 360 −0.61644148 1.24
1 1 1 4 200 −2.07158002 33.19 380 −1.84589956 1.20
1 1 1 8 200 −2.98816061 27.64 450 −2.65350852 2.01

Φ
2,𝑟
= 𝑓
𝑟
𝜃
󸀠

𝑟
− 𝑓
󸀠

𝑟
𝜃
𝑟
−

1

𝑃
𝑟

(𝐴
−1

2
𝐾
2
)

− diag [𝑓
𝑟
− 𝐴

𝜂

2

] (𝐴
−1

1
𝐾
1
) + diag [𝜃

𝑟
] (𝐴
−1

1
𝐾
1
)

+ diag [𝜃
𝑟
] (𝐴
−1

1
𝐾
󸀠

1
) ,

Φ
3,𝑟
= 𝑓
𝑟
𝜙
𝑟
− 𝑓
󸀠

𝑟
𝜙
𝑟
−

1

𝑆
𝑐

(𝐴
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2
𝐾
2
)

− diag [𝑓
𝑟
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𝜂

2

] (𝐴
−1

1
𝐾
1
)

+ diag [𝜙
𝑟
] (𝐴
−1

1
𝐾
1
) + diag [𝜙

𝑟
] (𝐴
−1

1
𝐾
󸀠

1
) ,

(65)

where𝑂 is an (𝑁 − 1) × (𝑁− 1) zero matrix and 𝐸
3
= 𝐴
−1

3
𝐵
3
.

4. Results and Discussion

In this sectionwepresent results for Examples 1 and 2 and give
a comparison between the compact-finite-difference-based
methods and the spectral-method-based methods, that is,
the SRM and CFD-RM and the SQLM and CFD-QLM. The
solution𝑓(𝜂) and the velocity profiles𝑓󸀠(𝜂) for varying values
of 𝑀 for Example 1 are shown by Figure 1. The numerical
results are compared against the exact analytical solution and
good agreement is observed in all cases of varying parameter
𝑀. Tables 1 and 2 show the computed skin friction 𝑓󸀠󸀠(0) to
an accuracy of 10−9 obtained using the four methods.

It can be seen from Table 1 that in terms of computational
speed, the SRM is efficient compared to the CFD-RM. This
is because quite a large number of grid points are needed for
the CFD-RM to give an accuracy of 10−9 as compared to the
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SRM. FromTable 2 we observe similar results with the SQLM
being computationally faster than the CFD-QLM. Again the
number of grid points is the main reason for the difference
in speed.The spectral method based approaches only require
few grid points to give highly accurate results.

Figure 2 shows the errors at different iterations for the
CFD-RM, and CFD-QLM respectively. In all cases the error
decreases with each iteration which shows convergence of
themethods. Increasing the value of themagnetic interaction
parameter,𝑀 increases the convergence of both theCFD-RM
and CFD-QLM. This may be explained by the observation
that when𝑀 is very large, the dominant terms in the equation
fromwhich the SRM scheme is derived are 𝑔󸀠󸀠−𝑀2𝑔. Solving
this equation gives a solution of the form 𝑔 = 𝑐𝑒

−𝑀𝜂 (where
𝑐 is a constant). For large values of𝑀, the𝑀2 − 1 appearing
in the given exact solution (38) is approximately equal to𝑀2.
Consequently, the exact solution reduces to an exponential
equation that has the same form as the approximate equation
obtained from the SRM scheme at large𝑀. The CFD-QLM
shows a faster convergence than the CFD-RM as shown in
Figure 2.

Figures 3 and 4 show the velocity 𝑓󸀠(𝜂), temperature
𝜃(𝜂), and concentration 𝜙(𝜂) for Example 2 for varying
values of 𝐺

𝑟
and 𝑓

𝑤
, respectively. We observe that the graphs

are qualitatively similar to those reported in [23, 31]. The
comparison of the performance of the methods is given by
Tables 3 and 4. In Example 2 we compute the solution to
an accuracy of 10−8. The SRM is computationally faster than
the CFD-RM since it requires fewer grid points to give the
required accuracy. We observe different results for the SQLM
in Example 2 compared to Example 1. When comparing the
results with the SRM, CFD-RM, and CFD-QLM, we observe
that the SQLM fails to give results to the accuracy of 10−8
as it can be seen in Table 4. In this case the CFD-QLM is
much better than the SQLM in terms of accuracy. This is
one instance where the advantage of using CFD over spectral
approach to integrate linearised equations is highlighted.The
spectral approach is less accurate than the CFD approach
when large systems of equations are considered.

In terms of convergence between the CFD-RM and CFD-
QLM, we observe a faster convergence with the CFD-QLM
than the CFD-RM.This is depicted in Figures 5 and 6.

5. Conclusion

In this workwe have introduced two newmethods for solving
systems of nonlinear boundary value equations. These meth-
ods called the compact finite difference relaxation method
(CFD-RM) and compact finite difference quasilinearization
method (CFD-QLM) are a modification of the spectral
relaxation method (SRM) and the spectral quasilineariza-
tion method (SQLM), respectively. We compared the CFD
schemes and spectral methods in solving nonlinear similarity
boundary layer problems by comparing theCFD-basedCFD-
RM and CFD-QLM against the spectral-method-based SRM
and SQLM. We did the comparison on one dimensional and
three-dimensional problems. After comparing thesemethods
we can conclude that they are all highly accurate with

the spectral method outperforming the CFD in terms of
computational speed.The SQLM thoughwas less accurate for
the three-dimensional problems. The CFD-QLM was able to
handle the three-dimensional problem.We also observed that
the CFD-QLM converges faster than the CFD-RM. When
solving nonlinear boundary value problems, we recommend
that the spectral-method-based algorithms must be used in
problems involving small systems of equations and when
computational speed is of importance because they are easy
to code and computationally faster. CFD-based algorithms
are ideal for solving large systems of equations when high
accuracy is required.
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