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The problem of stability analysis is investigated for a class of state saturation two-dimensional (2D) discrete time-delay systems
described by the Fornasini-Marchesini (F-M) model. The delay is allowed to be a bounded time-varying function. By constructing
the delay-dependent 2D discrete Lyapunov functional and introducing a nonnegative scalar 𝛽, a sufficient condition is proposed to
guarantee the global asymptotic stability of the addressed systems. Subsequently, the criterion is converted into the linear matrix
inequalities (LMIs) which can be easily tested by using the standard numerical software. Finally, two numerical examples are given
to show the effectiveness of the proposed stability criterion.

1. Introduction

Over the past decades, the two-dimensional (2D) systems
have received considerable attention due to their extensive
applications [1]. The 2D discrete-time systems have been
successfully applied to many practical areas such as signal
processing, linear image processing,multidimensional digital
filtering, seismographic data processing, water stream heat-
ing and thermal processes. To mention a few, the problem of
linear image processing has been studied in [2] for 2Ddiscrete
systems based on the Roesser model (R model). Aiming at
the design of the digital filter, the 2D discrete systems based
on the Fornasini-Marchesini model (F-M model) have been
discussed in [3]. Recently, the modeling, calculation, and
stability of 2D discrete systems have been widely studied and
a large amount of results on these topics have been published;
see, for example, [4–9].

Saturation, as a common and typical nonlinear constraint
for practical control systems, is often encountered in various
industrial systems. The phenomena of saturations if not
properly handledwill inevitably affect the implementations of
the designed control schemes andmay lead to the occurrence
of the zero-input limit cycles [10–13]. Dynamical systems
with saturation nonlinearities appear commonly in networks
and 2D digital filter [14, 15]. When designing the 2D digital

filter by using fixed point arithmetic, saturations are intro-
duced due to the overflow and quantization. Recently, many
important results on stability analysis of 2D discrete F-M
systems with state saturation have been reported in recent
literature; see, for example, [16–21]. To be specific, by using
the Lyapunov method and employing the property of matrix
norm, some sufficient conditions have been presented in
[16, 17] to guarantee the global asymptotic stability of the
related systems. In [18], an internally stable condition has
been given for the design of 2D filters. By introducing a
nonnegative scalar, in [19, 20], the criteria based on linear
matrix inequality (LMI) have been proposed to ensure the
global asymptotic stability of F-M model. Recently, sufficient
conditions have been derived in [21] to guarantee the global
asymptotic stability of the addressed F-M systems with state
saturation nonlinearities.

As well known, the time delays occur in many practical
engineering systems [22–24]. The occurrence of the time
delays would yield the instability of the controlled systems
in some cases. So far, a great number of results have been
reported; see, for example, [25–29]. In particular, consider-
able research attention has been devoted to the problems of
stability analysis of 2D discrete time-delay systems. To be
specific, by constructing an appropriate Lyapunov function
and a scalar 𝛽, sufficient conditions have been proposed
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in [26] for state saturation 2D discrete time-delay systems
based on the R model. In [27], the state estimation prob-
lem has been investigated for 2D complex networks with
randomly occurring nonlinearities and probabilistic sensor
delays. Accordingly, some sufficient conditions have been
established such that the resulted estimation error dynamics
are globally asymptotically stable in the mean square sense.
To be specific, the problems of global asymptotic stability
have been given in [30, 31] for 2D discrete F-M systems
with state saturation and constant time delays. However, to
the best of author’s knowledge, there has not been much
work undertaken on the global asymptotic stability for state
saturation 2D discrete time-varying delay systems based on
F-M model.

In this paper, we aim to investigate the problem of global
asymptotic stability for 2D discrete F-M systems with state
saturation and time delays. Here, the delays are assumed
to be time varying with known lower and upper bounds.
By constructing a delay-dependent 2D discrete Lyapunov
functional and introducing a nonnegative scalar 𝛽 based on
a row diagonally dominant matrix, a sufficient condition
is proposed to guarantee the global asymptotic stability of
the addressed systems. Subsequently, the problem of global
asymptotic stability is converted into the problem of feasi-
bility by solving the LMIs. Finally, two numerical examples
are given to show the effectiveness of the proposed criterion.
The main contribution of this paper lies in that new stability
criterion is given for state saturation 2D discrete F-M systems
with time-varying delays.

Notations. The fundamental notations used in the paper are
given as follows: 𝐼𝑝 and 0 denote the identity matrix and
zero matrix with appropriate dimensions. For a matrix𝐴, 𝐴𝑇
stands for transpose of the matrix 𝐴. 𝐴 > 0 means that 𝐴 is
positive definite symmetric matrix.

2. Problem Formulation and Preliminaries

In this paper, we consider the following 2D discrete F-M
system with state saturation and time-varying delays:

𝑥 (𝑘 + 1, 𝑙 + 1) = 𝑓 (𝑦 (𝑘, 𝑙)) ,

𝑦 (𝑘, 𝑙) = [𝑦1 (𝑘, 𝑙) , 𝑦2 (𝑘, 𝑙) , . . . , 𝑦𝑛 (𝑘, 𝑙)]
𝑇

= 𝐴[
𝑥 (𝑘, 𝑙 + 1)
𝑥 (𝑘 + 1, 𝑙)

] + 𝐴𝑑 [
𝑥 (𝑘 − 𝑑ℎ (𝑘) , 𝑙 + 1)
𝑥 (𝑘 + 1, 𝑙 − 𝑑V (𝑙))

]

= 𝐴11𝑥 (𝑘, 𝑙 + 1) + 𝐴12𝑥 (𝑘 + 1, 𝑙)

+ 𝐴21𝑥 (𝑘 − 𝑑ℎ (𝑘) , 𝑙 + 1)

+ 𝐴22𝑥 (𝑘 + 1, 𝑙 − 𝑑V (𝑙)) ,

(1)

where 𝑥(𝑘, 𝑙) is the 𝑛-dimensional state vector and (𝑘, 𝑙) is the
2-dimensional time variable along the vertical and horizontal

directions satisfying 𝑘 ≥ 0, 𝑙 ≥ 0. 𝐴 = [𝐴11, 𝐴12] ∈ 𝑅𝑛×2𝑛,
𝐴𝑑 = [𝐴21, 𝐴22] ∈ 𝑅𝑛×2𝑛, 𝑑ℎ(𝑘) and 𝑑V(𝑙) are time-
varying delays along the vertical and horizontal directions,
respectively. We assume 𝑑ℎ(𝑘) and 𝑑V(𝑙) satisfying:

ℎ𝑚 ≤ 𝑑ℎ (𝑘) ≤ ℎ𝑀, V𝑚 ≤ 𝑑V (𝑙) ≤ V𝑀, (2)

where ℎ𝑚 and ℎ𝑀 denote the lower and upper bounds of
the delay 𝑑ℎ(𝑘) along the horizontal directions, V𝑚 and V𝑀
denote the lower and upper bounds of the delay 𝑑V(𝑙) along
the vertical directions.Throughout this paper, the superscript
𝑇 to any vector (or matrix) stands for the transpose of that
vector (or matrix).

The saturation nonlinearity 𝑓(⋅) is given by

𝑓 (𝑦 (𝑘, 𝑙)) = [𝑓1 (𝑦1 (𝑘, 𝑙)) , 𝑓2 (𝑦2 (𝑘, 𝑙)) , . . . , 𝑓𝑛 (𝑦𝑛 (𝑘, 𝑙))]
𝑇
,

(3)

with

𝑓𝑖 (𝑦𝑖 (𝑘, 𝑙)) =
{{
{{
{

1, 𝑦𝑖 (𝑘, 𝑙) > 1,

𝑦𝑖 (𝑘, 𝑙) ,
󵄨󵄨󵄨󵄨𝑦𝑖 (𝑘, 𝑙)

󵄨󵄨󵄨󵄨 ≤ 1,

−1, 𝑦𝑖 (𝑘, 𝑙) < −1,

(𝑖 = 1, 2, . . . , 𝑛) .

(4)

The system (1) has finite initial conditions 𝑥(𝑘, 0) and
𝑥(0, 𝑙) with fixed yet nonzero values for −ℎ𝑀 ≤ 𝑘 ≤ 𝐾 and
−V𝑀 ≤ 𝑙 ≤ 𝐿, and

𝑥 (𝑘, 0) = 0, 𝑘 ≥ 𝐾; 𝑥 (0, 𝑙) = 0, 𝑙 ≥ 𝐿, (5)

where𝐾 and 𝐿 are positive integers.
To proceed, we introduce the following definitions which

will be used in the subsequent derivations.

Definition 1. The origin 𝑥 = 0 of the 2D discrete time-delay
system is said to be stable (in the sense of Lyapunov) if for
every 𝜀 > 0 there exists a 𝛿 = 𝛿(𝜀) > 0 such that

‖𝑥 (𝑘, 𝑙)‖ < 𝜀, (6)

for all 𝑘 ≥ 0, 𝑙 ≥ 0, whenever ‖𝑥(𝑘, 0)‖ < 𝛿 (−ℎ𝑀 ≤ 𝑘 ≤ 𝐾)
and ‖𝑥(0, 𝑙)‖ < 𝛿 (−V𝑀 ≤ 𝑙 ≤ 𝐿), where 𝐾 and 𝐿 are positive
integers and ‖ ⋅ ‖ denotes any of the equivalent norms on 𝑅𝑛.

Definition 2 (see [21]). The origin 𝑥 = 0 of the 2D system
(1) is said to be globally asymptotically stable if the following
conditions are simultaneously satisfied:

(1) system (1) is stable;

(2) every solution of system (1) tends to the origin as 𝑘+ 𝑙
→ ∞; that is,

lim
𝑘→∞ or 𝑙→∞

𝑥 (𝑘, 𝑙) = lim
𝑘+𝑙→∞

𝑥 (𝑘, 𝑙) = 0. (7)
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Definition 3 (see [32]). The matrix𝑀 is said to be row diag-
onally dominant if

󵄨󵄨󵄨󵄨𝑚𝑖𝑖
󵄨󵄨󵄨󵄨 ≥

𝑛

∑
𝑗=1,𝑗 ̸= 𝑖

󵄨󵄨󵄨󵄨󵄨𝑚𝑖𝑗
󵄨󵄨󵄨󵄨󵄨 , 𝑖 ∈ [1, 𝑛] . (8)

Definition 4. For a 2D function 𝑉(𝑘, 𝑙) = 𝑉ℎ(𝑘, 𝑙) + 𝑉V(𝑘, 𝑙),
denote its difference Δ𝑉(𝑘, 𝑙) as

Δ𝑉 (𝑘, 𝑙) = Δ𝑉ℎ (𝑘, 𝑙) + Δ𝑉
V
(𝑘, 𝑙) , (9)

where

Δ𝑉ℎ (𝑘, 𝑙) = 𝑉ℎ (𝑘 + 1, 𝑙 + 1) − 𝑉
ℎ
(𝑘, 𝑙 + 1) ,

Δ𝑉V
(𝑘, 𝑙) = 𝑉V

(𝑘 + 1, 𝑙 + 1) − 𝑉
V
(𝑘 + 1, 𝑙) .

(10)

3. Main Results

In this section, we aim to investigate the problem of stability
analysis for the 2D discrete F-M system with state saturation
and time-varying delays. By resorting to the LMI technique,
a sufficient condition is given to ensure the global asymptotic
stability of the addressed system.

Theorem 5. The origin 𝑥 = 0 of 2D discrete system (1) is
globally asymptotically stable if there exist matrices 𝑃, 𝑄, and
𝑀, where 𝑃 = 𝑃1+𝑃2 and𝑄 = 𝑄1+𝑄2 with 𝑃1 = [𝑝1

𝑖𝑗
] ∈ 𝑅𝑛×𝑛,

𝑃2 = [𝑝2
𝑖𝑗
] ∈ 𝑅𝑛×𝑛, 𝑄1 = [𝑞1

𝑖𝑗
] ∈ 𝑅𝑛×𝑛, and 𝑄2 = [𝑞2

𝑖𝑗
] ∈ 𝑅𝑛×𝑛

being symmetric positive definite matrices and 𝑀 = [𝑚𝑖𝑗] ∈

𝑅𝑛×𝑛 is row diagonally dominant with nonnegative diagonal
elements, satisfying the following matrix inequality:

[
[
[
[
[

[

Π1 𝑀𝑇𝐴11 𝑀𝑇𝐴12 𝑀𝑇𝐴21 𝑀𝑇𝐴22
∗ Π2 0 0 0
∗ ∗ Π3 0 0
∗ ∗ ∗ −𝑄1 0
∗ ∗ ∗ ∗ −𝑄2

]
]
]
]
]

]

< 0, (11)

with

Π1 = 𝑃1 + 𝑃2 − (𝑀 +𝑀𝑇) ,

Π2 = 𝑄1 − 𝑃1 + (ℎ𝑀 − ℎ𝑚) 𝑄1,

Π3 = 𝑄2 − 𝑃2 + (V𝑀 − V𝑚) 𝑄2.

(12)

Proof. In order to prove the global asymptotic stability of
the 2D discrete F-M system (1), we construct the following
Lyapunov functional as in [26]:

𝑉 (𝑘, 𝑙) =
3

∑
𝑖=1

𝑉𝑖 (𝑘, 𝑙) , (13)

where

𝑉1 (𝑘, 𝑙) = 𝑉ℎ
1
(𝑘, 𝑙) + 𝑉

V
1
(𝑘, 𝑙)

= 𝑥𝑇 (𝑘, 𝑙) 𝑃1𝑥 (𝑘, 𝑙) + 𝑥
𝑇
(𝑘, 𝑙) 𝑃2𝑥 (𝑘, 𝑙) ,

𝑉2 (𝑘, 𝑙) = 𝑉ℎ
2
(𝑘, 𝑙) + 𝑉

V
2
(𝑘, 𝑙)

=
𝑘−1

∑
𝑖=𝑘−𝑑ℎ(𝑘)

𝑥𝑇 (𝑖, 𝑙) 𝑄1𝑥 (𝑖, 𝑙)

+
𝑙−1

∑
𝑗=𝑙−𝑑V(𝑙)

𝑥𝑇 (𝑘, 𝑗) 𝑄2𝑥 (𝑘, 𝑗) ,

𝑉3 (𝑘, 𝑙) = 𝑉ℎ
3
(𝑘, 𝑙) + 𝑉

V
3
(𝑘, 𝑙)

=
−ℎ𝑚

∑
𝑗=−ℎ𝑀+1

𝑘−1

∑
𝑖=𝑘+𝑗

𝑥𝑇 (𝑖, 𝑙) 𝑄1𝑥 (𝑖, 𝑙)

+
−V𝑚

∑
𝑖=−V𝑀+1

𝑙−1

∑
𝑗=𝑙+𝑖

𝑥𝑇 (𝑘, 𝑗) 𝑄2𝑥 (𝑘, 𝑗)

(14)

with 𝑃1 > 0, 𝑃2 > 0, 𝑄1 > 0, and 𝑄2 > 0 being matrices to be
determined.

According to Definition 4, the corresponding difference
ofΔ𝑉(𝑘, 𝑙) along the trajectory of system (1) can be calculated
as follows:

Δ𝑉 (𝑘, 𝑙) =
3

∑
𝑖=1

Δ𝑉𝑖 (𝑘, 𝑙) , (15)

with

Δ𝑉1 (𝑘, 𝑙) = 𝑉1 (𝑘 + 1, 𝑙 + 1) − 𝑥
𝑇
(𝑘, 𝑙 + 1) 𝑃1𝑥 (𝑘, 𝑙 + 1)

− 𝑥𝑇 (𝑘 + 1, 𝑙) 𝑃2𝑥 (𝑘 + 1, 𝑙) ,

Δ𝑉2 (𝑘, 𝑙) =
𝑘

∑
𝑖=𝑘+1−𝑑ℎ(𝑘+1)

𝑥𝑇 (𝑖, 𝑙 + 1)𝑄1𝑥 (𝑖, 𝑙 + 1)
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−
𝑘−1

∑
𝑖=𝑘−𝑑ℎ(𝑘)

𝑥𝑇 (𝑖, 𝑙 + 1)𝑄1𝑥 (𝑖, 𝑙 + 1)

+
𝑙

∑
𝑗=𝑙+1−𝑑V(𝑙+1)

𝑥𝑇 (𝑘 + 1, 𝑗) 𝑄2𝑥 (𝑘 + 1, 𝑗)

−
𝑙−1

∑
𝑗=𝑙−𝑑V(𝑙)

𝑥𝑇 (𝑘 + 1, 𝑗) 𝑄2𝑥 (𝑘 + 1, 𝑗) ,

Δ𝑉3 (𝑘, 𝑙) =
−ℎ𝑚

∑
𝑗=−ℎ𝑀+1

𝑘

∑
𝑖=𝑘+𝑗+1

𝑥𝑇 (𝑖, 𝑙 + 1)𝑄1𝑥 (𝑖, 𝑙 + 1)

−
−ℎ𝑚

∑
𝑗=−ℎ𝑀+1

𝑘−1

∑
𝑖=𝑘+𝑗

𝑥𝑇 (𝑖, 𝑙 + 1)𝑄1𝑥 (𝑖, 𝑙 + 1)

+
−V𝑚

∑
𝑖=−V𝑀+1

𝑙

∑
𝑗=𝑙+𝑖+1

𝑥𝑇 (𝑘 + 1, 𝑗) 𝑄2𝑥 (𝑘 + 1, 𝑗)

−
−V𝑚

∑
𝑖=−V𝑀+1

𝑙−1

∑
𝑗=𝑙+𝑖

𝑥𝑇 (𝑘 + 1, 𝑗) 𝑄2𝑥 (𝑘 + 1, 𝑗) .

(16)

Noting (13)–(15), it can be derived that

Δ𝑉1 (𝑘, 𝑙) = 𝑥𝑇 (𝑘 + 1, 𝑙 + 1) 𝑃1𝑥 (𝑘 + 1, 𝑙 + 1)

+ 𝑥𝑇 (𝑘 + 1, 𝑙 + 1) 𝑃2𝑥 (𝑘 + 1, 𝑙 + 1)

− 𝑥𝑇 (𝑘, 𝑙 + 1) 𝑃1𝑥 (𝑘, 𝑙 + 1)

− 𝑥𝑇 (𝑘 + 1, 𝑙) 𝑃2𝑥 (𝑘 + 1, 𝑙) ,

Δ𝑉2 (𝑘, 𝑙) = 𝑥𝑇 (𝑘, 𝑙 + 1)𝑄1𝑥 (𝑘, 𝑙 + 1)

− 𝑥𝑇 (𝑘 − 𝑑ℎ (𝑘) , 𝑙 + 1)𝑄1𝑥 (𝑘 − 𝑑ℎ (𝑘) , 𝑙 + 1)

+
𝑘−1

∑
𝑖=𝑘+1−𝑑ℎ(𝑘+1)

𝑥𝑇 (𝑖, 𝑙 + 1)𝑄1𝑥 (𝑖, 𝑙 + 1)

−
𝑘−1

∑
𝑖=𝑘+1−𝑑ℎ(𝑘)

𝑥𝑇 (𝑖, 𝑙 + 1)𝑄1𝑥 (𝑖, 𝑙 + 1)

+ 𝑥𝑇 (𝑘 + 1, 𝑙) 𝑄2𝑥 (𝑘 + 1, 𝑙)

− 𝑥𝑇 (𝑘 + 1, 𝑙 − 𝑑V (𝑙)) 𝑄2𝑥 (𝑘 + 1, 𝑙 − 𝑑V (𝑙))

+
𝑙−1

∑
𝑗=𝑙+1−𝑑V(𝑙+1)

𝑥𝑇 (𝑘 + 1, 𝑗) 𝑄2𝑥 (𝑘 + 1, 𝑗)

−
𝑙−1

∑
𝑗=𝑙+1−𝑑V(𝑙)

𝑥𝑇 (𝑘 + 1, 𝑗) 𝑄2𝑥 (𝑘 + 1, 𝑗)

≤
𝑘−1

∑
𝑖=𝑘+1−ℎ𝑀

𝑥𝑇 (𝑖, 𝑙 + 1)𝑄1𝑥 (𝑖, 𝑙 + 1)

−
𝑘−1

∑
𝑖=𝑘+1−ℎ𝑚

𝑥𝑇 (𝑖, 𝑙 + 1)𝑄1𝑥 (𝑖, 𝑙 + 1)

+
𝑙−1

∑
𝑗=𝑙+1−V𝑀

𝑥𝑇 (𝑘 + 1, 𝑗) 𝑄2𝑥 (𝑘 + 1, 𝑗)

−
𝑙−1

∑
𝑗=𝑙+1−V𝑚

𝑥𝑇 (𝑘 + 1, 𝑗) 𝑄2𝑥 (𝑘 + 1, 𝑗)

+ 𝑥𝑇 (𝑘, 𝑙 + 1)𝑄1𝑥 (𝑘, 𝑙 + 1)

− 𝑥𝑇 (𝑘 − 𝑑ℎ (𝑘) , 𝑙 + 1)𝑄1𝑥 (𝑘 − 𝑑ℎ (𝑘) , 𝑙 + 1)

+ 𝑥𝑇 (𝑘 + 1, 𝑙) 𝑄2𝑥 (𝑘 + 1, 𝑙)

− 𝑥𝑇 (𝑘 + 1, 𝑙 − 𝑑V (𝑙)) 𝑄2𝑥 (𝑘 + 1, 𝑙 − 𝑑V (𝑙))

=
𝑘−ℎ𝑚

∑
𝑖=𝑘+1−ℎ𝑀

𝑥𝑇 (𝑖, 𝑙 + 1)𝑄1𝑥 (𝑖, 𝑙 + 1)

+
𝑙−V𝑚

∑
𝑗=𝑙+1−V𝑀

𝑥𝑇 (𝑘 + 1, 𝑗) 𝑄2𝑥 (𝑘 + 1, 𝑗)

+ 𝑥𝑇 (𝑘, 𝑙 + 1)𝑄1𝑥 (𝑘, 𝑙 + 1)

− 𝑥𝑇 (𝑘 − 𝑑ℎ (𝑘) , 𝑙 + 1)𝑄1𝑥 (𝑘 − 𝑑ℎ (𝑘) , 𝑙 + 1)

+ 𝑥𝑇 (𝑘 + 1, 𝑙) 𝑄2𝑥 (𝑘 + 1, 𝑙)

− 𝑥𝑇 (𝑘 + 1, 𝑙 − 𝑑V (𝑙)) 𝑄2𝑥 (𝑘 + 1, 𝑙 − 𝑑V (𝑙))

Δ𝑉3 (𝑘, 𝑙) = (ℎ𝑀 − ℎ𝑚) 𝑥
𝑇
(𝑘, 𝑙 + 1)𝑄1𝑥 (𝑘, 𝑙 + 1)

−
𝑘−ℎ𝑚

∑
𝑖=𝑘+1−ℎ𝑀

𝑥𝑇 (𝑖, 𝑙 + 1)𝑄1𝑥 (𝑖, 𝑙 + 1)

+ (V𝑀 − V𝑚) 𝑥
𝑇
(𝑘 + 1, 𝑙) 𝑄2𝑥 (𝑘 + 1, 𝑙)

−
𝑙−V𝑚

∑
𝑗=𝑙+1−V𝑀

𝑥𝑇 (𝑘 + 1, 𝑗) 𝑄2𝑥 (𝑘 + 1, 𝑗) .

(17)

Denoting

𝜑 (𝑘, 𝑙) = [𝑓 (𝑦 (𝑘, 𝑙)) , 𝑥 (𝑘, 𝑙 + 1) , 𝑥 (𝑘 + 1, 𝑙) ,

𝑥(𝑘 − 𝑑ℎ(𝑘), 𝑙 + 1), 𝑥 (𝑘 + 1, 𝑙 − 𝑑V (𝑙))]
𝑇
,

(18)

we have

Δ𝑉 (𝑘, 𝑙) ≤ 𝜑𝑇 (𝑘, 𝑙) Θ𝜑 (𝑘, 𝑙) , (19)
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where

Θ =

[
[
[
[
[

[

𝑃1 + 𝑃2 0 0 0 0
∗ (ℎ𝑀 − ℎ𝑚 + 1)𝑄1 − 𝑃1 0 0 0
∗ ∗ (V𝑀 − V𝑚 + 1)𝑄2 − 𝑃2 0 0
∗ ∗ ∗ −𝑄1 0
∗ ∗ ∗ ∗ −𝑄2

]
]
]
]
]

]

. (20)

Now, construct the following parameter 𝛽:

𝛽 = 2
𝑛

∑
𝑖=1

[𝑦𝑖 (𝑘, 𝑙) − 𝑓𝑖 (𝑦𝑖 (𝑘, 𝑙))]

× [

[

𝑚𝑖𝑖𝑓𝑖 (𝑦𝑖 (𝑘, 𝑙)) +
𝑛

∑
𝑗=1,𝑗 ̸= 𝑖

𝑚𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑘, 𝑙))]

]

= 𝑦𝑇 (𝑘, 𝑙)𝑀𝑓 (𝑦 (𝑘, 𝑙)) + 𝑓
𝑇 (𝑦 (𝑘, 𝑙))𝑀

𝑇𝑦 (𝑘, 𝑙)

− 𝑓𝑇 (𝑦 (𝑘, 𝑙)) (𝑀 +𝑀𝑇) 𝑓 (𝑦 (𝑘, 𝑙)) .

(21)

Let

𝛼𝑖 = [𝑦𝑖 (𝑘, 𝑙) − 𝑓𝑖 (𝑦𝑖 (𝑘, 𝑙))]

×[

[

𝑚𝑖𝑖𝑓𝑖 (𝑦𝑖 (𝑘, 𝑙)) +
𝑛

∑
𝑗=1,𝑗 ̸= 𝑖

𝑚𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑘, 𝑙))]

]

.
(22)

The saturation region can be divided into two regions, and we
have

𝑓𝑖 (𝑦𝑖 (𝑘, 𝑙)) = 1,

𝑦𝑖 (𝑘, 𝑙) − 𝑓𝑖 (𝑦𝑖 (𝑘, 𝑙)) > 0, in Region 1,

𝑓𝑖 (𝑦𝑖 (𝑘, 𝑙)) = −1,

𝑦𝑖 (𝑘, 𝑙) − 𝑓𝑖 (𝑦𝑖 (𝑘, 𝑙)) < 0, in Region 2.

(23)

Thus, we obtain

𝛼𝑖 =

{{{{{{{{{{
{{{{{{{{{{
{

(𝑦𝑖 (𝑘, 𝑙) − 1)(𝑚𝑖𝑖 +
𝑛

∑
𝑗=1,𝑗 ̸= 𝑖

𝑚𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑘, 𝑙))) ,

in Region 1,

(𝑦𝑖 (𝑘, 𝑙) + 1)(−𝑚𝑖𝑖 +
𝑛

∑
𝑗=1,𝑗 ̸= 𝑖

𝑚𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑘, 𝑙))) ,

in Region 2.

(24)

Subsequently, due to the property of row diagonally
dominantmatrix𝑀, we have𝛼𝑖 ≥ 0. Furthermore, note that𝛽
is the sum of nonnegative scalars, and hence𝛽 ≥ 0.Therefore,

Δ𝑉 ≤ 𝜑𝑇 (𝑘, 𝑙)𝑊𝜑 (𝑘, 𝑙) − 𝛽, (25)

where

𝑊 =

[
[
[
[
[

[

Π1 𝑀𝑇𝐴11 𝑀𝑇𝐴12 𝑀𝑇𝐴21 𝑀𝑇𝐴22
∗ Π2 0 0 0
∗ ∗ Π3 0 0
∗ ∗ ∗ −𝑄1 0
∗ ∗ ∗ ∗ −𝑄2

]
]
]
]
]

]

. (26)

If𝑊 < 0, then Δ𝑉(𝑘, 𝑙) < 0; that is

𝑉ℎ (𝑘 + 1, 𝑙 + 1) + 𝑉
V
(𝑘 + 1, 𝑙 + 1)

≤ 𝑉ℎ (𝑘, 𝑙 + 1) + 𝑉
V
(𝑘 + 1, 𝑙) .

(27)

Hence, for any nonnegative integer 𝑑 ≥ max{𝐾, 𝐿}, we have

∑
𝑘+𝑙=𝑑+1

𝑉 (𝑘, 𝑙) = 𝑉 (1, 𝑑) + 𝑉 (2, 𝑑 − 1) + ⋅ ⋅ ⋅ + 𝑉 (𝑑, 1)

≤ 𝑉ℎ (0, 𝑑) + 𝑉
V
(1, 𝑑 − 1) + 𝑉

ℎ
(1, 𝑑 − 1)

+ 𝑉V
(2, 𝑑 − 2) + ⋅ ⋅ ⋅ + 𝑉

ℎ
(𝑑 − 1, 1)

+ 𝑉V
(𝑑, 0)

= ∑
𝑘+𝑙=𝑑

𝑉 (𝑘, 𝑙) .

(28)

It is clear that the sum of the Lyapunov functional is a
decreasing function along the state trajectories of system (1).
Then, noting the initial condition 𝑥(0, 𝑑) = 𝑥(𝑑, 0) = 0, we
have

lim
𝑘→∞ or 𝑙→∞

𝑥 (𝑘, 𝑙) = lim
𝑘+𝑙→∞

𝑥 (𝑘, 𝑙) = 0. (29)

Summarizing the above discussions, it can be shown that (11)
is a sufficient condition which ensures the global asymptotic
stability of system (1).This completes the proof ofTheorem 5.

As special cases, if there is no time delay in system (1), that
is, 𝐴21 = 0 and 𝐴22 = 0, or the time delays are constant, then
we can have the following corollaries.

Corollary 6. Consider the system (1) without time delay. If
there exist matrices 𝑃 and𝑀, with 𝑃 = 𝑃1 + 𝑃2, 𝑃1 = [𝑝1

𝑖𝑗
] ∈

𝑅𝑛×𝑛, and 𝑃2 = [𝑝2
𝑖𝑗
] ∈ 𝑅𝑛×𝑛 being symmetric positive definite

matrices and 𝑀 = [𝑚𝑖𝑗] ∈ 𝑅𝑛×𝑛 is row diagonally dominant
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with nonnegative diagonal elements, satisfying the following
matrix inequality:

[

[

𝑃 − (𝑀 +𝑀𝑇) 𝑀𝑇𝐴11 𝑀𝑇𝐴12
∗ −𝑃1 0
∗ 0 −𝑃2

]

]

< 0 (30)

then the origin 𝑥 = 0 of 2D discrete system (1) without time
delay is globally asymptotically stable.

Corollary 7. Consider the constant time delay 𝑑ℎ(𝑘) = 𝑑ℎ,
𝑑V(𝑙) = 𝑑V. If there exist matrices 𝑃, 𝑄, and 𝑀, where 𝑃 =

𝑃1 + 𝑃2 and 𝑄 = 𝑄1 + 𝑄2, with 𝑃1 = [𝑝1
𝑖𝑗
] ∈ 𝑅𝑛×𝑛, 𝑃2 =

[𝑝2
𝑖𝑗
] ∈ 𝑅𝑛×𝑛, 𝑄1 = [𝑞1

𝑖𝑗
] ∈ 𝑅𝑛×𝑛, and 𝑄2 = [𝑞2

𝑖𝑗
] ∈ 𝑅𝑛×𝑛 being

symmetric positive definite matrices and𝑀 = [𝑚𝑖𝑗] ∈ 𝑅𝑛×𝑛 is
row diagonally dominant with nonnegative diagonal elements,
satisfying the following matrix inequality:

[
[
[
[
[

[

𝑃1 + 𝑃2 − (𝑀 +𝑀𝑇) 𝑀𝑇𝐴11 𝑀𝑇𝐴12 𝑀𝑇𝐴21 𝑀𝑇𝐴22
∗ 𝑄1 − 𝑃1 0 0 0
∗ ∗ 𝑄2 − 𝑃2 0 0
∗ ∗ ∗ −𝑄1 0
∗ ∗ ∗ ∗ −𝑄2

]
]
]
]
]

]

< 0, (31)

then the origin 𝑥 = 0 of 2D discrete system (1) with constant
time delay is globally asymptotically stable.

Remark 8. Note that the problem of global asymptotic sta-
bility has been investigated in [33] for state saturation 2D dis-
crete systemwithout time delay. Accordingly, a stability crite-
rion has been derived in [33] but a positive diagonally matrix
is needed to be searched. It can be easily seen that the stability
condition in [33] is a special case of (30) in Corollary 6.
Therefore, the stability condition proposed in this paper is
less conservative than the one in [33]. Meanwhile, note that
a stability condition has been proposed in [21] where an
unknownmatrix𝐺must be given firstly.The values of𝐺must
take specific values. Compared with the results in [21], we
only need to find matrix 𝑀. It concludes that the stability
condition in [21] is more conservative than our result.

Remark 9. It is worth mentioning that the delay-fractioning
approach has been employed in [34, 35] to reduce the con-
servativeness of the time delay. It has been shown that the
developed approach performs well when dealing with the
time delay compared with other methods. Accordingly, some
effective SMC/SMO schemes based on the delay-fractioning
idea have been proposed for discrete time-delay nonlinear
stochastic systems with randomly occurring incomplete
information. Motivated by the results in [34, 35], we are now
researching into the stability criterion based on the delay-
fractioning approach for the state saturation 2D discrete
time-delay systems. The corresponding results will appear in
the near future. Moreover, note that the recursive filters have
been designed in [36–38] for time-varying networked non-
linear systems with missing measurements. It is also inter-
esting to consider the analysis and synthesis of 2D discrete
nonlinear systems with state saturations and missing mea-
surements.

Remark 10. It is worth noting that the conditions in
Theorem 5 are not strict LMI due to the fact that the
matrix 𝑀 = [𝑚𝑖𝑗] ∈ 𝑅𝑛×𝑛 is row diagonally dominant

with nonnegative diagonal elements. Hence, the results of
Theorem 5 and Corollary 6 are not convex which lead to the
computational difficulties. In the following, an alternative
approach is developed to deal with the nonconvex problem.

Let 𝑒𝑙 be 𝑛-dimensional column vectors in which the
𝑙th element is 1 and other elements are 0. Let 𝑌𝑙 be the set
of 𝑛-dimensional column vectors in which the 𝑙th element
is −1 and other elements are either 1 or −1 and 𝑌𝑙𝑠 ∈ 𝑌𝑙
(𝑠 ∈ [1, 2𝑛−1]). Then, the condition where matrix 𝑀 =
[𝑚𝑖𝑗] ∈ 𝑅𝑛×𝑛 is row diagonally dominant and the diagonal
is composed of nonnegative elements can be equivalently
converted into the following LMIs:

𝑒𝑇
𝑙
𝑀𝑌𝑙𝑠 < 0, 𝑙 = 1, 2, . . . , 𝑚 + 𝑛; 𝑠 ∈ [1, 2𝑚+𝑛−1] . (32)

Together with (11) and (32), we can see that the proposed
stability condition is a convex one and then can be easily
solved by using the standard numerical software.

4. Numerical Examples

In this section, two numerical examples are given here to
illustrate the effectiveness of the main results.

Example 1. Consider the state saturation 2D discrete time-
delay system (1) with

𝐴11 =
[
[
[

[

1.678 0.2853 −0.2432 −0.1246
−0.84 0.23 −0.1 1.45
0.4 0.0217 0.1785 0.1662

0.0245 −0.00884 0.0321 −0.2428

]
]
]

]

,

𝐴12 =
[
[
[

[

−0.495 −0.687 −0.030 −0.3013
−0.1630 −0.4817 −0.993 0.1814
0.2842 0.1790 −0.5551 0.0799
−0.2112 0.1887 0.0895 0.5604

]
]
]

]

,
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𝐴21 =
[
[
[

[

−9.987 −0.2 0 0
0 −0.15 0 −0.1
0 0 −0.78 0

−0.23 0 0 −0.98

]
]
]

]

,

𝐴22 =
[
[
[

[

5.763 −0.067 0 0.04
−2.314 0.342 0.098 −5.78
4.56 0.001 −0.98 0.231
0.23 −0.76 0.043 8.6

]
]
]

]

.

(33)

The lower and upper bounds are given by ℎ𝑀 = 3, ℎ𝑚 = 1,
V𝑀 = 4, and V𝑚 = 2.

Solving the inequalities (11) and (32) in the Matlab
environment, we can obtain

𝑃1 =
[
[
[

[

3.0067 −0.0360 −0.0043 0.0125
−0.0360 3.1420 0.1635 0.2573
−0.0043 0.1635 2.9443 0.1253
0.0125 0.2573 0.1253 2.9694

]
]
]

]

,

𝑃2 =
[
[
[

[

2.9848 −0.0225 −0.0006 0.0463
−0.0225 3.1494 0.1757 0.2382
−0.0006 0.1757 3.0049 0.0990
0.0463 0.2382 0.0990 2.9051

]
]
]

]

,

𝑄1 =
[
[
[

[

0.5521 −0.0048 −0.0017 0.0417
−0.0048 0.6168 0.0461 0.0573
−0.0017 0.0461 0.5631 0.0356
0.0417 0.0573 0.0356 0.4917

]
]
]

]

,

𝑄2 =
[
[
[

[

0.5676 −0.0144 −0.0043 0.0175
−0.0144 0.6115 0.0374 0.0709
−0.0043 0.0374 0.5198 0.0545
0.0175 0.0709 0.0545 0.5376

]
]
]

]

,

𝑀 =
[
[
[

[

0.2812 0.0241 −0.0475 −0.0020
0.0353 0.6877 0.0609 0.2516
−0.0769 0.0654 0.7074 0.0128
0.0027 0.1886 −0.0018 0.5205

]
]
]

]

.

(34)

Then, we can see that there exist the required matrices 𝑃1,
𝑃2, 𝑄1, 𝑄2, and 𝑀 satisfying LMIs (11) and (32). As such,
according to Theorem 5, the origin 𝑥 = 0 of system (1) is
globally asymptotically stable which confirms the feasibility
of the proposed main results.

Example 2. Consider a 2D system described by (1) without
time delay. The system parameters are given as

𝐴11 = [
1.2 −2.8
0.1 0

] ,

𝐴12 = [
0 0.01
0 0.02

] .

(35)

By using theMatlab LMI Toolbox, it can be easily verified
that the following feasible solutions can be obtained

𝑃1 = [
1421.7 −203.9
−203.9 1698.1

] , 𝑃2 = [
1321 25
25 1167.5

] ,

𝑀 = [
434.848 −11.3033
−9.1992 818.5481

] .

(36)

That is, there exist the required matrices 𝑃1, 𝑃2, and 𝑀
satisfying LMI (30). According to Corollary 6, the origin of
system (1) is globally asymptotically stable which confirms
the effectiveness of the presented results. However, it can be
tested that the conditions in [33] are infeasible.Therefore, the
result in our paper is less conservative than the one in [33].

5. Conclusions

In this paper, we have discussed the problem of global
asymptotic stability for 2D discrete F-M systems with state
saturation and time-varying delays. By constructing the 2D
discrete-time Lyapunov functional, a new stability criterion
has been established to ensure that the addressed system is
globally asymptotically stable. The proposed stability crite-
rion is in terms of the LMIs which can be easily tested by
using the Matlab matrix toolbox. Two numerical examples
have been given to demonstrate the feasibility of the proposed
stability condition. It is worth mentioning that the construc-
tion of the scalar 𝛽 has taken full effects from time delays
with hope to reduce the conservativeness. One of the future
research topics would be the extension of the proposed main
results tomore general state saturation 2D discrete systems as
in [39–41] with network-induced phenomena.
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