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We consider a two-degree-of-freedom model where the focus is on analyzing the vibrations of a fixed but flexible structure that is
struck repeatedly by a second object.The repetitive impacts due to the secondmass are driven by a flowing fluid.Morison’s equation
is used to model the effect of the fluid on the properties of the structure. The model is developed based on both linearized and
quadratic fluid drag forces, both of which are analyzed analytically and simulated numerically. Conservation of linear momentum
and the coefficient of restitution are used to characterize the nature of the impacts between the two masses. A resonance condition
of the model is analyzed with a Fourier transform.This model is proposed to explain the nature of ice-induced vibrations, without
the need for a model of the ice-failure mechanism. The predictions of the model are compared to ice-induced vibrations data that
are available in the open literature and found to be in good agreement.Therefore, the use of a repetitive impact model that does not
require modeling the ice-failure mechanism can be used to explain some of the observed behavior of ice-induced vibrations.

1. Introduction

In this paper, we consider the analysis of the vibrations of
a structure that is repeatedly struck by a second object. The
repetitive nature of the impacts of the second, free object
on the primary (assumed fixed but flexible) structure is due
to a flowing fluid that repeatedly drives the free object onto
the primary structure. The analysis of this model is based on
two equations from mechanics: Morison’s equation and the
conservation of momentum. Morison’s equation is adopted
to add the influence of fluid flow on the properties of the
structure that is assumed to be immersed in the fluid. The
conservation of momentum is combined with the coefficient
of restitution to derive the model in which the force on the
structure is considered to be a series of impacts due to the free
object being driven by the fluid flow. Numerical simulations
are conducted to obtain insight into the dynamics predicted
by the model. This model is proposed and investigated in
order to attempt to explain some of the observed nature of
ice-induced vibrations.

2. Motivation

Research analyzing ice mechanics has been conducted by
the National Research Council of Canada, the Canadian

Coastguard, U.S. Navy, various universities, the offshore
industry, and several oil companies [1]. In the early stages,
field and laboratory experiments were used to investigate
the mechanism for ice-induced vibrations (IIV). Blenkarn
[2] presented ice force data which he recorded in drilling
platforms of Cook Inlet from the winter of 1963 to 1969.
His paper became the basis of the negative damping or self-
excited model. Toyama et al. [3] suggested phase division of
an ice forcing function based on small scale tests and this
approach was also used by other researchers. Ranta and Räty
[4] also proposed a similar idea of phase division. A more
recent experimental publication was presented by Barker
et al. [5], in which extensive small scale tests of wind turbines
in Danish waters were investigated. The results provided
information on ice forces which vary with the shapes of
structures. Recent publications of Sodhi’s experiments [6–8]
also contributed to the understanding of the dependency of
ice forces on ice velocities.

Along with the experimental progress, theoretical models
of IIVs were also proposed by attempting to define the origin
of the vibrations. After Peyton’s early publication [9], Neill
[10] suggested that crushed ice tends to break into a certain
size. He proposed that the fracture size and velocity of the
accompanying ice sheet determine a characteristic failure
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frequency which in turn decides the forcing frequency [6].
This point of view defined the origin of IIVs as being via
a characteristic failure mechanism, a point of view which
was supported by Matlock et al. [11]. In contrast to the
characteristic failure mechanism, Blenkarn [2] explained
IIVs as a self-excited vibration due to negative damping.
According to this theory, IIVs originate from the interaction
between a flexible structure and decreasing ice crushing
forces with increasing stress rate. Määttänen, one of the big
contributors of the self-excited model, verified his model
through field and laboratory experiments [7, 12, 13]. Similarly,
Xu andWang [14] also proposed an ice force oscillator model
based on the self-excited model.

As research in the field progressed, different physical
processes to explain the origin of the ice force were proposed.
In particular, attention was turned to whether the ice was
considered to fail in crushing (compression) or in bending.
It is thought that compressive (crushing) failures occur as a
result of ice interacting with a narrow vertical (cylindrical)
structure [15]. Tsinker defines crushing as the complete
failure of granularization of the solid ice sheet into particles
of grains or crystal dimension; no cracking, flaking, or any
other failure mode occurs during pure crushing. Specific
models that correspond to ice in crushing failure are given
in [3, 16]. Even though these two articles model the same
physical phenomena, they are different in their modelling
approaches.

The concept of adding ice-breaking cones to cylindrical
structures was proposed in the late 1970s, changing the
effective shape of the structure from cylindrical to conical.
The ice force on a conical structure is smaller than the force
on a cylindrical structure of similar size [5, 8, 17, 18]. It is
thought that the main reason for the reduction in ice force
is that a well-designed cone can change the ice-failure mode
from crushing to bending. It is considered that the primary
failure mechanism for ice interacting with a conical structure
is that of bending failure. In this failure mode, the ice sheets
impacting on a cone fail by bending and typically the ice
breaks almost simultaneously in each event of ice failure.
With conical structures and bending ice failure, analytical
models are more likely to be characteristic failure frequency
models that were initially proposed in the 70s’, since the ice
force can effectively be modelled as only depending on the
properties of the ice. With conical structures, the local ice
forces were experimentally found to drop to almost zero
after each event of ice failure [19, 20] and are consequently
modelled analytically with a periodic function. For example,
the forcing function suggested by Qu et al. [21], is a simple
one-degree-of-freedom model corresponding to a periodic
ice force. This model is based on their own previous work
[19, 20] aswell as that ofHirayama andObara [18].Thismodel
attempts to represent an ice sheet failing through the bending
mode and simply models the forcing function as a saw-tooth
shaped, periodic force. From a modelling point of view, the
bending failure of ice is easier to model since the ice-forcing
function is periodic and is decoupled from the motion of the
structure. This type of model thus becomes a regular forced
vibration problem and once the form of the external ice force
is chosen, it is a relatively straightforward problem to solve.

Despite extensive studies, no theoretical model com-
pletely explains the IIV mechanism.The variety of modelling
approaches and dependence of the ice load on the structural
properties have caused modelling and design difficulties. For
instance, there is nomethod for choosing the proper dynamic
ice case for the design and optimization of an ice-resistant
jacket platform [22, 23]. In addition, most IIV models do
not consider the influence of fluid flow even though most
structures subjected to IIVs are offshore structures. Since
fluid flow is one of the main driving forces of IIVs, it can
contribute to the dynamics of ice forces as well as that of the
structure but it has not been considered in past research.

Since the first modeling approaches were introduced, no
major advances in IIV modeling have been proposed and
there is no general consensus on one correct approach. All
existing modeling approaches analyze the process of IIVs
from a microscopic point of view, with a heavy emphasis on
the mode in which the ice fails. For example, in [5] numerous
small scale tests were conducted to attempt to distinguish ice
failures into four different modes by the sizes of failed ice
pieces and the structural responses.Theprocedure of defining
ice-failure modes is thus neither clear nor generally agreed
upon.

In this paper, we propose that amacroscopic point of view
may give a different insight. For instance, a detailed analysis
of all possible deformations is not generally considered when
a collision of two particles is analyzed. In that case, the whole
collision process can be efficiently analyzed with a single
parameter, the coefficient of restitution.Themain idea of this
paper is that if the collision of the particles occurs repetitively,
the movement of the two particles may resemble those of
IIVs.

This simple concept provides the inspiration for the new
modeling approach proposed in this paper. The vibration
characteristics of IIVs are proposed as being the result of a
repetitive forcing function, with the moving fluid repeatedly
pushing the ice towards the structure. If all the microscopic
ice-failure processes can be condensed into a single macro-
scopic parameter, the coefficient of restitution, the remaining
vibration characteristics are similar to those of repetitive,
driven collisions of two particles. The ice is modeled as
one of the particles in the collision and the structure is the
other. IIVs can then be modeled and simulated by using
the conservation of momentum along with the coefficient of
restitution, which is a completely different perspective from
existing IIV models that take a microscopic view and focus
on the precise mechanism of ice failure.

3. Modeling of Flow-Driven Repeated Impacts
with the Conservation of Momentum

We consider a two degree-of-freedom system that consists of
two masses. Figure 1 is a schematic diagram of two masses
which collide repetitively. Mass 𝑀 represents the free mass
and mass𝑚 represents the flexible structure.

The force which drives the free mass needs to be modeled
so that collisions occur repetitively.The freemass is driven by
various external forces such as wind and thermal expansion,
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Figure 1: Mechanical model of the system.

but the main driving force is fluid flow. Depending on the
initial displacement and velocity of the flow, the velocity of
the free mass is determined just prior to the time of impact,
and the maximum velocity of the free mass is taken to be the
velocity of the flow.The free mass moves until it collides with
the structure. After the impact, the free mass either stops,
moves forward, or bounces back in the opposite direction
depending on the coefficient of restitution and conservation
of total system (free mass and structure) momentum. Since
the free mass and fluid flow now have a relative velocity
with respect to each other, the velocity of the free mass is
changed by the effect of fluid drag until the free mass reaches
the velocity of the flow and then moves again towards the
structure for another impact. The free mass moves towards
the structure and transfers its momentum to the structure
again when the relative displacement between the mass and
structure becomes 0 (i.e., when a collision occurs). In some
cases, the structure can transfermomentum to themasswhen
themomentumof the structure is larger then that of themass.
This whole process keeps repeating, but due to structural
damping and fluid drag, the momenta which are transferred
to each other gradually decrease.

Since mass 𝑀 is floating in the flow, it is free to move.
The flow, however, moves with its own velocity �̇�, which in
this case is always assumed to be positive (to the right in
the figure). The displacement of the free mass is given by the
variable 𝑧 and that of the structure is given by the variable
𝑥. The mass is driven by the drag force, 𝑓

𝐷
, which is present

when there is a relative velocity between the flow and the
mass. There are four conditions depending on the relative
velocities.

(i) When �̇� ≥ 0 and |�̇�| ≥ |�̇�|, 𝑓
𝐷
≤ 0.

(ii) When �̇� ≥ 0 and |�̇�| < |�̇�|, 𝑓
𝐷
> 0.

(iii) When �̇� < 0 and |�̇�| ≥ |�̇�|, 𝑓
𝐷
≥ 0.

(iv) When �̇� < 0 and |�̇�| < |�̇�|, 𝑓
𝐷
> 0.

Outside of a collision with the structure, no force is trans-
mitted to the free mass except the drag force due to the fluid.
The structure imparts a force to the freemass when a collision
between them occurs.The drag force from the fluid is defined
as

𝑓
𝐷
= −

1

2
𝜌𝐶
𝐷
𝐴(�̇� − �̇�)

2
, (1)

where 𝜌, 𝐶
𝐷
, and 𝐴 are the density of the fluid, drag

coefficient, and area related to the drag coefficient, respec-
tively [24]. The drag force which influences the system
of Figure 1 changes the forcing direction according to the
relative velocities, as explained above. The drag force for the
free mass of Figure 1, therefore, is expressed as

𝑓
𝐷
= −

1

2
𝜌𝐶
𝐷
𝐴 |�̇� − �̇�| (�̇� − �̇�) . (2)

The equation ofmotion of the freemass can be obtained from
(2) since no other forces are involved and is thus given as

𝑀�̈� = −
1

2
𝜌𝐶
𝐷
𝐴 |�̇� − �̇�| (�̇� − �̇�) . (3)

Since (3) is a nonlinear equation, it should be linearized
or simulated numerically. The linearized version of (3) is
developed by assuming a small relative velocity. Equation (3)
is linearized as

𝑀�̈� = −𝑏 (�̇� − �̇�) , (4)

where

𝑏 =
1

2
𝜌𝐶
𝐷
𝐴 |�̇� − �̇�| . (5)

|�̇� − �̇�| is assumed to be small and constant. The solution of
(4) consists of homogeneous and particular solutions and can
be obtained as

𝑧 (𝑡) = 𝑐
1
+ �̇�𝑡 + 𝑐

2
𝑒
−(𝑏/𝑀)𝑡

. (6)

The velocity of the free mass is then given by the derivative of
(6) as

�̇� (𝑡) = �̇� − 𝑐
2

𝑏

𝑀
𝑒
−(𝑏/𝑀)𝑡

. (7)

Equation (6) is a closed form solution of linearized equation
(3). The solution of nonlinear equation (3) will be developed
later since it requires a numerical approach.

The structure is modeled as a single-degree-of-freedom
system consisting of a mass, damper, and spring without
external forces (other than impacts with the free mass) as
in Figure 1. Since the source of structural vibrations is the
transfer of momenta during collisions, outside the time of
the collisions, the structure vibrates as a free simple harmonic
oscillator. The equation of structural motion is expressed as

𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 0. (8)

For an underdamped case, (8) has the following solution:

𝑥 (𝑡) = 𝑐
3
𝑒
−𝜁𝜔
𝑛
𝑡 cos𝜔

𝑑
𝑡 + 𝑐
4
𝑒
−𝜁𝜔
𝑛
𝑡 sin𝜔

𝑑
𝑡 (9)

with 𝜁, 𝜔
𝑑
, and 𝜔

𝑛
having the usual interpretation and

definition as damping coefficient, damped frequency, and
natural frequency. The velocity of the structure at time 𝑡 can
be calculated as

�̇� (𝑡) = − 𝜔
𝑑
𝑐
3
𝑒
−𝜁𝜔
𝑛
𝑡 sin𝜔

𝑑
𝑡 − 𝜁𝜔

𝑛
𝑐
3
𝑒
−𝜁𝜔
𝑛
𝑡 cos𝜔

𝑑
𝑡

+ 𝜔
𝑑
𝑐
4
𝑒
−𝜁𝜔
𝑛
𝑡 cos𝜔

𝑑
𝑡 − 𝜁𝜔

𝑛
𝑐
4
𝑒
−𝜁𝜔
𝑛
𝑡 sin𝜔

𝑑
𝑡.

(10)
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From (6), (7), (9), and (10), the displacements and veloci-
ties of the mass and structure at any given time can be found.
Substituting these expressions into the equations for the
conservation of total systemmomentum and the equation for
the coefficient of restitution, the displacements and velocities
immediately after impact can be evaluated. Each of the two
masses, however, has two unknowns after impact. Thus the
unknowns after impact are the displacement and velocity
of both masses. Since only two equations can be developed
from the conservation of momentum and the coefficient
of restitution equation, the number of unknowns exceeds
the number of equations by two. Salapaka et al. [25] also
investigated a similar modeling approach. They developed
the equation of a mass-spring system driven by a vibrating
table which impacts themass at a certain position repetitively.
Faced with the same problem of excessive unknowns, they
assumed that the displacements of each mass before and
after impact remain the same, thus reducing the number of
unknowns after impact to two [25].

The instants just before and just after impact will be
denoted by 𝑡

𝑘
and 𝑡
𝑓
. Since the impact occurs when the dis-

placements of the twomasses are the same, the displacements
at time 𝑡

𝑘
are given as

𝑥 (𝑡
𝑘
) = 𝑧 (𝑡

𝑘
) = 𝑥
𝑘
. (11)

The same notation is used for velocities. From the conserva-
tion of momentum, the total momentum of the two masses,
𝑚 and𝑀, is conserved so that

𝑚�̇�
𝑓
+𝑀�̇�

𝑓
= 𝑚�̇�
𝑘
+𝑀�̇�

𝑘
. (12)

The second relevant impact equation is obtained from the
coefficient of restitution [26] as

�̇�
𝑓
− �̇�
𝑓
= 𝑒 (�̇�

𝑘
− �̇�
𝑘
) . (13)

Equations (12) and (13) can be rewritten in matrix form as

[
𝑚 𝑀

1 −1
] [

�̇�
𝑓

�̇�
𝑓

] = [
𝑚�̇�
𝑘
+𝑀�̇�

𝑘

𝑒�̇�
𝑘
− 𝑒�̇�
𝑘

] (14)

or

[
�̇�
𝑓

�̇�
𝑓

] =
−1

𝑚 +𝑀
[
−1 −𝑀

−1 𝑚
][

𝑚�̇�
𝑘
+𝑀�̇�

𝑘

𝑒�̇�
𝑘
− 𝑒�̇�
𝑘

] . (15)

From (15), the velocities after impact, �̇�
𝑓
and �̇�
𝑓
, are

�̇�
𝑓
=

1

𝑚 +𝑀
(𝑚�̇�
𝑘
+𝑀�̇�

𝑘
+ 𝑒𝑀�̇�

𝑘
− 𝑒𝑀�̇�

𝑘
) , (16)

�̇�
𝑓
=

1

𝑚 +𝑀
(𝑚�̇�
𝑘
+𝑀�̇�

𝑘
− 𝑒𝑚�̇�

𝑘
+ 𝑒𝑚�̇�

𝑘
) . (17)

After impact, the displacements are assumed to be the
same as before impact. From (11)

𝑥 (𝑡
𝑓
) = 𝑥 (𝑡

𝑘
) = 𝑥
𝑘
,

𝑧 (𝑡
𝑓
) = 𝑧 (𝑡

𝑘
) = 𝑥
𝑘
.

(18)

Once the impact occurs, the momentum of the free mass is
transmitted to the structure or vice versa. 𝑐

1
, 𝑐
2
, 𝑐
3
, and 𝑐

4
of

(6), (7), (9), and (10) need to be repeatedly calculated after
each impact in order to obtain the new responses. Since the
characteristics of the system responses are reset after each
impact, the time right after the impact, 𝑡

𝑓
, is also reset to 0

to calculate 𝑐
1
, 𝑐
2
, 𝑐
3
, and 𝑐

4
. Substituting 𝑡

𝑓
= 0 into (6), and

(7),

𝑧 (𝑡
𝑓
) = 𝑧 (0) = 𝑐

1
+ 𝑐
2
,

�̇� (𝑡
𝑓
) = �̇� (0) = �̇� −

𝑏

𝑀
𝑐
2
.

(19)

The displacements before and after impact are assumed to be
the same, and the velocity of the free mass after the impact
is calculated from (17). Equation (19) is equal to 𝑥

𝑘
and �̇�

𝑓
,

respectively

𝑧 (0) = 𝑐
1
+ 𝑐
2
= 𝑥
𝑘
,

�̇� (0) = �̇� −
𝑏

𝑀
𝑐
2
= �̇�
𝑓
.

(20)

From (20), 𝑐
1
and 𝑐
2
are calculated as

𝑐
1
= 𝑥
𝑘
−
𝑀

𝑏
(�̇� − �̇�

𝑓
) ,

𝑐
2
=
𝑀

𝑏
(�̇� − �̇�

𝑓
) .

(21)

Applying the same assumption and (16) to (9) and (10),

𝑥 (𝑡
𝑓
) = 𝑥 (0) = 𝑐

3
= 𝑥
𝑘
,

�̇� (𝑡
𝑓
) = �̇� (0) = −𝜁𝜔

𝑛
𝑐
3
+ 𝜔
𝑑
𝑐
4
= �̇�
𝑓
.

(22)

It then follows that 𝑐
3
and 𝑐
4
are obtained from (22) as

𝑐
3
= 𝑥
𝑘
,

𝑐
4
=

1

𝜔
𝑑

(�̇�
𝑓
+ 𝜁𝜔
𝑛
𝑥
𝑘
) .

(23)

Substituting the calculated 𝑐
1
, 𝑐
2
, 𝑐
3
, and 𝑐

4
into (6) and (9),

the responses of the two masses after impact are expressed as

𝑧 (𝑡) = [𝑥
𝑘
−
𝑀

𝑏
(�̇� − �̇�

𝑓
)] + �̇�𝑡 +

𝑀

𝑏
(�̇� − �̇�

𝑓
) 𝑒
−(𝑏/𝑀)𝑡

,

𝑥 (𝑡) = 𝑥
𝑘
𝑒
−𝜁𝜔
𝑛
𝑡 cos𝜔

𝑑
𝑡 +

1

𝜔
𝑑

(�̇�
𝑓
+ 𝜁𝜔
𝑛
𝑥
𝑘
) 𝑒
−𝜁𝜔
𝑛
𝑡 sin𝜔

𝑑
𝑡.

(24)

All the equations are developed based on the linearized drag
force. Equation (24) holds until the next impact. After the
next impact 𝑐

1
, 𝑐
2
, 𝑐
3
, and 𝑐

4
should be recalculated according

to new values of 𝑥
𝑘
, �̇�
𝑘
, 𝑧
𝑘
, and �̇�

𝑘
obtained from the impact

equations.
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4. Numerical Simulations

4.1. Linearized Drag Force. For the numerical simulations,
there were two primary concerns: how to identify the instant
of an impact, and how to define the impact condition. Since
the basis of this repeated impact model is the exchange
of momenta through impacts, the time and condition of
the impact need to be defined as precisely as possible.
The solution chosen to address this was to use a time
stepping algorithm. In the beginning, 𝑐

1
, 𝑐
2
, 𝑐
3
, and 𝑐

4
are

calculated with the initial conditions. By substituting 𝑐
1
, 𝑐
2
,

𝑐
3
, and 𝑐

4
into (24), the responses of the free mass and

structure are obtained. Based on the calculated response, the
relative displacement between the free mass and structure is
compared to the impact condition at every time step. The
impact condition is theoretically given by

|𝑥 (𝑡) − 𝑧 (𝑡)| = 0. (25)

The actual numerical simulation, however, cannot achieve
enough precision to capture the exact impact condition.
Therefore, a tolerance for the impact condition is required
to allow for numerical round-off errors of the numerical
simulation.

The tolerance should be considered carefully because too
small tolerance has no meaning and a large tolerance makes
impacts occur more often than they should. In the algorithm,
the tolerance for the impact condition is set flexibly by the
following equation:

Δ =
1

10
min (|𝛿𝑥| , |𝛿𝑧|) , (26)

where Δ is the impact condition such that |𝑥(𝑡) − 𝑧(𝑡)| ≤ Δ

and 𝛿𝑥 = �̇�(𝑡)Δ𝑡, and 𝛿𝑧 = �̇�(𝑡)Δ𝑡. Furthermore, Δ𝑡 is the
time step.The flexible impact condition hasmerit over a fixed
one. When the responses of the two masses are very small,
the fixed impact condition cannot capture some impacts.The
flexible impact condition, however, is determined according
to the size of the responses; therefore the impact condition
is able to capture impacts whether the responses are slow or
fast.

After the comparison of the relative displacement and
the impact condition, if the relative displacement is larger
than the impact condition, the same values of 𝑐

1
, 𝑐
2
, 𝑐
3
, and

𝑐
4
will be forwarded to the next time step. Otherwise, the

relative displacement is equal to or less than the impact
condition and thus an impact takes place. Once the algorithm
catches the impact, 𝑐

1
, 𝑐
2
, 𝑐
3
, and 𝑐

4
are calculated based on

the values from the previous time step and new conditions
corresponding to the impact as explained in the previous
section. In addition, the algorithm is performed on two
different time scales: one is global time and the other is local
time. The global time is the overall time starting with the
beginning of the algorithm and the local time counts time
duration between impacts; thus after each impact the local
time is reset to 0 while the global time increases continuously.
With 0 local time, new responses of the system based on the
new 𝑐
1
, 𝑐
2
, 𝑐
3
, and 𝑐

4
begin and evolve until next impact. This

process keeps repeating until the system reaches the steady
state.

The steady-state condition is also implemented in the
algorithm to avoid infinitesimal impacts which occur at the
end of the responses. The steady-state condition involves
displacements, velocities, and accelerations. The algorithm
verifies at every step whether or not both responses of the ice
and structure satisfy the steady-state conditions. The steady-
state conditions are given as

(i) max(|𝑧(𝑡)|, |𝑥(𝑡)|) < 0.0001m,
(ii) max(|�̇�(𝑡)|, |�̇�(𝑡)|) < 0.0001m/s,
(iii) max(|�̈�(𝑡)|, |�̈�(𝑡)|) < 0.0001m/s2.

The value of 0.0001 was chosen through trial and error for the
steady-state condition. When the system reaches the steady
state, the structure is constantly forced by the free mass, and
so the equation of motion in the steady state is expressed as

𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = −𝑏 (�̇� − �̇�) . (27)

Since the system is in the steady state,

𝑘𝑥 = 𝑏�̇�. (28)

In the steady state condition, the twomasses collide andmove
together; therefore the responses are given by

𝑥 (𝑡) = 𝑧 (𝑡) =
𝑏

𝑘
�̇�, (29)

which is a constant (steady state) displacement since �̇� is
the (assumed) constant velocity of the flow. The algorithm
replaces (24) with (28) when the steady-state condition is
satisfied.

Figure 2 is plotted using the same structural properties
in Table 1 which are obtained from [27]. The two free mass
properties, mass, 𝑀, and area, 𝐴, are arbitrarily chosen as
1600 kg which is the same as the structural mass and 1m2,
respectively. The reason for this is as follows. If the free mass
is much larger than the structural mass, then its displacement
and velocity would be hardly affected by the collisionwith the
structure and in fact repeated impacts would not occur. On
the other hand, if the free mass is much smaller than that of
the structure then the structure itself would hardly be affected
by the impacts. Thus the most meaningful dynamics will
occur when the two masses are relatively the same order of
magnitude. For simplicity, we begin our analysis by choosing
them to be the same, and later in the paper we investigate the
effect of different choices of for the free mass.

The linearization factor, |�̇� − �̇�|, is set as 0.1m/s because
it is the maximum difference between the free mass velocity
and flow velocity which is set as 0.1m/s. Therefore, the value
of 𝑏 is

𝑏 =
1

2
𝜌𝐶
𝐷
𝐴 |�̇� − �̇�| = 49.95 kg/s , (30)

where 𝜌 is the density of water and𝐶
𝐷
, the drag coefficient, is

1.The coefficient of restitution, another important parameter,
is assumed to be 1 which implies no energy dissipation
through impact. In addition, the initial displacement and
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Figure 2: Responses of the ice and structure with a linearized drag force.

Table 1: Parameters for simulations.

Parameter Model structure
ℎ (mm) 41
𝐷 (mm) 76
𝑚 (kg) 1600
𝑐 (kNs/m) 0.2
𝑘 (MN/m) 1
ℓ (m) 44.93
𝜎
𝑐
(MPa) 1.4

𝑥max (mm) 20

velocity of the free mass are −0.01m and 0.01m/s , respec-
tively, and 0m and 0m/s for the structure. Figure 2 shows the
response based on these parameters.

Since the motivation for this model was to attempt to
explain IIV without analyzing specific ice-failure mecha-
nisms, we attempt to compare our results to some measured
IIV data. There is very little IIV data in the open literature,
especially for displacement measurements. Only laboratory
measurements are available from [28, 29] for displacement
measurements. Since the structural data for their tests are
not presented, it is inadequate to compare their experimental
data to Figure 2 directly, but general vibration characteristics
can be compared. Structural vibrations of IIVs become
quasi-static vibrations at low ice velocities and steady-state
vibrations at medium ice velocities [30] although there is
no quantitative definition of low and high ice velocities. A
quasi-static vibration is defined by Kärnä [30] as a transient
response which is followed by its maximum response at
the peak ice force and is not amplified by the dynamics
of the structure. Figure 3(b) represents typical quasi-static
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Figure 3: Measured structural responses from the literature.

vibrations at ice velocity 7.6mm/s and Figure 3(c) shows the
characteristic of a steady-state vibration at free mass velocity
39.5mm/s. Figure 3(a), however, presents the displacement
response although it is plotted at a lower free mass velocity
than Figure 3(b). This demonstrates that the vibration char-
acteristics of IIVs are not determined by the velocity of the
ice alone but by involving all parameters.

As shown in Figure 3(a), actual IIVs display multiple
vibration characteristics from quasi-static to steady-state
vibrations even at the same ice velocity, contrary to the
characteristic failure frequency model which predicts one
type of characteristic vibration at one ice velocity. In this
respect, the proposed impact model possesses an advantage
over the characteristic failure frequency model. In an impact
model, the velocity of the ice varies from time to time, which
is more realistic because part of the ice (free mass) contacting
the structure is deformed as the vibrations proceed. Figure 2
clearly shows multiple vibration characteristics. Figure 2(b)
displays quasi-static vibrations similar to Figure 3(b). From
380 to 400 seconds, the vibrations become stable and steady
state shown in Figure 2(c) which is close to the vibration
characteristic of Figure 3(c). The vibration characteristics of
the impact model, however, cannot be clearly distinguished
for the entire duration; rather they show a mixture of the
characteristics. Therefore, it is reasonable to conclude that
the vibration characteristics of the impact IIV model are
governed by the momenta of the ice and structure at the time
of impact.

The weakness of modelling IIVs as repeated impacts as
proposed in this paper model is how to model the relevant
properties of the ice. The definitions of the ice mass and area
in the impact IIVmodel imply that themass and area directly
affect the impact or interactionwith the structure. Among the
two ice properties, the influence of the ice area 𝐴 is directly
related to the velocity of the flowbecause of the relationwith 𝑏
given by 𝑏 = (1/2)𝜌𝐶

𝐷
𝐴|�̇�− �̇�|. It is inappropriate to simulate

the linearized model with large flow velocities since then the
linearized model would not be applicable.

The mass of the free mass plays an important role in this
model. In order to understand its role, it will be investigated
by conducting several numerical simulations. Figures 4, 5,
and 6 are plotted with the same parameters of Figure 2 except
with differentmasses which are proportional to the structural
mass, 50 and 150 percent of 1600 kg, so that the structural
mass can be used as a benchmark. Including Figure 2, which
is plotted with the free mass of 100 percent of the structural
mass, the responses with three different free masses are
compared. At the beginning of the responses, the heavier
mass transfers higher momentum; thus impacts happen less
frequently but with largermagnitudes. On the other hand, the
lighter mass allows the structure to approach the steady-state
vibration in relatively short time. In Figure 6 the magnitudes
of the structural responses are not too different but the
heavier mass induces more quasi-static vibrations for longer
time. Therefore, it can be concluded that the free mass has
a greater effect on determining the vibration characteristics
than on the magnitude of the structural response.

Another important factor in this model is the coefficient
of restitution. The coefficient of restitution also requires
experimental research to be defined quantitatively. The
conducted numerical simulations can only show how the
coefficient of restitution influences the responses of the
system. Figure 2 is plotted with the coefficient of restitution
𝑒 = 1 which is an unrealistic case. Figures 7, 8, and 9
are simulated based on the same parameters of Figure 2 but
with different values of 𝑒. It becomes obvious that the factor
that most influences the magnitudes of the vibrations is the
coefficient of restitution rather than the velocities of the free
mass. The system with 𝑒 = 0.1 approaches the steady state
after the first impact. The system with 𝑒 = 0.5 not only
approaches the steady-state vibration faster but also shows
lower structural magnitudes than the system with 𝑒 = 1,
Figure 2. Figure 8 indicates that the system with 𝑒 = 0.5

loses the majority of its momentum after approximately
54 seconds. This suggests that vibrations due to repeated
impacts can be controlled by manipulating the coefficient
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Figure 4: Responses with different ice masses 1.
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Figure 5: Responses with different ice masses 2.

of restitution via the properties of the contacting area. For
instance, the magnitudes of vibrations can be significantly
reduced by increasing the surface roughness of the structure.

4.2. Quadratic Drag Force. In the previous section, themodel
was developed based on the linearized drag force which
assumes small relative velocity between the velocities of the
free mass and structure. The linearized model, however,
is definitely vulnerable to two factors, namely, when the
interval between impacts exceeds several seconds, and when
the velocity of the flow is no longer small. Figure 10 clearly
shows the error between the models based on the linearized

drag and quadratic drag as time passes. The displacement of
linearized equations (3), and (6) is compared with numer-
ically solved equation (3) by using the built-in ordinary
differential equation solver ofMathCad.The difference grows
as time goes by, but at high flow velocity the difference
decreases in Figure 10(b). This is because of the linearization
factor, |�̇� − �̇�|, which calibrates the difference between the
linear and quadratic models. The solution, however, to the
quadratic drag force needs to be developed for a more precise
simulation.

A numerical solution is needed to solve (3) but instead
of using the built-in ordinary differential equation solver
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Figure 7: Responses with different coefficients of restitution 1.

of MathCad, a simple numerical solution is developed for a
faster algorithm. From (3),

𝑀�̈� = −
1

2
𝜌𝐶
𝐷
𝐴 (�̇� − �̇�) |�̇� − �̇�| = −𝐵 (�̇� − �̇�) |�̇� − �̇�| (31)

or

�̈� =
𝑑�̇�

𝑑𝑡
= −

𝐵

𝑀
(�̇� − �̇�) |�̇� − �̇�| , (32)

where

𝐵 =
1

2
𝜌𝐶
𝐷
𝐴. (33)

Using 𝑖 as a counter for the a number of time steps, the
displacement of (34) can be expressed as

𝑧
𝑖
= 𝑧
𝑖−1

+
𝑑𝑧
𝑖−1

𝑑𝑡
Δ𝑡 = 𝑧

𝑖−1
+ �̇�
𝑖−1
Δ𝑡 (34)

in which Δ𝑡 is previously defined as a time step. ż is given by

�̇�
𝑖
= �̇�
𝑖−1

+
𝑑�̇�
𝑖−1

𝑑𝑡
Δ𝑡 = �̇�

𝑖−1
+ �̈�
𝑖−1
Δ𝑡. (35)

By substituting (32) into (35),

�̇�
𝑖
= �̇�
𝑖−1

+ [−
𝐵

𝑀
(�̇�
𝑖−1

− �̇�)
�̇�𝑖−1 − �̇�

] Δ𝑡.
(36)
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Given the initial displacement and velocity of the free mass,
the displacement can be numerically solved by using (34)
and (36) as simultaneous equations.The simulation results of
(34) and (36) are also plotted in Figure 10. At the high flow
velocity, Figure 10(b), (34), and (36) predict the displacement
close enough to the one evaluated with the built-in ordinary
differential equation solver. In the algorithm of the numerical
simulation, (34) and (36) replace (6) and (7).

Using the same parameters as those used in Figure 2
but with a different flow velocity, the responses of the
model with the quadratic drag force are compared with
the one with the linearized drag force in Figure 11. At high

flow velocities, over 1m/s, the quadratic drag force model
approaches steady-state vibration more quickly than the
linearized drag force model because at high flow velocity the
quadratic drag induces more damping while it transfers more
forces than the linearized drag. In Figure 12 the quadratic
drag force model exhibits the characteristic of the steady-
state vibration while the linearized drag force model still
displays quasi-static vibration. As velocities increase, which
corresponds to flowvelocities, increasing vibrations approach
the steady state. The linearized drag force model, however,
does not show a steady-state vibration until 400 seconds
in Figure 12. The linearization factor allows the linearized
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Figure 11: Responses with the quadratic and linear drags 1.

drag force model to follow the quadratic drag force model
in the beginning, but when the system is in a series of low
velocity impacts, the linearization factor causes a difference.
The linearized drag force model, therefore, is inappropriate
to simulate the repeated impact model at high flow veloci-
ties.

Since the free mass area, 𝐴, plays a similar role as the
flow velocity in the model, the model with wide area is also
simulated with the quadratic drag force. The influence of the
drag force on the response of the free mass increases as the
size of the area increases because the area is related to the drag
force by (1), 𝑓

𝐷
= −(1/2)𝜌𝐶

𝐷
𝐴(�̇� − �̇�)

2. Figure 13 is plotted
with the area 𝐴 = 2m2 the flow velocity �̇� = 0.1m/s and

the rest of parameters are the same as the parameters used
in Figure 11. The flow velocity of Figure 13 is identical to that
of Figure 2 but the responses quickly approach the steady-
state vibrations as if they are driven by high flow velocity.
Figure 13(b) also shows a similar vibration characteristic to
Figure 12(a) because both flow velocity and area influence the
drag force in the impact model. Therefore, the area can be
another controlling factor of the vibrations. Since the area
is related to the size of the contacting area of the structure,
reducing the contacting area has a similar effect to that of
reducing the flow velocity.

In the previous section, the roles of the free mass and
the coefficient of restitution have been defined by changing
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Figure 13: Responses with 𝐴 = 2m2.

relevant parameters. To verify if those definitions still hold
with the quadratic drag force, the impact model with the
quadratic drag is plotted with change in free mass and the
coefficient of restitution. Figures 14, 15, and 16 are plotted
on the same parameters used in Figures 2, 4(a), and 4(b),
respectively, except that they are based on the quadratic drag
force. The responses of Figures 14, 15, and 16 prove that
the defined role of the free mass holds with the quadratic
drag force. The responses of the system with heavier free
mass, Figure 16(b), is still unstable while the system with the
free mass 𝑀 = 800 kg, Figure 15(b), is in the steady-state
vibration. The quadratic drag force, however, induces more

drag force; thus the system responses tend to be stabilized
faster than those with the linearized drag forces.

Figures 17 and 18 are plotted on the same conditions with
Figures 7(a) and 7(b), respectively, but with the quadratic
drag force.The coefficient of restitution also governs themag-
nitudes of responses in the impact model with the quadratic
drag force; however, the system with the quadratic drag force
is more sensitive to change in the coefficient of restitution
than the one with the linearized drag force. The system with
𝑒 = 0.5, Figure 18(b), loses the momentum at approximately
43 seconds under the influence of the quadratic drag force
while the system with the linearized drag force and 𝑒 = 0.5,
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Figure 15: Responses with𝑀 = 800.

Figure 8(b), loses the majority of its momentum at approxi-
mately 54 seconds. This is again because the quadratic drag
force dissipates energy more quickly than the linearized drag
force.However, it is demonstrated in Figures 17 and 18 that the
coefficient of restitution plays the same role in both quadratic
and linearized drag forces.

5. Resonance Conditions

One of the main objectives of the analysis aims to find a
resonance condition (which is often referred to as lock-in

when investigating IIVs). The structural vibration frequency
increases as the free mass velocity increases but when lock-
in occurs, the structural frequency remains at the natural
frequency even with increasing free mass velocity [6]. In the
impact model, however, the velocities of the free mass cannot
be the primary lock-in condition because the velocities of the
free mass are not fixed.

One possible interpretation of modelling IIVs with the
impact model is that it considers the forces to be a series
of discrete impulses as shown in Figure 19(a) while other
IIV models consider them as continuous periodic forces.
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Figure 17: Responses with 𝑒 = 0.1.

In fact, the impact IIV model proposes a way to calculate the
strength of each impulse and the times between impulses and
these depend on the momenta of the ice and structure as
well as the coefficient of restitution for the collision. Under
certain conditions, it is possible for the discrete impulses
of Figure 19(a) to approach the regular periodic series of
impulses of Figure 19(b) which is suspected to cause the lock-
in condition.

This view of the impact IIV model can be analyzed by
using a Fourier transform [31]. There are several definitions

of the Fourier transform (FT) that may be used and in this
paper; the chosen version of the FT is given by

𝐹 (𝜔) = ∫

∞

−∞

𝑓 (𝑡) 𝑒
−𝑖𝜔𝑡

𝑑𝑡. (37)

The corresponding inverse Fourier transform is then given by

𝑓 (𝑡) =
1

2𝜋
∫

∞

−∞

𝐹 (𝜔) 𝑒
𝑖𝜔𝑡
𝑑𝜔. (38)
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Figure 18: Responses with 𝑒 = 0.5.
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Figure 19: Ice forces as a series of impulses.

The discrete ice forces of Figure 19(a) can be expressed as
a series of impulses as

𝑓 (𝑡) =

∞

∑

𝑗=1

𝑓
𝑗
𝛿
𝐷
(𝑡 − 𝑡
𝑗
) , (39)

where 𝛿
𝐷
indicates the Dirac delta function and 𝑓

𝑗
indicates

the strength of each impact. If the sizes and intervals of
the impulses are uniform as shown in Figure 19(b), (39) is
rewritten as

𝑓 (𝑡) =

∞

∑

𝑝=1

𝑓𝛿
𝐷
(𝑡 − 𝑝𝑇) . (40)

In reality, the repeated impacts will not all have the same
strength or occur at a fixed interval; however it is sufficient for
the situation of Figure 19(a) to approach that of Figure 19(b)
for this analysis to be relevant.

Equation (40) is often called a comb function.TheFourier
transform of the comb function is given [32] by

𝐹 (𝜔) = 2𝜋

∞

∑

𝑁=1

𝑓𝛿
𝐷
(𝜔 −

2𝜋𝑁

𝑇
) . (41)

For a typical single-degree of freedom forced vibrations
problem,

�̈� + 2𝜁𝜔
𝑛
�̇� + 𝜔
2

𝑛
𝑥 =

∞

∑

𝑝=1

𝑓𝛿
𝐷
(𝑡 − 𝑝𝑇) . (42)

Taking Fourier transforms of both sides and rearranging give

𝑋 (𝜔) = 2𝜋
∑
∞

𝑁=1
𝑓𝛿
𝐷 (𝜔 − 2𝜋𝑁/𝑇)

(−𝜔2 + 2𝜁𝜔
𝑛
𝜔𝑖 + 𝜔2

𝑛
)

. (43)

Taking the inverse Fourier transforms to find the structure
response in time gives

𝑥 (𝑡) = 𝑓

∞

∑

𝑁=1

𝑒
𝑖(2𝜋𝑁/𝑇)𝑡

(−4𝜋2𝑁2/𝑇2 + 𝑖𝜁𝜔
𝑛 (4𝜋𝑁/𝑇) + 𝜔2

𝑛
)
. (44)

Equation (44) experiences a resonance when the denom-
inator of any of the terms in the sum goes to zero, that is when
𝜔
𝑛
= 2𝜋𝑁/𝑇, where 𝑁 is an integer larger than 0. This says

that the structure will experience a resonance when the natu-
ral frequency is an integral multiple of the forcing frequency,
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as would be expected. In the previous numerical simulations,
this condition has been observed in several cases, Figures
12(a) and 13(b). For instance, the structural frequency of
Figure 13(b) is 2𝜋/𝑇 = 2𝜋/0.5 = 12.57 rad/s. The natural
frequency of the structure is √𝑘/𝑚 = √1000000/1600 =

25 rad/s. With𝑁 = 2 the structural frequency is close to the
natural frequency. The result is what is seen in Figure 13(b).
The two masses vibrate at the same frequency of 2𝜋/𝑇 which
is half of the natural frequency. The structural frequency
remains at that level, which is lock-in, and so does the
frequency of the free mass response.

Thus, the impact model successfully predicts the exis-
tence of a lock-in condition and also predicts that it can occur
when the frequency of the structure and freemass impacts are
synchronized together at a multiple of the natural frequency
of the structure. The question of the precise conditions
necessary for the frequency of the impacts to occur at a
multiple of the natural frequency still remains open.

6. Summary and Conclusions

This paper analyzes the vibrations caused by repeated impacts
of a flow-driven freemass onto a second structure. Conserva-
tion of linearmomentum and the coefficient of restitution are
used to characterize the nature of the impacts between the
two masses. This model is referred to as the impact model.
Theproperties of the impactmodel were investigated through
numerical simulations. The mass of the free mass is one of
the factors determining the vibration characteristics since
it is related to the momentum of each impact. This model
is proposed to explain the nature of ice-induced vibrations
without requiring a microscopic model of the mechanism of
ice failure. The magnitudes of the vibrations are governed
in part by the coefficient of restitution, which when used
to explain IIVs, encapsulates all ice properties mentioned
in other IIV models. In addition to the ice properties, the
coefficient of restitution also governs the interaction between
the structure and the free mass. The free mass is used to
represent the ice when modelling IIVs. The last property
of the impact model is that of the free mass area which
influences the dissipation of the system momenta through
the drag force. A free mass with a small area shows the same
behavior of a mass driven by lower flow velocity.

Therefore, through the impact model, two factors which
control the characteristics of IIVs have been proposed, the
ice area and the coefficient of restitution. By changing the
size of the contact area between the ice and structure, the
driving force of the ice can be reduced as if the ice were
driven by lower flow velocities. Furthermore, by changing
factors related to the coefficient of restitution such as the
surface roughness or shape of the structure, IIVs can be
reduced to avoid the lock-in conditionwhich occurswhen the
frequencies of the structure and ice impacts are synchronized
at a multiple of the natural frequency of the structure. In
addition to the inclusion of the effect of flow, the new
approach to ice forces through the impact model permits
the answering of questions which originate from the weak
theoretical points of existing IIV models.

Particular strengths of the model are that it qualitatively
matches observed results and in particular that a mechanism
of ice failure is not required in order to perform simulations
and predictions. It also proposes a simple mechanism to
explain the potentially destructive resonance lock-in condi-
tions.
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