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Fraud activities have contributed to heavy losses suffered by telecommunication companies. In this paper, we attempt to use
Gaussian mixed model, which is a probabilistic model normally used in speech recognition to identify fraud calls in the
telecommunication industry. We look at several issues encountered when calculating the maximum likelihood estimates of the
Gaussian mixed model using an ExpectationMaximization algorithm. Firstly, we look at a mechanism for the determination of the
initial number of Gaussian components and the choice of the initial values of the algorithm using the kernel method. We show via
simulation that the technique improves the performance of the algorithm. Secondly, we developed a procedure for determining the
order of theGaussianmixedmodel using the log-likelihood function and theAkaike information criteria. Finally, for illustration, we
apply the improved algorithm to real telecommunication data.Themodifiedmethodwill pave theway to introduce a comprehensive
method for detecting fraud calls in future work.

1. Introduction

Every year telecommunication companies register loses
amounting to millions of dollars due to fraud activities.
Examples of such activities given by [1, 2] include the use
of the customer’s line in Premium Rate Service without
their knowledge or autodialers with no intention to pay
for the outgoing calls; PABX for international calls; an
unregistered user with an assigned number accessing the
network (such activity is called stolen line unknown); and
international roaming manipulation. Vendors, seeing the
above as an opportunity not to bemissed, compete to provide
data mining applications that can detect the said activities
effectively using various methods such as OLAP, deviation
based outlier detection, and hiddenMarkovmodel.The focus
of this paper is Gaussian mixed model, henceforth, GMM.

A GMM is best known for providing a robust speaker
representation for the difficult task of speaker identification
on short-time speechspectra [3]. Its function is extended to
detect fraud activities on the number (as well as length) of

domestic and international calls made on a daily basis during
office, evening, and night hours. Reference [4] presented
three approaches to fraud detection in communication net-
works: neural networks with supervised learning, probability
density estimation methods, and Bayesian networks. Infor-
mation describing a subscriber’s behavior kept in toll tickets
was used. For example, supervised learning used summary
statistics over the whole observed time period (especially the
number of times fraud activities were recorded in the data).
The two latter approaches used a subscriber’s daily behavior.
To improve the fraud detection system, they recommended
the combination of the three presented methods together
with the incorporation of rule based systems.

The maximum likelihood estimation for a GMM is
generally difficult to obtain directly, but it is made easier
with the availability of the Expectation Maximization (EM)
algorithm which was first introduced by [5]. Since then,
there has been a significant increase in its use especially in
finding the maximum likelihood for probabilistic models.
For example, [6, 7] developed an online system for detecting
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fraud calls using a hierarchical switching generative model.
The model is trained by using the EM algorithm on an
incomplete data set and is further improved by using a
gradient-based discriminative method. In this paper, we
propose an improved EM algorithm for GMM in detecting
fraud calls in telecommunication.

This paper is organized as follows. Section 2 gives an
introduction to GMM. We then describe the EM algorithm
for a GMM, the kernel method, and eventually the proposed
modified EM algorithm for GMM in Section 3. In Section 4,
we study the performance of the modified algorithm in
estimating the parameters and the effect of overlapping areas
of Gaussian components in GMM. In the next section, we
propose graphical plots to identify the “best” number of
components in a GMM. For illustration, an application of the
improvement on a real data set is presented in Section 6.

2. Gaussian Mixed Model

Let x ∈ 𝑅𝑑 and 𝐾 be the number of components where each
component has its own prior probability 𝑎𝑖 and probability
density function with mean 𝜇

𝑖
and covariance Σ𝑖, 𝑖 =

1, . . . , 𝐾. A Gaussian mixed model is then given by

𝐾
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where ∑𝐾
𝑖=1

𝑎𝑖 = 1. We next define the likelihood function
and the log-likelihood function by 𝐿(X | 𝜃) = ∏

𝑛

𝑗=1
𝑓(x𝑗 |

𝜃) and 𝑙(X | 𝜃) = ∑
𝑛

𝑗=1
log(∑𝐾

𝑖=1
𝑎𝑖𝜙(x𝑗 | 𝜇

𝑖
, Σ𝑖)) where

X = (x𝑡
1
, . . . , x𝑡

𝑛
)
𝑡, respectively. The maximum likelihood

estimation (m.l.e) method aims at finding ̂𝜃 that maximizes
𝑙(X | 𝜃); see [8]. The expression log(∑𝐾

𝑖=1
𝑎𝑖𝜙(x𝑗 | 𝜇𝑖, Σ𝑖))

in 𝑙(X | 𝜃) is difficult to compute. We use the Expectation
Maximization (EM) algorithm to overcome this problem.

3. Expectation Maximization (EM) Algorithm

3.1. EM for Gaussian Mixed Model. In a general setup of
the EM algorithm given in [5], the authors considered
an unobservable variable 𝑋 in sample space X, which is
indirectly observed through observed variable 𝑌 in sample
space Y. Assuming that 𝑓(𝑥 | 𝜃) is the sampling density
depending on the parameter 𝜃 ∈ Ω, the corresponding family
of sampling densities for 𝑌, say 𝑔(𝑦 | 𝜃), can be derived from

𝑔 (𝑦 | 𝜃) = ∫

𝜒(𝑦)

𝑓 (𝑥 | 𝜃) 𝑑𝑥, (2)

where 𝜒(𝑦) is a subset of X under the mapping 𝑥 → 𝑦(𝑥)

from X to Y. The main objective of the EM algorithm is to
find the value of 𝜃 that maximizes (2). Consider the expected

value of log𝑓(𝑥 | 𝜃

) given 𝑦 and 𝜃, denoted by 𝑄(𝜃 | 𝜃),

where

𝑄(𝜃

| 𝜃) = 𝐸 (log𝑓 (𝑥 | 𝜃) | 𝑦, 𝜃) (3)

with the expectation assumed to exist for all pairs (𝜃, 𝜃) and
𝑓(𝑥 | 𝜃) > 0 for 𝜃 ∈ Ω. According to [5], the EM iteration
consists of two steps, namely, the E-step and the M-step. At
the pth iteration with the estimate of 𝜃 denoted by 𝜃(𝑝), the E-
step will give the value of𝑄(𝜃 | 𝜃(𝑝)) and theM-step will find
a new estimate of 𝜃, say 𝜃(𝑝+1), that maximizes 𝑄(𝜃 | 𝜃

(𝑝)
).

The steps are repeated until convergence is achieved.
For the case of a GMM, we define 𝑄(𝜃
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𝐸[log∏𝑛
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𝑎
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𝑦𝑖
) | X, 𝜃], where 𝑦𝑖 ∈ {1, 2, . . . , 𝐾}

and 𝑦𝑖 = 𝑘, if the 𝑖th sample is generated by the kth mixture
component. It is simplified, by applying, amongst others, the
Bayes formula 𝑓(𝜃 | 𝑥) ∝ 𝑓(𝑥 | 𝜃)𝑃(𝜃) where 𝑓(𝜃 | 𝑥) is the
posterior probability, 𝑓(𝑥 | 𝜃) is the likelihood function, and
𝑃(𝜃) is the prior probability to the following equations (see
[9, 10]):
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Hence, the EM iteration for a GMM is defined by the
following.

E-step: use (5).

M-step: use the formulas
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which are derived from the Lagrange multipliers,
𝜕𝑄/𝜕𝜇

𝑗
= 0 and 𝜕𝑄/𝜕Σ

−1

𝑗
= 0 (for details, see the

appendices).

The above steps (i.e., E-step and M-step) are repeated
until convergence is achieved.



Mathematical Problems in Engineering 3

3.2. The Kernel Method. The kernel method can be used to
find the probability density estimate for univariate data; see,
for example, [11]. Let 𝛼 < min(𝑥𝑖) − 3ℎ, 𝛽 > max(𝑥𝑖) + 3ℎ,
𝑀 = 2

𝑟; let ℎ be the bandwidth for some integer 𝑟, 𝛿 =

(𝛽 − 𝛼)/𝑀; and let 𝑡𝑘 = 𝛼 + 𝑘𝛿 be the 𝑘th grid point where
𝑘 = 0, 1, . . . ,𝑀 − 1. The density estimate at grid point 𝑡𝑘 is
represented by the following equation:

̂
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where 𝑖2 = −1. For 𝑥 ∈ [𝑡𝑘, 𝑡𝑘+1], the density estimate
̂
𝑓(𝑥) is defined by ̂

𝑓(𝑥) = (1/𝑛ℎ)∑
𝑛
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𝐾((𝑥 − 𝑥𝑖)/ℎ) where

𝐾(𝑡) = (1/√2𝜋) exp(−(1/2)𝑡2). To compute ̂
𝑓(𝑥) at a grid

of points, amethodwhichmakes use of the Fourier transform
is employed. Let ̃

𝑓(𝑠) be the Fourier transform of the
kernel density estimate ̂
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convolution of the data with the kernel.
We will use the following algorithm by [11] to discretize

the data to very fine grids and to find ̂
𝑓(𝑥) by convolving the

data with the kernel.

Step A. Discretize the data to find the weight sequence {𝜉𝑘}
with 𝑀 = 2

8. If 𝑥 ∈ [𝑡𝑘, 𝑡𝑘+1], it is split into a weight
(1/𝑛𝛿

2
)(𝑡𝑘+1 − 𝑥) at 𝑡𝑘 and a weight (1/𝑛𝛿2)(𝑥 − 𝑡𝑘) at 𝑡𝑘+1;

these weights are accumulated over all the data points 𝑥𝑖 to
give a sequence of (𝜉𝑘) weights summing up to 1/𝛿.

Step B. Find the sequence {𝑌𝑙} defined by 𝑌𝑙 = 𝑀
−1

∑
𝑀−1

𝑘=0
𝜉𝑘 exp((2𝜋𝑘𝑙/𝑀)𝑖), where −(𝑀/2) ≤ 𝑙 ≤ 𝑀/2. It can

be shown that when 𝛼 = 0, 𝑌𝑙 ≈ (2𝜋)
1/2
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−1
𝑢(𝑠𝑙), where
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Step C. Find the sequence {𝜁∗
𝑙
}, where 𝜁∗

𝑙
= exp(−(1/2)ℎ2𝑠2

𝑙
)

𝑌𝑙. Here, ℎ = 0.9𝐴𝑛
−1/5, where 𝐴 = min(sd, IQR/1.34), sd is

the standard deviation, and IQR is the interquartile range.The
IQR is chosen here by [11], who claimed that the bandwidth
is useful for a wide range of densities.

Step D. Let 𝜁𝑘 be the inverse discrete Fourier transform of 𝜁∗
𝑙
,

that is, 𝜁𝑘 = ∑
𝑀/2

𝑙=−𝑀/2
𝜁
∗

𝑙
exp(−(2𝜋𝑘𝑙/𝑀)𝑖).

It can be shown that when 𝛼 = 0, ̂𝑓(𝑡𝑘) ≈ 𝜁𝑘. We then
identify 𝑥𝑖 where its density estimate, denoted by ̂

𝑓(𝑥𝑖), is
greater than those of its nearest neighbors 𝑥𝑖+1 and 𝑥𝑖−1. In
other words, ̂

𝑓(𝑥𝑖) >
̂
𝑓(𝑥𝑖+1) and ̂

𝑓(𝑥𝑖) >
̂
𝑓(𝑥𝑖−1); refer

to Figure 1 where the vertical line that touches 𝑡𝑘 and ̂
𝑓(𝑡𝑘)

shows the location of the peak. Note that we may obtain
more than one maximum points, which means that the data
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Figure 1: Plot of ̂𝑓(𝑡𝑘) against 𝑡𝑘.

may consist of more than one Gaussian distribution. These
results forma very important component of the improvedEM
algorithm for GMM to be described next.

3.3. Improved EM Algorithm for GMM. A number of authors
highlighted the importance of identifying the right number,
say 𝑘, of components in a GMM and subsequently choosing
good initial values for the model parameters 𝜇𝑖 and 𝜎

2

𝑖
,

𝑖 = 1, 2, . . . 𝑘, in the EM algorithm. Reference [12] noted
the difficulty of using log-likelihood-ratio statistics to test
the number of components and subsequently suggested
using a nonparametric bootstrapping approach. Similarly,
[13] pointed out the same concerns and introduced an
algorithm called the stepwise-split-and-merge EM algorithm
to solve the said problem. In addition, [14] investigated the
possibility of using the minimization of the Kullback-Leiber
distance between fitted mixture model and the true density
as a method for estimating 𝑘 where the said distance was
estimated using cross validation. Reference [15] viewed the
mixture distribution as a contaminated Gaussian density
and proposed a recursive algorithm called the Gaussian
Mixture Density Decomposition algorithm for identifying
each Gaussian component in the mixture. Other works on
this topic can also be found, for example, in [16, 17].

In this paper, we propose an improved EM algorithm
for GMM which can perform both tasks: identifying the
initial number of components and providing automatic initial
values for the EMalgorithm.The full improved EMalgorithm
for a GMM is now presented.

Step 1. The kernel method as described in Section 3.2 is used
to determine the number, say 𝐾0, of components and also
the corresponding means 𝜇𝑖 of each component, where 𝑖 =
1, 2, . . . , 𝐾0.The initial estimates of the standard deviations𝜎𝑖𝑖
are set to unity while the prior weights 𝑎𝑖 are set to be 1/𝐾0.

Step 2. The EM algorithm for a GMM as described in
Section 3.1 is executed to give the final estimates of parame-
ters 𝜇𝑖,𝜎𝑖𝑖, and 𝑎𝑖, 𝑖 = 1, 2, . . . , 𝐾0.The log-likelihood function
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Table 1: List of true values of a’s, and 𝜇’s, 𝜎’s.

Sample name and size
(in bracket)

Prior
probability Mean Variance

Sample 1
Two components

𝑎1 = 0.4

𝑎2 = 0.6

𝜇1 = 0.0

𝜇2 = 2.0

𝜎
2

1
= 1.0

𝜎
2

2
= 0.25

Sample 2
Two components

𝑎1 = 0.85

𝑎2 = 0.15

𝜇1 = 0.0

𝜇2 = 2.0

𝜎
2

1
= 1.0

𝜎
2

2
= 0.25

Sample 3
Three components

𝑎1 = 0.33

𝑎2 = 0.33,
𝑎3 = 0.34

𝜇1 = 0.0

𝜇2 = −1.0,
𝜇3 = 4.0

𝜎
2

1
= 1.0

𝜎
2

2
= 0.25,

𝜎
2

3
= 4.0

and Akaike information criteria (AIC) are calculated using
the said parameters.

Step 3. Step 2 is repeated for other possible number 𝐾 of
components with 𝜇𝑖 = 0, 𝜎𝑖𝑖 = 1 for the other 𝐾 − 𝐾0

components, and 𝑎𝑖 = 1/𝐾.

Step 4. The log-likelihood function and AIC values for 𝐾 =

1, 2, . . . , 10 are plotted. The final number of components 𝐾𝑓
is chosen when adding extra components in the model does
not significantly increase or decrease the values of the log-
likelihood function and the AIC, respectively.

4. Simulation

We use simulation to investigate the performance of the
proposed modified algorithm.

4.1. Simulation Scheme. Simulation data were generated
using the Box and Muller Transformation [18] as defined by
(9) below:

𝑧𝑗 = 𝜇 + (−2𝜎
2 log 𝑢𝑗)

1/2

cos 2𝜋𝑢𝑗+1,

𝑧𝑗+1 = 𝜇 + (−2𝜎
2 log 𝑢𝑗)

1/2

sin 2𝜋𝑢𝑗+1,
(9)

where 𝑢𝑗, 𝑢𝑗+1 ∼ 𝑈(0, 1). For the case of two components,
we start by generating a random number 𝑢1 ∼ 𝑈(0, 1). If
0 < 𝑢1 < 𝑎1, we generate two random numbers 𝑢2 ∼ 𝑈(0, 1)
and𝑢3∼𝑈(0, 1) and calculate 𝑧2+𝑧3 using the first and second
equations of (9) with 𝜇∗ = 𝜇1/2 and 𝜎

∗
= 𝜎1/

√2. Otherwise,
we use 𝜇∗ = 𝜇2/2, and 𝜎

∗
= 𝜎2/

√2. The process continues
until the required sample size is obtained.The scheme is easily
extended to any number of components. For further details,
refer to [19].

4.2. Study of Performance Based on the Log-Likelihood Func-
tion. We first look at the performance of the standard
method, called Method 1, followed by that of the modified
method, called Method 2. For Method 1, in place of Step 1
of the modified method, we assign values zero and unity,
respectively, to the means and variances of all components.
We compare the performance by looking at the log-likelihood
function via simulation study.

Following [20], we consider two cases with two and
one case with three components with the true values of the

parameters given in Table 1. For each case, we generate 100
samples of size 1000 where the chosen sample size reflects
the large size of data sets found in the telecommunication
industry, the focus of our interest. We then apply Method
1 and Method 2 on the simulated data. For each case, for
better quality viewing, we plot only 50 values of the log-
likelihood function for both methods on the same plot, as
given in Figure 2. It can be seen that, for Samples 1 and 3, the
proposedMethod 2 clearly outperforms the standardMethod
1with the values of the log-likelihood function corresponding
to Method 2 being always larger than those of Method 1.
However, we see that some values overlap for Sample 2,
though the proposedMethod 2 still generally performs better.
In this case, the prior probabilities 𝑎𝑖 are distinctly different
from the chosen values of 𝑎𝑖 in Sample 1 while other true
values remain the same which leads to different percentages
of overlapping of the Gaussian components in the GMM.
Hence, we will investigate the performance of the improved
EM algorithm in estimating the parameters of the GMM
by taking into account the effect of different percentages of
overlapping between the components observed in the data.

4.3. The Effects of Different Overlapping Percentages on
Performance. The main objective here is to investigate the
performance of the modified EM algorithm for different
overlapping percentages of the components in the GMM. For
simplicity, we restrict our attention to two components so that
𝜃 = (𝜃1, . . . , 𝜃6) = (𝑎1, 𝑎2, 𝜇1, 𝜇2, 𝜎11, 𝜎22) are to be estimated.
Data is simulated using the simulation scheme described in
Section 4.1.

After performing Steps 1 and 2, we find𝐷𝑖 = 𝜃𝑖− ̂𝜃𝑖, where
𝜃𝑖 is the true value of the 𝑖th parameter and ̂𝜃𝑖 is the EM esti-
mate of the parameter, 𝑖 = 1, 2, . . . , 𝑛. The sample mean and
standard deviation of 𝐷𝑖 are computed using the formulas

𝐷 = (1/𝑛)∑
𝑛

𝑖=1
𝐷𝑖 and 𝑆𝐷 = √1/(𝑛 − 1)∑

𝑛

𝑖=1
(𝐷𝑖 − 𝐷)

2. The
estimates are considered good if𝐷 is close to zero, indicating
small biases observed in the simulation results, and 𝑆𝐷 is
also close to zero, indicating that the parameter estimates are
concentrated around their respective true values.

We determine the area of overlapping between the two
components for each model by using the misclassification
concept given in [21], the details of which are provided
in Appendix B. The formula to estimate the overlapping
areas depends on the mean and standard deviation of the
components. The effects of prior probabilities should not
affect the estimates greatly as their sum equals unity.

We consider three cases for different combinations of
parameter 𝜃 which give different percentages of overlapping
of the GMM components. The results are tabulated in Tables
2–4. Table 2 deals with case 1, where the true values of 𝜇1 = 0,
𝜇2 = 3.0, and √𝜎11 = √𝜎22 = 0.316 are fixed but the true
values of 𝑎1 and 𝑎2 are varied. In all cases, the percentage of
overlapping is 0% as the separation of the means is rather
large with small values of dispersion. We can see that the
values of the mean are close to zero with the small standard
errors less than unity for all parameters considered. On the
other hand, Table 3 gives the results for case 2 where 𝜇1 = 0,
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Table 2: Simulation results for the case 𝜇1 = 0, 𝜇2 = 3.0, and√𝜎21 = √𝜎22 = 0.316.

Prior prob. Bias,𝐷𝑖
𝑎1 𝑎2 𝜇1 𝜇2 𝜎

2

1
𝜎
2

2

𝑎1 𝑎2 𝐷 𝑆𝐷 𝐷 𝑆𝐷 𝐷 𝑆𝐷 𝐷 𝑆𝐷 𝐷 𝑆𝐷 𝐷 𝑆𝐷

0.1 0.9 −0.001 0.010 0.001 0.010 0.007 0.033 −0.003 0.013 0.000 0.014 0.001 0.004
0.2 0.8 0.002 0.013 −0.002 0.013 0.002 0.022 −0.003 0.011 0.000 0.011 0.002 0.007
0.3 0.7 −0.002 0.014 0.002 0.014 0.004 0.017 −0.002 0.010 0.002 0.009 0.001 0.005
0.4 0.6 0.003 0.020 −0.003 0.020 −0.004 0.019 −0.006 0.012 0.000 0.009 0.001 0.005
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Figure 2: Plots of values of log-likelihood function.

𝜇2 = 1.0, √𝜎22 = 0.707, and √𝜎11 = 0.447 are fixed but
𝑎1 and 𝑎2 are varied to give 25% of overlapping. The bias is
still considered small but generally larger than that for case 1.
In addition, the values are also more dispersed here. Finally
Table 4 shows the results of case 3 where 𝜇1 = 0, 𝜇2 = 0.25,

√𝜎11 = 0.577, and √𝜎22 = 1.414 are fixed with 45% of
overlapping. As expected, the results deteriorate when the
percentage of overlapping increases. We conclude that the
modified EM algorithm for GMM performs well when the
percentages of overlapping are small, but its performance is
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Table 3: Simulation results for the case 𝜇1 = 0, 𝜇2 = 1.0,√𝜎22 = 0.707, and√𝜎21 = 0.447.

Prior prob. Bias,𝐷𝑖
𝑎1 𝑎2 𝜇1 𝜇2 𝜎

2

1
𝜎
2

2

𝑎1 𝑎2 𝐷 𝑆𝐷 𝐷 𝑆𝐷 𝐷 𝑆𝐷 𝐷 𝑆𝐷 𝐷 𝑆𝐷 𝐷 𝑆𝐷

0.1 0.9 −0.112 0.148 0.112 0.148 −0.130 0.203 −0.067 0.139 −0.030 0.103 0.034 0.068
0.2 0.8 −0.014 0.073 0.014 0.073 −0.006 0.087 0.006 0.091 0.022 0.056 0.005 0.057
0.3 0.7 0.020 0.087 −0.020 0.087 0.031 0.069 0.023 0.104 0.044 0.048 −0.006 0.075
0.4 0.6 0.067 0.075 −0.067 0.075 −0.112 0.444 0.145 0.232 −0.002 0.085 −0.021 0.099

Table 4: Simulation results for the case 𝜇1 = 0, 𝜇2 = 0.25,√𝜎21 = 0.577, and√𝜎22 = 1.414.

Prior prob. Bias,𝐷𝑖
𝑎1 𝑎2 𝜇1 𝜇2 𝜎

2

1
𝜎
2

2

𝑎1 𝑎2 𝐷 𝑆𝐷 𝐷 𝑆𝐷 𝐷 𝑆𝐷 𝐷 𝑆𝐷 𝐷 𝑆𝐷 𝐷 𝑆𝐷

0.1 0.9 0.089 0.007 −0.089 0.007 −0.817 3.770 0.045 0.048 −0.341 0.823 0.305 0.095
0.2 0.8 0.157 0.108 −0.157 0.108 0.291 3.521 0.075 0.073 −0.169 0.374 0.413 0.256
0.3 0.7 0.237 0.100 −0.237 0.100 −0.205 2.924 0.105 0.121 −0.278 0.389 0.578 0.278
0.4 0.6 0.245 0.187 −0.245 0.187 0.602 2.520 0.092 0.108 −0.008 0.258 0.508 0.435

affected when the percentages increase. More comprehensive
simulation results can be obtained from the authors upon
request.

5. Determination of the Final Number of
Components in the GMM

In the last two steps of the modified algorithm, we intend
to confirm that the choice of the initial number 𝐾0 of
components in the GMM using kernel method is final. This
can be done by considering extra components in the model.
For that, as stated in Section 3.3, we repeat Step 2 for other
possible number 𝐾 of components, by setting 𝜇𝑖 = 0, 𝜎𝑖𝑖 = 1

for the other 𝐾 − 𝐾0 components, and 𝑎𝑖 = 1/𝐾. The final
number of components𝐾𝑓 is determined when adding extra
component neither increases the log-likelihood nor decreases
theAIC values significantly.The changes can easily be seen on
a line plot of the values.

6. Real Example: Phone Call Data

The call detail record, which was supplied by Telekom
Malaysia Berhad (henceforth, TM), consists of calls made by
customers that fell victim to fraud activities. Table 5 shows
the format of the call detail record for each TM’s customer.
We performed several steps on the original data in order to
have the data in a desired format, that is, group the real data
according to service number, find the country that matches
with the country code as well as dialed digits, and sort the real
data according to seize time.The column entitled “Seize time”
gives the time when the call was made; the fourth column
details the duration of the calls in the following format: hour
(hh), minute (mm), and second (ss); and the fifth column is
the result of converting the information in the fourth column
into day format.

We consider real data consisting of the converted dura-
tion of each call made by Customer A (referring to the
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Figure 3: Duration (in day format) is displayed in the histogram.

fifth column of Table 5), whose identity is not revealed to
ensure confidentiality, on March 31, 2011. Seventeen (17) calls
were made and the data are displayed in Figure 3. Step 1
of the improved EM algorithm for GMM identifies two
initial components. The plots of the log-likelihood function
and AIC in Figures 4(a) and 4(b) are the results from
performing Steps 2, 3, and 4 of the improved EM algorithm
for GMM,which reveal that the EM algorithm fails to achieve
convergence when the number of components equals to five
or above. It can also be seen that a GMM with 2 components
is identified as the “best” model, since the inclusion of more
components not only fails to increase the value of the log-
likelihood but also fails to decrease the values of the AIC.
The final EM estimates for the two-component GMM are
𝑎1 = 0.64, 𝑎2 = 0.36, 𝜇1 = −0.66, 𝜇2 = 1.17, �̂�11 = 0.07, and
�̂�22 = 0.35, and they represent the behavior of calls made by
Customer A onMarch 31, 2011. In a future paper, we will show
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Figure 4: Plots of log-likelihood and AIC values.

Table 5: An extract from Customer A’ call detail record.
Service number Dialed digits Seize time Duration (hhmmss) Converted duration
Xxx yyy 8:41:37 000339 2.53𝐸 − 03

Xxx yyy 9:27:03 000035 4.05𝐸 − 04

Xxx yyy 9:43:46 000048 5.56𝐸 − 04

Xxx yyy 9:50:21 000031 3.59𝐸 − 04

Xxx yyy 10:54:30 000138 1.13𝐸 − 03

how the above information produced from the improved EM
algorithm for GMM can be used in the process of detecting
fraud activities in the telecommunication industry.

7. Conclusion

In this paper, we proposed a modified EM algorithm which
can numerically identify the number of components of a
GMM and estimate the parameters of the model using the
kernel method. We showed via simulation that the perfor-
mance of the algorithm is generally good but, as expected,
is affected by increasing percentages of overlapping of the
Gaussian components. We then used the line plots of the log-
likelihood and AIC values to identify the final number of
GMM components.They could clearly be determined via the
concave-like shape of the AIC plot which indicates that the
AIC decreases to a minimum value and then increases as the
number of components increases. Finally, the modified EM
algorithm for GMM was tested on real telecommunication
data. The results serve as testimony to the effectiveness of
the improved EM algorithm for GMM and should be useful
when considering the problem of fraud calls faced by the
telecommunication companies.

Appendices

A. Derivation of the First, Second, and
Third Equations of (7)

(A.1) Using Lagrange multipliers defined by max/min
𝐹(𝑥, 𝑦, 𝑧) subject to Φ(𝑥, 𝑦, 𝑧) = 0, 𝐺(𝑥, 𝑦, 𝑧) =

𝐹(𝑥, 𝑦, 𝑧) + 𝜆Φ(𝑥, 𝑦, 𝑧), 𝜕𝐺/𝜕𝑥 = 0, 𝜕𝐺/𝜕𝑦 = 0,

𝜕𝐺/𝜕𝑧 = 0 [22] on max∑
𝑖
∑
𝑗
𝑝𝑖𝑗 log(𝑎𝑗) subject to

∑
𝑗
𝑎𝑗 = 1 (or (∑𝑗 𝑎𝑗−1) = 0), we get the first equation

of (7).
(A.2) From (𝜕/𝜕𝜇

𝑗
)((1/2)∑

𝑖
∑
𝑗
𝑝𝑖𝑗(x𝑖 − 𝜇𝑗)

𝑡
Σ
−1

𝑗
(x𝑖 − 𝜇𝑗)) =

0, we get the second equation of (7) by using the fol-
lowing matrix properties: 𝜕x𝑡Ay/𝜕x = Ay, 𝜕a𝑡x/𝜕x =
a.

(A.3) The first and second expressions of

𝜕

𝜕Σ
−1

𝑗

(

1

2

∑

𝑖

∑

𝑗

𝑝𝑖𝑗(x𝑖 − 𝜇𝑗)
𝑡
−1

∑

𝑗

(x𝑖 − 𝜇𝑗))

+

𝜕

𝜕Σ
−1

𝑗

(

1

2

∑

𝑖

∑

𝑗

𝑝𝑖𝑗 log












−1

∑

𝑗













) = 0

(A.1)

use the following matrix properties: 𝜕 tr(xy)/𝜕x = y+
y𝑡−Diag(y) and∑ x𝑡

𝑖
Ax𝑖 = tr(A∑ x𝑖x𝑡𝑖 ) to get the third

equation of (7) [8].

B. The Value of Intersections

For the case when 𝜇1 ̸= 𝜇2 and 𝜎1 ̸= 𝜎2, 𝑓1(𝑥) = (1/𝜎1
√2𝜋)

𝑒
−(1/2)((𝑥−𝜇1)/𝜎1)

2

and 𝑓2(𝑦) = 1/𝜎2
√2𝜋𝑒

−(1/2)((𝑦−𝜇2)/𝜎2)
2

are
obtained from 𝑥11 = (−𝑏 + √𝑏

2
− 4𝑎𝑐)/2𝑎, and 𝑥12 = (−𝑏 −

√𝑏
2
− 4𝑎𝑐)/2𝑎 where 𝑎 = (𝜎

2

2
− 𝜎
2

1
), 𝑏 = 2(𝜎

2

1
𝜇2 − 𝜎

2

2
𝜇1) and

𝑐 = (𝜎
2

2
𝜇
2

1
− 𝜎
2

1
𝜇
2

2
) − 2𝜎

2

1
𝜎
2

2
log(𝜎2/𝜎1).

Firstly, using the above formula as well as 𝑃((𝑥 − 𝜇)/𝜎) =
∫

(𝑥−𝜇)/𝜎

−∞
(1/√2𝜋)𝑒

−(1/2)𝑡
2

𝑑𝑡, we find the area between 𝑥11 and
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Figure 5: ∫𝑓
1
(𝑥)𝑑𝑥 and ∫𝑓

2
(𝑥)𝑑𝑥 are used to find the shaded areas.

𝑥12 (and convert it into percentage) for each component;
refer to Figure 5(a). Secondly, we find the minimum between
the areas of the two components. This value represents
the percentage of overlapping between two components
(which is an approximation). For the case when 𝜇1 ̸= 𝜇2,
𝜎1 = 𝜎2, 𝑓1(𝑥) = (1/𝜎1

√2𝜋)𝑒
−(1/2)((𝑥−𝜇1)/𝜎1)

2

, and 𝑓2(𝑦) =

(1/𝜎2
√2𝜋)𝑒

−(1/2)((𝑦−𝜇2)/𝜎2)
2

, let 𝑑 = (𝜇1 + 2𝜎1) − (𝜇2 − 2𝜎2).
The value of the intersection, say 𝑥1, is obtained from the
following formula (which is an approximation):

𝑥1 =

{
{
{

{
{
{

{

0, 𝑑 < 0,

(𝜇1 + 2𝜎1) , 𝑑 = 0,

(𝜇1 + 2𝜎1) −

𝑑

2

, 𝑑 > 0.

(B.1)

Taking similar steps, the area for the component on the
left hand side of Figure 5(b) is obtained from 1 − 𝑃((𝑥1 −

𝜇1)/𝜎1) = 1 − ∫

(𝑥1−𝜇1)/𝜎1

−∞
(1/√2𝜋)𝑒

−(1/2)𝑡
2

𝑑𝑡 and that of the
component on the right hand side of Figure 5(b) from𝑃((𝑥1−

𝜇2)/𝜎2) = ∫

(𝑥1−𝜇2)/𝜎2

−∞
(1/√2𝜋)𝑒

−(1/2)𝑡
2

𝑑𝑡. We convert them
into percentages before adding them up to represent the
percentage of overlapping between two components (which
is an approximation).
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