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Based on a brief review on current harmonics generation mechanism for grid-connected inverter under distorted grid voltage,
the harmonic disturbances and uncertain items are immersed into the original state-space differential equation of grid-connected
inverter. A new algorithm of global current harmonic rejection based on nonlinear backstepping control withmultivariable internal
model principle is proposed for grid-connected inverter with exogenous disturbances and uncertainties. A type of multivariable
internal model for a class of nonlinear harmonic disturbances is constructed. Based on application of backstepping control law of
the nominal system, a multivariable adaptive state feedback controller combined with multivariable internal model and adaptive
control law is designed to guarantee the closed-loop systemglobally uniformly bounded, which is proved by a constructed Lyapunov
function. The presented algorithm extends rejection of nonlinear single-input systems to multivariable globally defined normal
form, the correctness and effectiveness of which are verified by the simulation results.

1. Introduction

Along with the strong demand of electric power energy,
conventional fossil fuels are gradually reduced.The exploiting
of renewable energy is an inevitable route for development
of sustainable society. According to the planning of EU
Commission, the renewable energy goal is achieving 20% of
energy consumption from sustainable sources by 2020 [1].

Renewable energy sources include wind (onshore and
offshore), solar PV, hydroenergy, biomass energy, geothermal
energy, and tidal energy. Currently, two of main utilization
approaches of renewable energy are off-grid power gen-
eration and connected to utility grid. In the past decade,
the renewable energy sources connected to utility grid have
achieved a considerable growth with the forceful needs of
electric power energy [2]. Grid-connected inverter, which
is one of the key technologies, supports renewable energy
to be transmitted to the utility grid. In design, pulse width
modulation (PWM) and the corresponding inverter control
system require grid voltage as an ideal sinewave. Actually, it is

difficult to keep a perfect sine wave of grid voltage under a
variety of nonlinear loads and unexpected network failures.
Furthermore, the existing researches have shown distorted
grid voltage, such as dips [3], asymmetry [4], and harmonics
[5], which will have a significantly adverse influence to grid
power quality. In other words, rejection of current harmonics
for grid-connected inverter under distorted grid voltage is a
useful work for the normal operation of power networks [6].

The rejection solutions of current harmonics for grid-
connected inverter mainly consist of two categories: hard-
ware implementation and software programming. A sim-
ple and practical scheme of hardware implementation is
adding filters to inverter’s output. The aim of adding filters
is to compensate for the fluctuations of grid voltage. In
[7], LCL filters are designed for grid-connected converters.
However, the application of LCL filters may encounter the
resonance problem. Close by the resonant frequency, the
impedance of the filters is small, and the harmonic current in
corresponding frequency would be amplified, even beyond
the harmonic standard [8]. In addition, new hardware will
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certainly increase the investment of the system. One of the
rejection ways for software programming is to design a
proportional resonant (PR) controller to improve the gain in
background harmonic [9]. Nevertheless, with the increasing
of the background harmonic frequency, the PR controller can
reduce the phase margin of the system [10]. The other one is
application of feedforward control of grid voltage to increase
output impedance of the system. The feedforward control
has no impact on phase margin of the system [11], but the
scheme, which only depends on the proportion feedforward
to regulation, cannot eliminate the influence of background
harmonic [12].

For the disadvantages of the above methods, some schol-
ars attempt to apply modern control theory to improve the
capability of harmonics disturbance rejection. The nonlinear
control methods, such as repetitive control [13, 14], 𝐻

∞

control [15, 16], prediction control [17–19], backstepping
control [20–22], and fuzzy-adaptive control [23–26], can deal
with the nonlinearity and uncertainty of nonlinear models
better. However, these preexisting rejection control methods
have the following problems more or less.

(1) The harmonics rejection algorithms are concerned
primarily with the single-input field; the research of
multiple-input field is rarely mentioned.

(2) For an operating grid-connected system, the parame-
ters of resistance and inductance for the system are
often time varying and cannot be measured accu-
rately. Hence, these proportional-integral-based con-
trollers, which take no account of the time-varying
characteristics of the parameters, cannot work very
efficiently.

(3) The parameter design of robust controller is relatively
complicated and needs large amount of calculations.

In the paper, a multivariable state feedback control
algorithm based on nonlinear backstepping control with
multivariable internal model principle (MIMP) and adaptive
control law (ACL) for grid-connected inverter is proposed
to reject the harmonic disturbance produced by a class
of exosystem and uncertainties related with system states
caused by modeling perturbations, parameter uncertainty
or actuator end disturbance. The main contributions in the
paper are the following.

(1) A new harmonic rejection algorithm based on non-
linear backstepping control with MIMP and ACL is
proposed in the paper, which extends the disturbance
rejection of the nonlinear single-input system tomul-
tivariable globally defined normal form in contrast
with the previous literatures.

(2) A new type of nonlinear multivariable internal model
for a class of nonlinear harmonic disturbances and
uncertain items related with system states is con-
structed.

(3) The proposed algorithm is practically applied to reject
current harmonic disturbances for grid-connected
inverter under distorted grid voltage.
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Figure 1: Modeling of grid-connected inverter.

The paper is organized as the following: it starts with
an introduction to the research status of current harmon-
ics rejection for grid-connected inverter in Section 1. The
modeling of state differential equation for grid-connected
inverter is constructed and an analysis of current harmonics
generation mechanism is given in Section 2. In addition,
Section 2 describes the control and mathematical problem
concerned in the paper. Nonlinear multivariable internal
model is presented and designed in Section 3. In Section 4,
nonlinear multivariable adaptive state feedback controller is
proposed and the global robust stabilization is demonstrated.
Section 5 gives the results of numerical simulation. Finally,
the conclusions are summarized in Section 6.

2. Problem Formulation

2.1. Modeling of Grid-Connected Inverter. Themodel of grid-
connected inverter can be shown in Figure 1. In Figure 1, 𝑅
and 𝐿 represent the equivalent series resistance and inductor,
respectively,𝐶 is the capacitance, V

𝑎𝑏𝑐
and 𝑖
𝑎𝑏𝑐

are three-phase
output voltage and grid current of three-phase inverter, and
𝑒
𝑎𝑏𝑐

represents three-phase grid voltage.
In terms of Figure 1, the voltage equations of three-phase

grid-connected inverter in stationary 𝑎𝑏𝑐 reference frame can
be written as

V
𝑎
= 𝑅𝑖
𝑎
+ 𝐿
𝑑𝑖
𝑎

𝑑𝑡
+ 𝑒
𝑎
,

V
𝑏
= 𝑅𝑖
𝑏
+ 𝐿
𝑑𝑖
𝑏

𝑑𝑡
+ 𝑒
𝑏
,

V
𝑐
= 𝑅𝑖
𝑐
+ 𝐿
𝑑𝑖
𝑐

𝑑𝑡
+ 𝑒
𝑐
.

(1)

Application of the park transformation to (1) in rotating
𝑑𝑞 reference frame equation (1) is converted into

V
𝑑
= 𝑅𝑖
𝑑
+ 𝐿
𝑑𝑖
𝑑

𝑑𝑡
− 𝜔𝐿𝑖

𝑞
+ 𝑒
𝑑
,

V
𝑞
= 𝑅𝑖
𝑞
+ 𝐿

𝑑𝑖
𝑞

𝑑𝑡
+ 𝜔𝐿𝑖

𝑑
+ 𝑒
𝑞
;

(2)
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namely,

[
[
[

[

𝑑𝑖
𝑑

𝑑𝑡

𝑑𝑖
𝑞

𝑑𝑡

]
]
]

]

=
[
[

[

−
𝑅

𝐿
𝜔

−𝜔 −
𝑅

𝐿

]
]

]

[
𝑖
𝑑

𝑖
𝑞

] +
[
[

[

1

𝐿
0

0
1

𝐿

]
]

]

[
V
𝑑
−𝑒
𝑑

V
𝑞
−𝑒
𝑞

] , (3)

where V
𝑑𝑞

and 𝑖
𝑑𝑞

represent the voltage and current of grid-
connected inverter in rotating 𝑑𝑞 reference frame, 𝑒

𝑑𝑞
is the

grid voltage in 𝑑𝑞 reference frame, and 𝜔 is the synchronous
angular velocity of the grid.

Rearrange (2) in the form of state space as follows:

ẋ =Ax +B (k − e) ,

y =Cx,
(4)

where x, k, and y are the state vector, the control input
vector, and the output vector, respectively, e is the voltage
vector of the grid, x = [𝑖

𝑑
𝑖
𝑞
]
𝑇, k = [V

𝑑
V
𝑞
]
𝑇, y = x, e =

[𝑒
𝑑
𝑒
𝑞
]
𝑇, A = [ −𝑅/𝐿 𝜔

−𝜔 −𝑅/𝐿
], B = [ 1/𝐿 0

0 1/𝐿
], and C = [ 1 0

0 1
].

2.2. Current Harmonics Generation Mechanism for Grid-
Connected Inverter. In terms of Figure 1, the harmonic volt-
age equations of three-phase grid-connected inverter insta-
tionary 𝑎𝑏𝑐 reference frame can be written as

k
𝑎𝑏𝑐𝑘
= 𝑅i
𝑎𝑏𝑐𝑘
+ 𝐿
𝑑i
𝑎𝑏𝑐𝑘

𝑑𝑡
+ e
𝑎𝑏𝑐𝑘
, (5)

where 𝑘 is the harmonic order, k
𝑎𝑏𝑐𝑘

is the control voltage
vector, i

𝑎𝑏𝑐𝑘
is the current vector of harmonics, and e

𝑎𝑏𝑐𝑘
is

the unbalanced harmonic voltage vector of the grid.
Assume that the distorted voltage of the network contains

the 5th and 7th harmonics. In stationary 𝑎𝑏𝑐 reference frame,
the rotating direction of the 5th harmonics is contrary to
fundamental harmonics, and its rotating electrical angular
velocity is −5𝜔. However, the rotating direction of the 7th
harmonics is the same as the fundamental harmonics, and
its rotating electrical angular velocity is 7𝜔. Indeed, the
distorted voltage of the networkmay includemore harmonics
in addition to the 5th and 7th harmonics, such as the 3rd,
11th, and 13th. The rotating direction of the 11th harmonics is
exactly identical to the 5th, except that the rotating electrical
angular velocity is −11𝜔. A similar relationship exists in
the 7th and 13th harmonics. In order to reveal the essence
of the problem more simply, consider only the 5th and
7th harmonics and construct multiple synchronous rotating
reference frames shown in Figure 2. For convenience, in what
follows, +/− in superscript represents +/− rotating direction,
respectively; 5 and 7 in superscript describe the rotating
direction of the 5th and 7th harmonics, respectively; 1, 5, and
7 in subscript demonstrate the 1st, 5th, and 7th harmonics,
respectively.

In rotating 𝑑𝑞 reference frame of the 5th harmonics, the
voltage equation of the 5th harmonics can be written as

k
𝑑𝑞5
= 𝑅i
𝑑𝑞5
+ 𝐿

𝑑i
𝑑𝑞5

𝑑𝑡
+ e
𝑑𝑞5
− 𝑗5𝜔𝐿𝑖

𝑑𝑞5
, (6)
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Figure 2: Multiple synchronous rotating reference frames.

where

k
𝑑𝑞5
= k
+

𝑑𝑞1
𝑒
𝑗6𝜔𝑡

+ k
5−

𝑑𝑞5
+ k
7+

𝑑𝑞7
𝑒
𝑗12𝜔𝑡

,

i
𝑑𝑞7
= i+
𝑑𝑞1
𝑒
𝑗6𝜔𝑡

+ i5−
𝑑𝑞5
+ i7+
𝑑𝑞7
𝑒
𝑗12𝜔𝑡

,

e
𝑑𝑞5
= e+
𝑑𝑞1
𝑒
𝑗6𝜔𝑡

+ e5−
𝑑𝑞5
+ e7+
𝑑𝑞7
𝑒
𝑗12𝜔𝑡

.

(7)

Equation (7) indicates that only voltage and current com-
ponents of the 5th harmonics are DC signals in rotating 𝑑𝑞
reference frame of the 5th harmonics. Voltage and current
components of the remaining harmonics are AC signals. One
other thing to note is that all of the harmonic components
in rotating 𝑑𝑞 reference frame of fundamental wave are AC
signals.

In a similarway, the voltage equation of the 7th harmonics
can be written as

k
𝑑𝑞7
= 𝑅i
𝑑𝑞7
+ 𝐿

𝑑i
𝑑𝑞7

𝑑𝑡
+ e
𝑑𝑞7
+ 𝑗7𝜔𝐿𝑖

𝑑𝑞7
. (8)

Equations (6) and (8) demonstrate that once the grid voltage
becomes unbalance, the controller designed by the principle
of ideal sine wave will not be able to compensate for
harmonic voltage, and the current waveform of the grid will
be distorted.

2.3. Control Problem Description. Use D(w) and 𝛿(x, 𝑡) to
describe the exogenous disturbance of voltage harmonics
and the uncertain items related with system states caused by
modeling perturbations, parameter uncertainties, or actuator
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end disturbances, respectively, then the state equation in (4)
can be rewritten as a multivariable system as follows:

ẋ = Ax + B (k − e
0
−D (w) + 𝛿 (x, 𝑡))

= f (x) +
2

∑

𝑖=1

g
𝑖
(x) (V
𝑖
− 𝑒
𝑖0
− 𝐷
𝑖
(w) + 𝛿

𝑖
(x,𝑡)) ,

1 ≤ 𝑖 ≤ 2,

(9)

where x = [𝑥
1
, 𝑥
2
]
𝑇

= [𝑖
𝑑
, 𝑖
𝑞
]
𝑇, f(x) = [ −(𝑅/𝐿)𝑥1+𝜔𝑥2

−𝜔𝑥
1
−(𝑅/𝐿)𝑥

2

] =

[
−(𝑅/𝐿)𝑖

𝑑
+𝜔𝑖
𝑞

−𝜔𝑖
𝑑
−(𝑅/𝐿)𝑖

𝑞

], g
1
(x) = g

2
(x) = 1/𝐿, k = [V

1
, V
2
]
𝑇

=

[V
𝑑
, V
𝑞
]
𝑇, [𝑒
10
, 𝑒
20
] = [𝑒

𝑑0
, 𝑒
𝑞0
], and 𝑒

𝑑0
and 𝑒
𝑞0

are network
voltages of fundamental wave in 𝑑𝑞 reference frame. For a
specific network, 𝑒

𝑑0
and 𝑒

𝑞0
can be determined easily. The

uncertain item 𝛿(x, 𝑡) in the control input channel satisfies
the matching condition. In the paper, the range of variable 𝑖
is (1,2). For convenience and conciseness, in what follows, the
range of variable 𝑖 is no longer written.

Assumption 1. w ∈ R𝑞 is an exogenous signal generated by
the following exosystem:

ẇ =W
𝑖
w, (10)

where W
𝑖
is a pending matrix depending on the exogenous

signal.

Assumption 2. Considering disturbance-free and no model-
ing perturbations, the nominal system of (9) can be written
as:

ẋ = f (x) +
2

∑

𝑖=1

g
𝑖
(x) (V
𝑖
− 𝑒
𝑖0
) (11)

there exists a control law of state feedback a follows:

V
󸀠

𝑖
= V
𝑖
− 𝑒
𝑖0
= 𝛼
𝑖
(x) , (12)

let (11) be asymptotically stable. In addition, there exists a
Lyapunov function 𝑉(x) which satisfies:

𝑑 (‖x‖) ≤ 𝑉 (x) ≤ 𝑑 (‖x‖) , (13)

𝜕𝑉 (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x) 𝛼
𝑖
(x)) ≤ −𝑑

0
(‖x‖) , (14)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 𝑑
0
(‖x‖) , (15)

where 𝑑, 𝑑, and 𝑑
0
are all of class 𝐾

∞
functions.

Assumption 3. There exist smooth functions 𝑟
𝑖
(𝑥) : R𝑛 →

R𝑞 which make

𝜕𝑟
𝑖
(x)
𝜕x

g
𝑖
(x) = K

𝑖
, (16)

where K
𝑖
are nonzero constant vectors defined in R𝑞.

Assumption 4. There exist a constant𝑚
𝑖
and a known smooth

bounded function 𝑝
𝑖
(x) making the uncertain item 𝛿(x, 𝑡)

satisfy

󵄨󵄨󵄨󵄨𝛿𝑖 (x, 𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑚𝑖𝑝𝑖 (x) . (17)

Remark 5. Similar to the uncertain item 𝛿(x, 𝑡), the distur-
bance D(w) also satisfies the matching condition and can
be injected in the input path. Nevertheless, a method of
iterative design, such as adaptive backstepping, can extend
the presented algorithm to more general instance of strict
feedback. Therefore, the matching condition is not critical,
and application of the assumption is reasonable.

Remark 6. One of the research points in the paper is stability
problem for multivariable input system. Currently, some
literatures focus on the point of stability problem, but the
focused attention of these literatures is the field of single input
and single output [27] or semiglobal stability [28]. For the
multivariable system, the research of stability problemwill be
more challenging, and the core is to transform the stability
problem from multivariable system to multiple single-input
system [29].

Remark 7. For Assumption 2, (13) and (14) automatically
hold when the closed-loop system is asymptotically stable.
Equation (15) holds when the closed-loop system is expo-
nentially stable. Nevertheless, Assumption 2 is not a sufficient
condition to make the closed-loop system exponentially
stable [30].

Remark 8. For Assumption 3, if g
𝑖
(x) is a nonzero constant

vector, it will be easy to find a solution of (𝜕𝑟
𝑖
(x)/𝜕x)g

𝑖
(x) =

K
𝑖
for a non-zero constant vector K

𝑖
. For a nonconstant

vector g
𝑖
(x), the solutions can be found more complex with

the help of geometric tool [31].

Remark 9. Assumption 4 is to guarantee the boundedness of
the uncertain item 𝛿(x, 𝑡) relative to the system state vector x.
For instance, if 𝛿

1
(x, 𝑡) = 𝑥

1
sin(𝑥
1
𝑡), 𝑚
1
and 𝑝

1
(x) can be

chosen as 1 and 𝑥
1
, respectively.

The problem solved in the paper can be described by the
following theorem.

Definition 10. For any given compact set Dw ∈ R𝑞, state
feedback controller V

𝑖
can always be found to ensure the

solution of closed-loop system (9) existing under arbitrary
initial conditions for all w(0) ∈ Dw and 𝑡 ≥ 0 and to reject
exogenous disturbances and uncertain items.

3. Design of Nonlinear Multivariable
Internal Model

Application of internal model principle (IMP) to reject the
exogenous disturbanceD(w) and uncertain item 𝛿(x, 𝑡) in the
paper is chosen as an indirect method. In other words, an
appropriate equation of internalmodel should be constructed
to estimate the nonlinear disturbances and uncertain items.
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The nonlinear equation of exogenous disturbance internal
model is designed as

𝐷
𝑖
(w) = V

𝑖
ŵ
𝑖
(𝑡) , (18)

ŵ
𝑖
(𝑡) = 𝜂̂

𝑖
(𝑡) + r

𝑖
(x) , (19)

̇̂𝜂
𝑖
(𝑡) = (W

𝑖
− K
𝑖
V
𝑖
) (𝜂̂
𝑖
(𝑡) + r

𝑖
(x))

− K
𝑖
V
󸀠

𝑖
(x) − 𝜕r𝑖 (x)

𝜕x
f (x) ,

(20)

where ŵ(𝑡) is the estimation value of exogenous
signal w(𝑡), 𝜂̂

𝑖
is the introduced auxiliary vector, 𝜂̂

𝑖
=

[𝜂
𝑖1
𝜂
𝑖2
⋅ ⋅ ⋅ 𝜂
𝑖𝑝
], r
𝑖
(x) is a vector constructed by the smooth

functions 𝑟
𝑖
(x), r
𝑖
(x) = [𝑟

𝑖
(x) 0 ⋅ ⋅ ⋅ 0]

1×𝑝
, and the matrix

K
𝑖
∈ R𝑞 is selected satisfying Assumption 3 and makes the

matrix (W
𝑖
− K
𝑖
V
𝑖
) be Hurwitz; that is, positive definite

matrices P
𝑖
andQ

𝑖
are always existing and satisfy

P
𝑖
(W
𝑖
− K
𝑖
V
𝑖
) + (W

𝑖
− K
𝑖
V
𝑖
)
𝑇P
𝑖
= −Q
𝑖
. (21)

In terms of Assumption 4, the adaptive internal model of
uncertain item is devised as

𝛿
𝑖
(x, 𝑡) = 𝑚

𝑖
K
𝑖
𝑝
𝑖
(x) tanh(

𝜂
𝑇

𝑖
P𝑇
𝑖
K
𝑖
𝑝
𝑖
(x)

𝜆
𝑖

) , (22)

where 𝑚
𝑖
and 𝑝

𝑖
(x) indicate a constant and a known smooth

function defined in Assumption 4, respectively, and 𝜆
𝑖
is a

designed constant.
Define an auxiliary error vector as follows:

𝑒𝑟
𝑖
(𝑡) = w

𝑖
(𝑡) − ŵ

𝑖
(𝑡) . (23)

With the derivative of (23) along with (9), (10) and (19), we
can obtain
⋅

𝑒𝑟
𝑖
(𝑡) = ẇ

𝑖
(𝑡) − ̇̂w

𝑖
(𝑡) =W

𝑖
w
𝑖
− ̇̂𝜂
𝑖
(𝑡) −

𝜕r
𝑖
(x)
𝜕x
𝜕x
𝜕𝑡

=W
𝑖
w
𝑖
− (W
𝑖
− K
𝑖
V
𝑖
) (𝜂̂
𝑖
(𝑡) + r

𝑖
(x))

+ K
𝑖
k
󸀠

𝑖
(x) + 𝜕r𝑖 (x)

𝜕𝑥
f (x) −

𝜕r
𝑖
(x)
𝜕𝑥

× (f (x) + g
𝑖
(x) (V
𝑖
− 𝑒
𝑖0
− 𝐷
𝑖
(w) +𝛿

𝑖
(x,𝑡)))

=W
𝑖
w
𝑖
− (W
𝑖
− K
𝑖
V
𝑖
) (𝜂̂
𝑖
(𝑡) + r

𝑖
(x)) + K

𝑖
V
󸀠

𝑖
(𝑥)

−
𝜕r
𝑖
(x)
𝜕𝑥

g
𝑖
(x) (V
𝑖
− 𝑒
𝑖0
− 𝐷
𝑖
(w) + 𝛿

𝑖
(x, 𝑡))

=W
𝑖
w
𝑖
− (W
𝑖
− K
𝑖
V
𝑖
) (𝜂̂
𝑖
(𝑡) + r

𝑖
(x)) + K

𝑖
V
󸀠

𝑖
(x)

− K
𝑖
(V
𝑖
− 𝑒
𝑖0
− 𝐷
𝑖
(w) + 𝛿

𝑖
(x, 𝑡))

=W
𝑖
w
𝑖
− (W
𝑖
− K
𝑖
V
𝑖
) ŵ
𝑖
(𝑡) + K

𝑖
V
󸀠

𝑖
(x)

− K
𝑖
(V
𝑖
− 𝑒
𝑖0
− V
𝑖
w (𝑡) + 𝛿

𝑖
(x, 𝑡))

=W
𝑖
w
𝑖
− (W
𝑖
− K
𝑖
V
𝑖
) ŵ (𝑡) + K

𝑖
𝑉
𝑖
w (𝑡) − K

𝑖
𝛿
𝑖
(x, 𝑡)

= (W
𝑖
− K
𝑖
V
𝑖
) 𝑒𝑟
𝑖
(𝑡) − K

𝑖
𝛿
𝑖
(x, 𝑡) .

(24)

4. Design of Nonlinear State
Feedback Controller

In comparison with the nominal system (11), the original
system (9) adds two items: exogenous disturbance D(w) and
uncertain items 𝛿(x, 𝑡). On the basis of control law of the
nominal system, nonlinear state feedback controller of the
original system (9) should add two items to compensate
for D(w) and 𝛿(x, 𝑡). In terms of the idea, nonlinear state
feedback controller of the original system (9) is designed as

V
󸀠

𝑖
= 𝛼
𝑖
(x) − 𝐷

𝑖
(w) + 𝜃

𝑖
(⋅) , (25)

where 𝜃(⋅) is a pending design function to compensate for an
uncertain item such as modeling perturbation.

Apparently, designing of nonlinear internal model
𝐷
𝑖
(w) is accomplished in Section 3. In what follows, we

complete the design of V󸀠
𝑖
in two steps. The first step is

application of backstepping theory to devise 𝛼
𝑖
(x), and the

second is to complete an adaptive solution of 𝜃(⋅) to reject
uncertain item 𝛿(x, 𝑡).

(1) Designing of 𝛼
𝑖
(x). It is assumed that the parameters of

grid-connected inverter are known and invariant.The control
target of designing 𝛼

𝑖
(x) is to regulate 𝑖

𝑑
(𝑥
1
) and 𝑖

𝑞
(𝑥
2
) to

track the respective reference value 𝑥
1ref and 𝑥2ref.

Firstly, we define the errors as follows:

𝑒𝑧
1
= 𝑥
1
− 𝑥
1ref,

𝑒𝑧
2
= 𝑥
2
− 𝑥
2ref;

(26)

the dynamics derived from (26), we can get with

⋅

𝑒𝑧
1
= 𝑥̇
1
− 𝑥̇
1ref,

⋅

𝑒𝑧
2
= 𝑥̇
2
− 𝑥̇
2ref.

(27)

Substituting (9) into (27), we obtain

⋅

𝑒𝑧
1
= 𝑥̇
1
− 𝑥̇
1ref = −

𝑅

𝐿
𝑥
1
+ 𝜔𝑥
2
+
1

𝐿
𝛼
1
(x) − 𝑥̇

1ref, (28)

⋅

𝑒𝑧
2
= 𝑥̇
2
− 𝑥̇
2ref = −

𝑅

𝐿
𝑥
2
− 𝜔𝑥
1
+
1

𝐿
𝛼
2
(x) − 𝑥̇

2ref. (29)

Define a quadratic function as the following:

𝑄
1
=
1

2
𝑐
1
𝑒𝑧
2

1
, (30)

where 𝑐
1
is a positive real number.

Derivative of 𝑄
1
along (28) can be written as

𝑄̇
1
= 𝑐
1
𝑒𝑧
1

⋅

𝑒𝑧
1
= 𝑐
1
𝑒𝑧
1
(−
𝑅

𝐿
𝑥
1
+ 𝜔𝑥
2
+
1

𝐿
𝛼
1
(x) − 𝑥̇

1ref) .

(31)

Assume that

−
𝑅

𝐿
𝑥
1
+ 𝜔𝑥
2
+
1

𝐿
𝛼
1
(x) − 𝑥̇

1ref = −
𝑒𝑧
1

𝑐
1

. (32)
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That is,

𝛼
1
(x) = −𝐿𝑒𝑧1

𝑐
1

+ 𝑅𝑥
1
− 𝐿𝜔𝑥

2
+ 𝐿𝑥̇
1ref. (33)

Replacing (33) into (31), the derivative of 𝑄
1
is given by

𝑄̇
1
= 𝑐
1
𝑒𝑧
1

⋅

𝑒𝑧
1
= −𝑒𝑧

2

1
≤ 0. (34)

Define another quadratic function as the following:

𝑄
2
=
1

2
𝑐
2
𝑒𝑧
2

2
, (35)

where 𝑐
2
is also a positive real number.

Derivative of 𝑄
2
along (29) is given by

𝑄̇
2
= 𝑐
2
𝑒𝑧
2

⋅

𝑒𝑧
2
= 𝑐
2
𝑧
2
(−
𝑅

𝐿
𝑥
2
− 𝜔𝑥
1
+
1

𝐿
𝛼
2
(𝑥) − 𝑥̇

2ref) .

(36)

Suppose that

−
𝑅

𝐿
𝑥
2
− 𝜔𝑥
1
+
1

𝐿
𝛼
2
(𝑥) − 𝑥̇

2ref = −
𝑒𝑧
2

𝑐
2

; (37)

that is,

𝛼
2
(x) = −𝐿𝑒𝑧2

𝑐
2

+ 𝑅𝑥
2
+ 𝐿𝜔𝑥

1
+ 𝐿𝑥̇
2ref. (38)

Replacing (38) into (36), the derivative of 𝑄
2
can be written

as

𝑄̇
2
= 𝑐
2
𝑒𝑧
2

⋅

𝑒𝑧
2
= −𝑒𝑧

2

2
≤ 0. (39)

Now, from (30) and (35), the Lyapunov function 𝑉(x)
defined in Assumption 2 can be written as

𝑉 (x) = 𝑄
1
+ 𝑄
2
=
1

2
𝑐
1
𝑒𝑧
2

1
+
1

2
𝑐
2
𝑒𝑧
2

2
. (40)

Hence, from (34) and (39), we can see that the
controllers 𝛼

1
(x) shown in (33) and 𝛼

2
(x) shown in (38) can

stabilize the disturbance-free closed-loop system.

(2) Designing of 𝜃(⋅). Under the actual operating envi-
ronments, the parameters of grid-connected inverter are
not always known and invariant. For instance, the induc-
tance 𝐿 varies with the environment temperature, and the
resistance 𝑅 changes nonlinearly with heating. Hence, the
parametric uncertainties in the process of system model-
ing should be considered to reflect the real condition of
the operating system. Due to the uncertainty of modeling
perturbations, 𝜃(⋅) should be an adaptive controller to reject
the perturbations. In terms of the internal model of uncertain
items shown in (22), the controller is devised as

𝜃
𝑖
(x, 𝑡) = 𝑚

𝑖
𝑝
𝑖
(x) tanh((

𝜕𝑉 (x) /𝜕𝑥) 𝑔
𝑖
(x) 𝑝
𝑖
(x)

𝜉
𝑖

) , (41)

where 𝜉
𝑖
is the designed constant.

Convergence Proof of the Proposed Controller. For a start, we
give a lemma as the following.

Lemma 11. For any positive number 𝜀 > 0, there exists a
smooth function ℎ making the inequality |𝑥| ≤ 𝑥ℎ(𝑥) + 𝜀, for
all 𝑥 ∈ 𝑅 hold, and 𝑓(0) = 0.

Remark 12. If we choose ℎ(𝑥) = (1/4𝜀)𝑥, for all 𝑥 ∈ 𝑅,
the above inequality holds obviously. In [32], another func-
tion meeting the above requirements is given as ℎ(𝑥) =
tanh(𝛽𝑥/𝜀), for all 𝑥 ∈ 𝑅, where 𝛽 = 𝑒−(𝛽+1) and 𝛽 > 0,
hence 𝛽 < 1/2.

In terms of (23) and (40), construct a newLyapunov func-
tion as

𝑊 = 𝑉 (x) +
2

∑

𝑖=1

𝑒𝑟
𝑖

𝑇

𝑃
𝑖
𝑒𝑟
𝑖
. (42)

With the derivative of (42) along the system (9), (24), and
(25), we obtain

𝑊̇ =
𝜕𝑉 (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x) (V
𝑖
− 𝑒
𝑖0
− 𝐷
𝑖
(w) + 𝛿

𝑖
(x, 𝑡)))

+

2

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
(P
𝑖
(W
𝑖
− K
𝑖
V
𝑖
) + (W

𝑖
− K
𝑖
V
𝑖
)
𝑇P
𝑖
) 𝑒𝑟
𝑖
)

+ 2

2

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
P
𝑖
(−K
𝑖
𝛿
𝑖
(x, 𝑡)))

=
𝜕𝑉 (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x) 𝛼
𝑖
(x))

+
𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x) (𝐷

𝑖
(w) − 𝐷

𝑖
(w))

−
𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x) (𝜃
𝑖
(x, 𝑡) − 𝛿

𝑖
(x, 𝑡))

−

𝑚

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
Q
𝑖
𝑒𝑟
𝑖
) + 2

2

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
P
𝑖
(−K
𝑖
𝛿
𝑖
(x, 𝑡)))

=
𝜕𝑉 (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x) 𝛼
𝑖
(x))

+
𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x) (V

𝑖
ŵ (𝑡) − 𝑉

𝑖
w (𝑡))

−
𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x)(𝑚

𝑖
𝑝
𝑖
(x) tanh

× (
(𝜕𝑉 (x) /𝜕x) g

𝑖
(x) 𝑝
𝑖
(x)

𝜉
𝑖

)

−𝛿
𝑖
(x, 𝑡))

−

𝑚

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
Q
𝑖
𝑒𝑟
𝑖
) − 2

2

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
P
𝑖
(K
𝑖
𝛿
𝑖
(x, 𝑡))) .

(43)
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In terms of Assumption 4, (43) can be rewritten as

𝑊̇ ≤
𝜕𝑉 (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x) 𝛼
𝑖
(x)) + 𝜕𝑉 (x)

𝜕x

2

∑

𝑖=1

g
𝑖
(x) (V

𝑖
𝑒𝑟
𝑖
(𝑡))

−
𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x) (𝑚

𝑖
𝑝
𝑖
(x) tanh((

𝜕𝑉 (x) /𝜕x) g
𝑖
(x) 𝑝
𝑖
(x)

𝜉
𝑖

) −
󵄨󵄨󵄨󵄨𝑚𝑖𝑝𝑖 (x)

󵄨󵄨󵄨󵄨)

−

𝑚

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
Q
𝑖
𝑒𝑟
𝑖
) − 2

2

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
P
𝑖
(K
𝑖
𝛿
𝑖
(x, 𝑡)))

=
𝜕𝑉 (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x) 𝛼
𝑖
(x)) + 𝜕𝑉 (x)

𝜕x

2

∑

𝑖=1

g
𝑖
(x) (V

𝑖
𝑒𝑟
𝑖
(𝑡))

+ 𝑚
𝑖

2

∑

𝑖=1

(

𝜕𝑉 (x)
𝜕x

g
𝑖
(x) 󵄨󵄨󵄨󵄨𝑝𝑖 (x)

󵄨󵄨󵄨󵄨

−
𝜕𝑉 (x)
𝜕x

g
𝑖
(x) 𝑝
𝑖
(x) tanh((

𝜕𝑉 (x) /𝜕𝑥) g
𝑖
(x) 𝑝
𝑖
(x)

𝜉
𝑖

)

)

−

𝑚

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
Q
𝑖
𝑒𝑟
𝑖
) − 2

2

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
P
𝑖
(K
𝑖
𝛿
𝑖
(x, 𝑡))) .

(44)

According to Lemma 11, the following inequality holds:

0 ≤ |𝑥| − 𝑥 tanh(𝑥
𝜀
) ≤
1

2
𝜀. (45)

That is,

𝜕𝑉 (x)
𝜕x

g
𝑖
(x) 󵄨󵄨󵄨󵄨𝑝𝑖 (x)

󵄨󵄨󵄨󵄨

−
𝜕𝑉 (x)
𝜕x

g
𝑖
(x) 𝑝
𝑖
(x) tanh((

𝜕𝑉 (𝑥) /𝜕𝑥) g
𝑖
(x) 𝑝
𝑖
(x)

𝜉
𝑖

)

≤
1

2
𝜉
𝑖
.

(46)

Substituting (46) into (44), we can get

𝑊̇ ≤
𝜕𝑉 (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x) 𝛼
𝑖
(x))

+
𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x) (V

𝑖
𝑒𝑟
𝑖
(𝑡)) + 𝑚

𝑖

1

2
𝜉
𝑖

−

𝑚

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
Q
𝑖
𝑒𝑟
𝑖
) − 2

2

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
P
𝑖
(K
𝑖
𝛿
𝑖
(x, 𝑡))) .

(47)

With the application of (14) inAssumption 2 into (47), we can
obtain

𝑊̇ ≤ −𝑑
0
(‖x‖) + 𝜕𝑉 (x)

𝜕x

2

∑

𝑖=1

g
𝑖
(x) (V

𝑖
𝑒𝑟
𝑖
(𝑡))

+ 𝑚
𝑖

1

2
𝜉
𝑖
−

𝑚

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
Q
𝑖
𝑒𝑟
𝑖
)

− 2

2

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
P
𝑖
(K
𝑖
𝛿
𝑖
(x, 𝑡)))

≤ −𝑑
0
(‖x‖) +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨V𝑖𝑒𝑟𝑖 (𝑡)
󵄨󵄨󵄨󵄨

+ 𝑚
𝑖

1

2
𝜉
𝑖
−

𝑚

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
Q
𝑖
𝑒𝑟
𝑖
)

− 2

2

∑

𝑖=1

(𝑒𝑟
𝑇

𝑖
P
𝑖
(K
𝑖
𝛿
𝑖
(x, 𝑡))) .

(48)

Assuming that 𝜆min(Q𝑖) represent the minimal eigenvalue of
the matrix Q

𝑖
, (48) can be given by

𝑊̇ ≤ −𝑑
0
(‖x‖) +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨V𝑖𝑒𝑟𝑖 (𝑡)
󵄨󵄨󵄨󵄨

+ 𝑚
𝑖

1

2
𝜉
𝑖
−

𝑚

∑

𝑖=1

𝜆min (Q𝑖)
󵄩󵄩󵄩󵄩𝑒𝑟𝑖
󵄩󵄩󵄩󵄩

2

+

2

∑

𝑖=1

(2𝜇
𝑖

󵄩󵄩󵄩󵄩P𝑖K𝑖
󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩󵄩
𝑒𝑟
𝑇

𝑖

󵄩󵄩󵄩󵄩󵄩

2

+
1

2𝜇
𝑖

󵄨󵄨󵄨󵄨𝑚𝑖𝑝𝑖 (x)
󵄨󵄨󵄨󵄨

2

) ,

(49)

where 𝜇
𝑖
is a positive number.
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In terms of permanent establishment inequality 2𝑎𝑏 ≤
𝑐𝑎
2

+ 𝑐
−1

𝑏
2, (49) is rewritten as

𝑊̇ ≤ −𝑑
0
(‖x‖) + (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑉 (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+
1

4

2

∑

𝑖=1

󵄩󵄩󵄩󵄩V𝑖
󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩𝑒𝑟𝑖
󵄩󵄩󵄩󵄩

2

)

+ 𝑚
𝑖

1

2
𝜉
𝑖
−

2

∑

𝑖=1

𝜆min (Q𝑖)
󵄩󵄩󵄩󵄩𝑒𝑟𝑖
󵄩󵄩󵄩󵄩

2

+

2

∑

𝑖=1

(2𝜇
𝑖

󵄩󵄩󵄩󵄩P𝑖K𝑖
󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩󵄩
𝑒𝑟
𝑇

𝑖

󵄩󵄩󵄩󵄩󵄩

2

+
1

2𝜇
𝑖

󵄨󵄨󵄨󵄨𝑚𝑖𝑝𝑖 (x)
󵄨󵄨󵄨󵄨

2

) .

(50)

With the application of (15) inAssumption 2 into (50), we can
obtain

𝑊̇ ≤ −𝑑
0
(‖x‖) + (𝑑

0
(‖x‖) + 1

4

2

∑

𝑖=1

󵄩󵄩󵄩󵄩V𝑖
󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩𝑒𝑟𝑖
󵄩󵄩󵄩󵄩

2

)

+ 𝑚
𝑖

1

2
𝜉
𝑖
−

2

∑

𝑖=1

𝜆min (Q𝑖)
󵄩󵄩󵄩󵄩𝑒𝑟𝑖
󵄩󵄩󵄩󵄩

2

+

2

∑

𝑖=1

(2𝜇
𝑖

󵄩󵄩󵄩󵄩P𝑖K𝑖
󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩󵄩
𝑒𝑟
𝑇

𝑖

󵄩󵄩󵄩󵄩󵄩

2

+
1

2𝜇
𝑖

󵄨󵄨󵄨󵄨𝑚𝑖𝑝𝑖 (x)
󵄨󵄨󵄨󵄨

2

)

=
1

4

2

∑

𝑖=1

󵄩󵄩󵄩󵄩V𝑖
󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩𝑒𝑟𝑖
󵄩󵄩󵄩󵄩

2

+ 𝑚
𝑖

1

2
𝜉
𝑖
−

2

∑

𝑖=1

𝜆min (Q𝑖)
󵄩󵄩󵄩󵄩𝑒𝑟𝑖
󵄩󵄩󵄩󵄩

2

+

2

∑

𝑖=1

(2𝜇
𝑖

󵄩󵄩󵄩󵄩P𝑖K𝑖
󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩󵄩
𝑒𝑟
𝑇

𝑖

󵄩󵄩󵄩󵄩󵄩

2

+
1

2𝜇
𝑖

󵄨󵄨󵄨󵄨𝑚𝑖𝑝𝑖 (x)
󵄨󵄨󵄨󵄨

2

)

≤
1

4

2

∑

𝑖=1

󵄩󵄩󵄩󵄩V𝑖
󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩𝑒𝑟𝑖
󵄩󵄩󵄩󵄩

2

−

2

∑

𝑖=1

𝜆min (Q𝑖)
󵄩󵄩󵄩󵄩𝑒𝑟𝑖
󵄩󵄩󵄩󵄩

2

+ 𝑚
𝑖

1

2
𝜉
𝑖
+

2

∑

𝑖=1

(2𝜇
𝑖

󵄩󵄩󵄩󵄩P𝑖K𝑖
󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩󵄩
𝑒𝑟
𝑇

𝑖

󵄩󵄩󵄩󵄩󵄩

2

+
𝑚
𝑖

2𝜇
𝑖

󵄨󵄨󵄨󵄨𝑝max
󵄨󵄨󵄨󵄨

2

) ,

(51)

where |𝑝max| indicates the maximum value of |𝑝
𝑖
(𝑥)|.

Suppose that 𝑑
𝑖
= 𝜆min(Q𝑖) − (1/4)‖𝑉𝑖‖

2

−2𝜇
𝑖
‖P
𝑖
K
𝑖
‖
2

> 0

and choose proper 𝜉
𝑖
to satisfy

𝑊̇ ≤ −

𝑚

∑

𝑖=1

𝑑
𝑖

󵄩󵄩󵄩󵄩ei
󵄩󵄩󵄩󵄩

2

+ 𝑚
𝑖

1

2
𝜉
𝑖
+

2

∑

𝑖=1

(
𝑚
𝑖

2𝜇
𝑖

󵄨󵄨󵄨󵄨𝑝max
󵄨󵄨󵄨󵄨

2

) ≤ 0. (52)

As can be seen above, the proposed controller can ensure
all the signals of the closed-loop system uniformly bounded.
Consequently, the paper comes to the following conclusion.

Theorem 13. There exist positive definite matrices P
𝑖
and Q

𝑖

satisfying formula (21) and nonzero constant vector K
𝑖
∈

R𝑞 satisfying Assumption 3, such that the matrix W
𝑖
−K
𝑖
V
𝑖
is

Hurwitz. Furthermore, the formula (52) holds. For the mul-
tivariable nonlinear system (9) and exosystem (10) satisfying
the Assumptions (1) to (5), the nonlinear multivariable internal
models (18) and (22) and the input feedback control (25) can
make the closed-loop system globally uniformly bounded.

5. Numerical Simulations and Analysis

To illustrate the performance of the present control algo-
rithm, some numerical simulations are performed in the
section.Thewhole simulation time is 5 seconds with the sam-
pling interval 0.001 s. The simulation parameters are chosen
as follows.

For the grid, the rms value of network voltage 𝑒
0
= 380V

the synchronous angular velocity 𝜔 = 100𝜋 rad/s. For the
three-phase grid-connected inverters, the filter inductance
𝐿 = 1.0mH and equivalent series resistance 𝑅 = 0.02Ω.

Substituting the relevant parameters into the original
state equation (9), the nonlinear system (9) can be described
by

ẋ = f (x) +
2

∑

𝑖=1

g
𝑖
(x) (k
𝑖
− e
𝑖0
− 𝐷
𝑖
(w) + 𝛿

𝑖
(x, 𝑡)) ,

1 ≤ 𝑖 ≤ 2,

(53)

where x = [𝑥
1
, 𝑥
2
]
𝑇, f(x) = [

−20𝑥
1
+100𝜋𝑥

2

−100𝜋𝑥
1
−20𝑥
2

], g
1
(x) =

g
2
(x) = 1000, and [𝑒

10
, 𝑒
20
] = [380, 0]. The control input k =

[V
1
, V
2
]
𝑇. It is thus clear that the system (53) has two-variable

input, and the conventional single-input algorithm cannot
solve the problem.

Example 14. The network is immersed 3% 3rd harmonics to
fundamental wave.

The exosystem matrices for exogenous disturbanceD(w)
represented in (10) and (18) are given as W

1
= W

2
=

[
0 2𝜔

−2𝜔 0
], V
1
= V
2
= [11.4 0], and the uncertain items

satisfy

𝛿
1
(x, 𝑡) = 𝑥

1
sin (𝑥

1
𝑡) , 𝛿

2
(x, 𝑡) = 𝑥

2
sin (𝑥

2
𝑡) . (54)

It is worth noticing that the rotating electrical angular
velocity of the 3rd harmonics in stationary 𝑎𝑏𝑐 reference
frame is in accordance with that of the 2nd harmon-
ics in rotating 𝑑𝑞 reference frame of fundamental wave.
Hence, W

1
= W

2
= [

0 2𝜔

−2𝜔 0
] in 𝑑𝑞 coordinated system

represents the 3rd harmonics in stationary 𝑎𝑏𝑐 coordinated
system. Furthermore, the values of V

1
and V

2
represent that

the network is immersed 3% 3rd harmonics to fundamental
wave.

In terms of (33) and (38), the control law of the nominal
system is given by

𝛼
1
(x) = −𝐿𝑧

1
+ 𝑅𝑥
1
− 𝐿𝜔𝑥

2
+ 𝐿𝑥̇
1ref

= −0.001 (𝑥
1
− 𝑥
1ref) + 0.02𝑥1 − 0.1𝜋𝑥2 + 0.001𝑥̇1ref,

𝛼
2
(x) = −𝐿𝑒𝑧

2
+ 𝑅𝑥
2
+ 𝐿𝜔𝑥

1
+ 𝐿𝑥̇
2ref

= −0.001 (𝑥
2
− 𝑥
2ref) + 0.02𝑥1 + 0.1𝜋𝑥2 + 0.001𝑥̇2ref.

(55)

Supposing that

𝑉 (x) = 1
2
𝑐
1
(𝑥
1
− 𝑥
1ref)
2

+
1

2
𝑐
2
(𝑥
2
− 𝑥
2ref)
2

, (56)
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we can obtain

𝜕𝑉 (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x)𝛼
𝑖
)

= −(𝑥
1
− 𝑥
1ref)
2

− (𝑥
2
− 𝑥
2ref)
2

,

(57)

𝜕V (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x)

=
𝑐
1
(𝑥
1
− 𝑥
1ref)

𝐿
+
𝑐
2
(𝑥
2
− 𝑥
2ref)

𝐿
.

(58)

Supposing x󸀠 = [(𝑥
1
−𝑥
1ref) (𝑥2 − 𝑥2ref)

𝑇

], in terms of (56),
(57) and (58), and choosing 𝑐

1
= 𝐿 and 𝑐

2
= 𝐿 make the

following inequalities hold

1

2
𝐿
󵄩󵄩󵄩󵄩󵄩
x󸀠󵄩󵄩󵄩󵄩󵄩
2

≤ 𝑉 (x) ≤ 𝐿󵄩󵄩󵄩󵄩󵄩x
󸀠󵄩󵄩󵄩󵄩󵄩

2

,

𝜕𝑉 (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x) 𝛼
𝑖
) ≤ −

󵄩󵄩󵄩󵄩󵄩
x󸀠󵄩󵄩󵄩󵄩󵄩
2

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V (x)
𝜕x

𝑚

∑

𝑖=1

g
𝑖
(x)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤
󵄩󵄩󵄩󵄩󵄩
x󸀠󵄩󵄩󵄩󵄩󵄩
2

.

(59)

That is, Assumption 2 is satisfied.
Choosing

𝑟
1
(x) = 9𝐿𝑥

1
, 𝑟

2
(x) = 9𝐿𝑥

1
, (60)

we can obtain

K
1
=
𝜕𝑟
1
(x)
𝜕x

g
1
(x) = [9 0]𝑇,

K
2
=
𝜕𝑟
2
(x)
𝜕x

g
2
(x) = [9 0]𝑇.

(61)

Therefore, Assumption 3 holds.
According to (61), we can obtain

W
1
− K
1
V
1
= [
−102.6000 628.3185

−628.3185 0
] , (62)

W
2
− K
2
V
2
= [
−102.6000 628.3185

−628.3185 0
] . (63)

Furthermore, let P
1
= P
2
= [
4 −2

2 4
]; substituting (62) and (63)

into (21), respectively, we obtain

Q
1
= [
820.8000 −205.2000

205.2000 0
] ,

Q
2
= [
820.8000 −205.2000

205.2000 0
] .

(64)

Let 𝜇
1
= 𝜇
2
= 0.005; substituting Q

𝑖
, V
𝑖
, P
𝑖
, K
𝑖
, and 𝜇

𝑖
into

(52), through some arithmetical operations, we can obtain

𝑑
1
= 𝜆min (Q1) −

1

4

󵄩󵄩󵄩󵄩V1
󵄩󵄩󵄩󵄩

2

− 2𝜇
1

󵄩󵄩󵄩󵄩P1K1
󵄩󵄩󵄩󵄩

2

= 54.9832 −
1

4
× 129.9600 − 2𝜇

1
× 1620 > 0,

𝑑
2
= 𝜆min (Q2) −

1

4

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩

2

− 2𝜇
2

󵄩󵄩󵄩󵄩P2K2
󵄩󵄩󵄩󵄩

2

= 54.9832 −
1

4
× 129.9600 − 2𝜇

2
× 1620 > 0.

(65)

Hence, through the presented algorithm, the final internal
models of disturbance and uncertain items are given by

𝐷
1
(w) = V

1
ŵ
1
(𝑡) , 𝐷

2
(w) = V

2
ŵ
2
(𝑡) ,

ŵ
1
(𝑡) = 𝜂̂

1
(𝑡) + r

1
(𝑥) , ŵ

2
(𝑡) = 𝜂̂

2
(𝑡) + r

2
(x) ,

̇̂𝜂
11
(𝑡) = −102.6𝜂

11
(𝑡) − 0.7434𝑥

1

+ 628.3185𝜂
12
(𝑡) − 9𝑢

1
− 2.8274𝑥

2
,

̇̂𝜂
12
(𝑡) = −628.3185𝜂

11
− 5.6549𝑥

1
,

̇̂𝜂
21
(𝑡) = − 102.6𝜂

21
(𝑡) + 628.3185𝜂

22
(𝑡) − 9𝑢

1

+ 1.9036𝑥
1
+ 0.18𝑥

2
,

̇̂𝜂
22
(𝑡) = −628.3185𝜂

21
− 5.6549𝑥

1
,

𝛿
1
(x, 𝑡) = 𝑚

1
K
1
𝑝
1
(x) tanh(

[𝜂
11
𝜂
12
]P𝑇
1
K
1
𝑝
1
(x)

𝜆
1

)

=
[
[

[

9 tanh(
(36𝜂
11
− 18𝜂
12
) 𝑥
1

𝜆
1

)

0

]
]

]

,

(66)

𝛿
2
(x, 𝑡) = 𝑚

2
K
2
𝑝
2
(x) tanh(

[𝜂
3
𝜂
4
]P𝑇
2
K
2
𝑝
2
(x)

𝜆
2

)

=
[
[

[

9 tanh(
(36𝜂
21
− 18𝜂
22
) 𝑥
2

𝜆
2

)

0

]
]

]

.

(67)

Choosing 𝑚
1
= 𝑚
2
= 1, 𝜉

1
= 𝜉
2
= 0.1, the controller is

designed as

𝛼
1
(x) = −𝐿𝑒𝑧1

𝑐
1

+ 𝑅𝑥
1
− 𝐿𝜔𝑥

2
+ 𝐿𝑥̇
1ref

= − (𝑥
1
− 𝑥
1ref) + 0.02𝑥1 − 0.3142𝑥2,

𝛼
2
(x) = −𝐿𝑒𝑧2

𝑐
2

+ 𝑅𝑥
2
+ 𝐿𝜔𝑥

1
+ 𝐿𝑥̇
2ref

= − (𝑥
2
− 𝑥
2ref) + 0.02𝑥2 + 0.3142𝑥1,
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V
󸀠

1
= 𝛼
1
(x) − 𝐷

1
(w)

+ 𝑚
1
𝑝
1
(x) tanh((

𝜕𝑉 (x) /𝜕𝑥) 𝑔
1
(x) 𝑝
1
(x)

𝜉
1

)

= − (𝑥
1
− 𝑥
1ref) + 0.02𝑥1 − 0.3142𝑥2

− 11.4 (𝜂
11
(𝑡) + 0.009𝑥

1
)

+ 𝑥
1
tanh(

(𝑥
1
− 𝑥
1ref) 𝑥1

𝜉
1

) − 380,

V
󸀠

2
= 𝛼
2
(x) − 𝐷

2
(w)

+ 𝑚
2
𝑝
2
(x) tanh((

𝜕𝑉 (x) /𝜕𝑥) 𝑔
2
(x) 𝑝
2
(x)

𝜉
2

)

= − (𝑥
2
− 𝑥
2ref) + 0.02𝑥2 + 0.3142𝑥1

− 11.4 (𝜂
21
(𝑡) + 0.009𝑥

1
)

+ 𝑥
2
tanh(

(𝑥
2
− 𝑥
2ref) 𝑥2

𝜉
2

) .

(68)

Let the initial condition of the simulation be 𝑥(0) =
[0 0]

𝑇, 𝜂(0) = [0 0 0 0]𝑇, 𝑤(0) = [1 0]𝑇. The
reference values of the output current are chosen as 𝑥ref =
[4, 0]
𝑇. Figures 3, 4, 5, and 6 show the simulation results.

Figure 3 demonstrates the system states (output currents in
𝑑𝑞 reference frame). Figure 4 indicates the control inputs
in 𝑑𝑞 axis, respectively. The disturbances produced by the
exosystem and their estimates are shown in Figure 5. Figure 6
demonstrates the estimating errors under the existence of
exosystem disturbances and uncertain items. As shown in
Figure 3, the system states are asymptotically convergence
to the expected references under the existence of exogenous
disturbances and uncertain modeling perturbations. Figures
5 and 6 also indicate that the designed internal models
can produce the exogenous disturbance successfully and the
estimating errors converge to zero.

Example 15. The network is immersed 1.5% 3rd harmonics
and 1% 5th harmonics to fundamental wave.

The exosystem matrices for exogenous disturbance
D(𝑤) represented in (10) and (18) are given as W =

[

0 2𝜔 0 0

−2𝜔 0 0 0

0 0 0 4𝜔

0 0 −4𝜔 0

], V
1
= V
2
= [5.7 0 3.8 0], and the

uncertain items also satisfy

𝛿
1
(x, 𝑡) = 𝑥

1
sin (𝑥

1
𝑡) , 𝛿

2
(x, 𝑡) = 𝑥

2
sin (𝑥

2
𝑡) . (69)

The design of the nominal system and the verification of
Assumption 2 are the same as in Example 14, their derivation
processes are no longer described in detail.

Choosing

𝑟
1
(x) = 𝑟

2
(x) = [9𝐿𝑥

1
9𝐿𝑥
1
]
𝑇

, (70)

we can obtain:

𝐾
1
= 𝐾
2
=
𝜕𝑟
1
(x)
𝜕𝑥

g
1
(x) = [9 0 9 0]𝑇. (71)

Therefore, Assumption 3 holds.
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Figure 3: System states (output currents in 𝑑𝑞 reference frame).
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Figure 4: Control inputs in 𝑑𝑞 axis, respectively.

In terms of (71), we can obtain

W
1
− K
1
V
1

=W
2
− K
2
V
2

=

[
[
[

[

−51.3000 628.3185 −34.2000 0

−628.3185 0 0 0

−51.3000 0 −34.2000 1256.637

0 0 −1256.637 0

]
]
]

]

.

(72)
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Figure 5: Exogenous disturbances of 𝑤
1
and 𝑤

2
and their estimates.
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Figure 6: Estimating errors of 𝑤
1
and 𝑤

2
.

Let

P
1
= P
2

=

[
[
[

[

3.970777 −0.159154 −0.072142 −0.300626

−0.159154 4.137151 0.070735 0.045912

−0.072142 0.070735 5.920095 −0.079577

−0.300626 0.045912 −0.07957 6.010020

]
]
]

]

;

(73)

substituting (73) into (21), we obtain

Q
1
= Q
2

=

[
[
[

[

200.0011 100.0000 99.9996 99.9993

100.0000 199.9988 99.9989 100.0007

99.9996 99.9989 200.0100 100.0001

99.9996 100.0007 100.0004 199.9900

]
]
]

]

.

(74)
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Figure 8: Control inputs in 𝑑𝑞 axis, respectively.

Let 𝜇
1
= 𝜇
2
= 0.01; substituting Q

𝑖
, V
𝑖
, P
𝑖
, K
𝑖
, and 𝜇

𝑖
into

(52), through some arithmetical operations, we can obtain

𝑑
1
= 𝜆min (Q1) −

1

4

󵄩󵄩󵄩󵄩V1
󵄩󵄩󵄩󵄩

2

− 2𝜇
1

󵄩󵄩󵄩󵄩𝑃1𝐾1
󵄩󵄩󵄩󵄩

2

= 99.9924 −
1

4
× 46.93 − 2𝜇

1
× 4013.57 > 0,

𝑑
2
= 𝜆min (Q2) −

1

4

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩

2

− 2𝜇
2

󵄩󵄩󵄩󵄩P2K2
󵄩󵄩󵄩󵄩

2

= 99.9924 −
1

4
× 46.93 − 2𝜇

1
× 4013.57 > 0.

(75)

Hence, through the presented algorithm, the final internal
models of disturbance and uncertain items are given by

𝐷
1
(w) = V

1
ŵ
1
(𝑡) , 𝐷

2
(w) = V

2
ŵ
2
(𝑡) ,

ŵ
1
(𝑡) = 𝜂̂

1
(𝑡) + r

1
(𝑥) , ŵ

2
(𝑡) = 𝜂̂

2
(𝑡) + r

2
(x) ,

̇̂𝜂
11
(𝑡) = − 51.3𝜂

11
+ 628.3185𝜂

12
− 34.2𝜂

13

− 9𝑢
1
+ 5.3731𝑥

1
− 2.8274𝑥

2
,

̇̂𝜂
12
(𝑡) = −628.3185𝜂

11
− 5.6549𝑥

1
,

̇̂𝜂
13
(𝑡) = − 51.3𝜂

11
− 34.2𝜂

13
+ 1256.637𝜂

14

− 9𝑢
1
− 0.2817𝑥

1
− 2.8274𝑥

2
,

̇̂𝜂
14
(𝑡) = −1256.637𝜂

13
,

̇̂𝜂
21
(𝑡) = − 51.3𝜂

21
+ 628.3185𝜂

22
− 34.2𝜂

23

− 9𝑢
2
+ 2.3657𝑥

1
+ 0.18𝑥

2
,

̇̂𝜂
22
(𝑡) = −628.3185𝜂

21
− 5.6549𝑥

1
,

̇̂𝜂
23
(𝑡) = − 51.3𝜂

21
− 34.2𝜂

23
+ 1256.637𝜂

24

− 9𝑢
2
+ 2.3657𝑥

1
+ 0.18𝑥

2
,

̇̂𝜂
24
(𝑡) = −1256.637𝜂

23
,

𝛿
1
(x, 𝑡) = 𝑚

1
K
1
𝑝
1
(x) tanh

× (
[𝜂
11
𝜂
12
𝜂
13
𝜂
14
]P𝑇
1
K
1
𝑝
1
(x)

𝜆
1

)

=

[
[
[
[
[
[
[
[
[
[
[

[

9 tanh(
(
35.0877𝜂

11
−0.7958𝜂

12

+52.6316𝜂
13
−3.4218𝜂

14

) 𝑥
1

𝜆
1

)

0

9 tanh(
(
35.0877𝜂

11
−0.7958𝜂

12

+52.6316𝜂
13
−3.4218𝜂

14

) 𝑥
1

𝜆
1

)

0

]
]
]
]
]
]
]
]
]
]
]

]

,

𝛿
2
(x, 𝑡) = 𝑚

2
K
2
𝑝
2
(x) tanh

× (
[𝜂
21
𝜂
22
𝜂
23
𝜂
24
]P𝑇
2
K
2
𝑝
2
(x)

𝜆
2

)

=

[
[
[
[
[
[
[
[
[
[
[

[

9 tanh(
(
35.0877𝜂

21
−0.7958𝜂

22

+52.6316𝜂
23
−3.4218𝜂

24

) 𝑥
2

𝜆
2

)

0

9 tanh(
(
35.0877𝜂

21
−0.7958𝜂

22

+52.6316𝜂
23
−3.4218𝜂

24

) 𝑥
2

𝜆
2

)

0

]
]
]
]
]
]
]
]
]
]
]

]

.

(76)
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Figure 9: Exogenous disturbances of 𝑤
1
and 𝑤

2
and their estimates.

Choosing 𝑚
1
= 𝑚
2
= 1, 𝜉

1
= 𝜉
2
= 0.1, the controller is

designed as

V
󸀠

1
= 𝛼
1
(x) − 𝐷

1
(w)

+ 𝑚
1
𝑝
1
(x) tanh((

𝜕𝑉 (x) /𝜕𝑥) g
1
(x) 𝑝
1
(x)

𝜉
1

)

= − (𝑥
1
− 𝑥
1ref) + 0.02𝑥1 − 0.31415𝑥2

− 5.7 (𝜂
11
(𝑡) + 0.009𝑥

1
) − 3.8𝜂

13
(𝑡)

+ 𝑥
1
tanh(

(𝑥
1
− 𝑥
1ref) 𝑥1

𝜉
1

) − 380,

V
󸀠

2
= 𝛼
2
(x) − 𝐷

2
(w)

+ 𝑚
2
𝑝
2
(x) tanh((

𝜕𝑉 (𝑥) /𝜕𝑥) g
2
(x) 𝑝
2
(x)

𝜉
2

)

= − (𝑥
2
− 𝑥
2ref) + 0.02𝑥2 + 0.31415𝑥1

− 5.7 (𝜂
21
(𝑡) + 0.009𝑥

1
) − 3.8𝜂

23
(𝑡)

+ 𝑥
2
tanh(

(𝑥
2
− 𝑥
2ref) 𝑥2

𝜉
2

) .

(77)

Let the initial condition of the simulation be 𝑥(0) =
[0 0]

𝑇, 𝜂(0) = [0 0 0 0 0 0 0 0]𝑇, and 𝑤(0) =
[1 0 1 0]

𝑇. The reference values of the output current
are also chosen as 𝑥ref = [4, 0]

𝑇. Figures 7, 8, 9, and 10 show
the simulation results. Figure 7 display that the system states
are asymptotically convergence to the expected references
under the existence of exogenous disturbances and uncertain
modeling perturbations. Figures 9 and 10 also indicate that

the designed internal models can produce the exogenous
disturbances successfully.

6. Conclusions

In this paper, a nonlinear backstepping control with multi-
variable adaptive internalmodel principle for grid-connected
inverter is proposed to reject the harmonic disturbance pro-
duced by a class of exosystems under the existence of uncer-
tain items related with system states. Due to the nonlinearity
and multiple variables for the original system, a nonlinear
and multivariable internal model is constructed. In addition,
in order to compensate for the effect of bounded uncertain
items, an adaptive control law is designed to realize the real-
time estimation of the perturbation. Based on the backstep-
ping control law of the nominal system, a state feedback con-
troller combined with the multivariable internal model and
the adaptive control law is designed. A Lyapunov function
is constructed and theoretically proves that all the signals of
themultivariable closed-loop system are global boundedness.
The simulation results show that the proposed control algo-
rithm can guarantee the closed-loop system asymptotically
converge to expected references quickly and the designed
internal model can produce the exogenous disturbances
successfully.

Restricted by the actual problem of grid-connected
inverter control under distorted grid voltage, the proposed
algorithm in the research aims at rejection of harmonic
disturbances, and without considering the nonharmonic
disturbances. However, the nonharmonic disturbances may
induce adverse impacts, for example, noise and precision
reduction. The future research should extend the algorithm
to reject the nonharmonic disturbances.
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