
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 762861, 10 pages
http://dx.doi.org/10.1155/2013/762861

Research Article
Impulsive Consensus for Leader-Following Multiagent
Systems with Fixed and Switching Topology

Zhi-Wei Liu,1,2 Zhi-Hong Guan,2 and Hong Zhou1

1 Department of Automation, Wuhan University, Wuhan 430072, China
2 College of Automation, Huazhong University of Science and Technology, Wuhan 430074, China

Correspondence should be addressed to Zhi-Hong Guan; zhguan@mail.hust.edu.cn

Received 29 March 2013; Accepted 2 June 2013

Academic Editor: Chuandong Li

Copyright © 2013 Zhi-Wei Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper studied the consensus problem of the leader-following multiagent system. It is assumed that the state information of the
leader is only available to a subset of followers, while the communication among agents occurs at sampling instant. To achieve leader-
following consensus, a class of distributed impulsive control based on sampling information is proposed. By using the stability
theory of impulsive systems, algebraic graph theory, and stochastic matrices theory, a necessary and sufficient condition for fixed
topology and sufficient condition for switching topology are obtained to guarantee the leader-following consensus of themultiagent
system. It is found that leader-following consensus is critically dependent on the sampling period, control gains, and interaction
graph. Finally, two numerical examples are given to illustrate the effectiveness of the proposed approach and the correctness of
theoretical analysis.

1. Introduction

During the past several decades, the consensus problem of
the multiagent system has drawn a great deal of attentions
because of its broad applications in many domains, including
distributed coordination [1], synchronization of dynamical
networks [2], distributed filtering [3], and load balancing [4].
The basic idea of consensus is to design a distributed control
such that the team of agents can achieve a state agreement
only by locally available information without central control
stations. Consensus problem has been addressed in various
situations, such as time delay [5], switching topology [6],
asynchronous algorithms [4, 7], nonlinear algorithms [8, 9],
quantized data [4, 10], noisy communication channel [11], and
second-order model [12, 13].

Inspired by some biological systems and engineering
applications, the leader-following consensus problem has
received a lot of interest. The leader is a special agent whose
motion is independent of all other agents and thus is fol-
lowed by all other agents. It has been widely used in many
applications [14, 15]. For the first-order multiagent systems,
Jadbabaie et al. [16] considered a leader-following consensus
problem and discussed the convergence properties of the

leader-follower systems. Cao and Ren [17] studied a leader-
following consensus problem with reduced interaction for
both first- and second-order multiagent systems. Su et al. [18]
studied a flocking algorithm with a virtual leader. Zhu and
Cheng [19] considered leader-following consensus of second-
order agents with multiple time-varying delays. Meng et al.
[20] studied the leaderless and leader-following consensus
algorithms with communication and input delays under a
directed network by the Lyapunov theorems and the Nyquist
stability criterion.

In recent years, owing to the development of digital sen-
sors and the constraints of transmission bandwidth of net-
works, many control systems can be modeled by continuous-
time systems together with discrete sampling. Therefore, it is
significant to design the distributed control for continuous-
time multiagent systems based on sampled information.
There are a few reports [20–25] dealing with this problem,
where the control inputs regulate the velocity of each agent
continuously over the sampling period.

On the other hand, impulsive dynamical systems exhibit
continuous evolutions typically described by ordinary differ-
ential equations and instantaneous state jumps or impulses.
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It is also well known that the impulsive control is more
efficient than one of continuous control in many situations.
The examples include ecosystems management [26], orbital
transfer of satellite [27], and optimal control of economic
systems [28]. The main idea of impulsive control is to
instantaneously change the state of a system when some
conditions are satisfied. During the last few decades, it has
been widely applied into the synchronization problems of
complex dynamical networks [29–31], which can be regarded
as first-order multiagent systems with nonlinear dynamics.
In many real-world system, agents are governed by both
position and velocity dynamics. The impulsive control for
second-order multiagent system was studied in [32, 33],
where both velocity and position are instantaneously changed
by impulsive control, but position cannot change quickly
in many situation. Therefore, it is more reasonable to only
regulate the velocity of each agent to reach consensus [34,
35]. In [34], we designed impulsive velocity-control for
multiagent systems with fixed topology to achieve consensus.
In [35], an impulsive control was proposed in which the
current position data of its neighbours and the past position
data of its own state were utilised to regulate the velocity of
agents.

This paper aims to investigate the consensus problem
of leader-following multiagent systems by using impulsive
control which only regulates the velocity of agents. Our main
contributions are summarised as follows. First, a necessary
and sufficient condition under fixed topology is derived, and
it is found that the leader-following consensus in multiagent
systems with sampling information can be reached if and
only if the sampled period is bounded by critical values
which depend on control gains and the interaction graph.
Second, a sufficient condition under switching topology is
obtained, and it is shown that the impulsive interval is
restricted by an upper bound which depends on control
gains, the diagonal element of the Laplacian matrix, and
the connections between agents and leader. The two key
difference between this paper and our earlier work [34] are
that the leader-following case is taken into account and that
this paper considers multiagent systems under switching
topology.

The remainingpart of the paper is organized as follows.
In Section 2, some necessary mathematical preliminaries are
given. Main results of this paper, that is, the convergence of
the distributed impulsive control under fixed and switching
topology, are presented in Sections 3 and 4. In Section 5,
some illustrative numerical examples are given. Concluding
remarks are finally stated in Section 6.

2. Problem Formulation

Let R and C denote the set of real numbers and complex
numbers, respectively. For 𝐴 = (𝑎

𝑖𝑗
)
𝑚×𝑚

∈ R𝑚×𝑚, 𝜆
1
(𝐴),

𝜆
2
(𝐴), . . . , 𝜆

𝑚
(𝐴) are the eigenvalues of𝐴, 𝜌(𝐴) represent the

spectral radius of𝐴. The identity matrix of order 𝑛 is denoted
as 𝐼
𝑛
(or simply 𝐼 if no confusion arises). For 𝛾 ∈ C, Re(𝛾)

and Im(𝛾) are the real and imaginary part of 𝛾, respectively.
1
𝑛
= (1, 1, . . . , 1)

𝑇 is the column vector. 0
𝑛×𝑚

denotes the 𝑛×𝑚
matrix with all elements equal to zero.

LetG = {V,E,A} be a directed graph (digraph) with the
set of nodes V = {1, 2, . . . 𝑁}, the set of edges E ∈ V × V,
and the weighted adjacency matrix A = (𝑎

𝑖𝑗
)
𝑁×𝑁

. In the
digraph G, node 𝑖 represents the agent 𝑖, and an edge in G
is denoted by an ordered pair {𝑗, 𝑖}. {𝑗, 𝑖} ∈ E if and only
if the agent 𝑖 can directly receive information from the 𝑗th
agent. In this case, the 𝑗th agent is the neighbor of the 𝑖th
agent. The set of neighbors of the 𝑖th agent is denoted by
N
𝑖
= {𝑗 ∈ V | (𝑗, 𝑖) ∈ E}. All elements of adjacency matrix

are nonnegative. For 𝑖, 𝑗 ∈ V, 𝑗 ∈ N
𝑖
⇔ 𝑎
𝑖𝑗

> 0, and
assume that 𝑎

𝑖𝑖
= 0, 𝑖 ∈ V. A directed path in a digraph

G is an ordered sequence V
1
, V
2
, . . . , V

𝑘
of agents such that

any ordered pair of vertices appearing consecutively in the
sequence is an edge of the digraph, that is, (V

𝑖
, V
𝑖+1

) ∈ E, for
any 𝑖 = 1, 2, . . . , 𝑘−1. A directed tree is a digraph, where there
exists an agent, called the root, such that any other agent of the
digraph can be reached by one and only one path starting at
the root. TG = {VT,ET} is a directed spanning tree of G,
if TG is a directed tree and VT = V. The Laplacian matrix
𝐿(G) = (𝑙

𝑖𝑗
)
𝑁×𝑁

ofG is defined as

𝑙
𝑖𝑗
=

{{{

{{{

{

−𝑎
𝑖𝑗
, 𝑖 ̸= 𝑗,

𝑁

∑

𝑘=1,𝑘 ̸= 𝑖

𝑎
𝑖𝑘,

𝑖 = 𝑗.

(1)

Given a matrix P = (𝑝
𝑖𝑗
) ∈ R𝑁×𝑁, the digraph (without

self-link) of P denotes by G(P), which is the digraph with
node setV = {1, 2, . . . , 𝑁} such that there is an edge inG(P)
from 𝑗 to 𝑖 if and only if 𝑝

𝑖𝑗
̸= 0. The matrix 𝐴 is nonnegative,

that is, 𝐴 ≥ 0, if all element of 𝐴 is non-negative. The
matrix 𝐴, 𝐵 ∈ R𝑁×𝑁, 𝐴 ≥ 𝐵 denote 𝐴 − 𝐵 ≥ 0. The non-
negative matrix 𝐴 is row stochastic if all of its row sum are
equal to 1. The row stochastic matrix 𝐴 ∈ R𝑁×𝑁 is called
indecomposable and aperiodic (SIA) if lim

𝑘→∞
𝐴
𝑘
= 1
𝑁
𝑦
𝑇,

where 𝑦 is some𝑁 × 1 column vector.
Consider that a multiagent system consists of𝑁 identical

agents indexed by 1, 2, . . . , 𝑁, which is described by

�̇�
𝑖 (𝑡) = V

𝑖 (𝑡) , V̇
𝑖 (𝑡) = 𝑢

𝑖 (𝑡) , (2)

where 𝑖 = 1, 2, . . . , 𝑁, 𝑥
𝑖
(𝑡) ∈ R, V

𝑖
(𝑡) ∈ R are the position

and velocity states of the agent 𝑖, respectively. 𝑢
𝑖
(𝑡) ∈ R𝑛

is a control input for 𝑖 = 1, 2, . . . , 𝑁. The static leader for
the system (2) is a static agent represented by 𝑥

0
(𝑡) = 𝑥

0
,

where 𝑥
0
∈ R. The edges between the agents and the leader is

unidirectional; namely, there are only partial agents that can
obtain information from the leader. It is also assumed that
each agent can only obtain information from other agents or
the leader at sampling times.

This paper focuses on the problem of designing 𝑢
𝑖
(𝑡),

𝑖 = 1, 2, . . . , 𝑁 based on sampling information to make all
𝑁 agents converge to a static leader.

Definition 1. The leader-following consensus of the multia-
gent system (2) with static leader is said to be achieved if

lim
𝑡→+∞

𝑥
𝑖 (𝑡) = 𝑥

0
, lim
𝑡→+∞

V
𝑖 (𝑡) = 0, 𝑖 ∈ V, (3)

for any initial state.



Mathematical Problems in Engineering 3

3. Leader-Following Consensus under
Fixed Topology

In this section, the leader-following consensus problem
under fixed topology is considered. The interaction between
agents in this part is described by a fixed digraph G =

{V,E,A}, and the connections between agents and leader are
described by 𝑏

𝑖
∈ R, 𝑏

𝑖
> 0 if and only if the agent 𝑖 can obtain

information from the leader, otherwise, 𝑏
𝑖
= 0.

In order to achieve the leader-following consensus of the
multiagent system (2) with sampled information under fixed
topology, the impulsive control for the agent 𝑖, is designed as

𝑢
𝑖 (𝑡) = −

+∞

∑

𝑘=1

𝑝
1
[

[

(∑

𝑗∈𝑁𝑖

𝑙
𝑖𝑗
(𝑥
𝑗 (𝑡) − 𝑥

𝑖 (𝑡))

+ 𝑏
𝑖
(𝑥
𝑖 (𝑡) − 𝑥

0
))+𝑝

2
V
𝑖 (𝑡)

]

]

𝛿 (𝑡 − 𝑡
𝑘
) ,

(4)

where 𝑖 ∈ V, the sampling time sequence {𝑡
𝑘
}
∞

𝑘=1
satisfies

𝑡
𝑘+1

− 𝑡
𝑘
= ℎ (ℎ ∈ R is sampled period) and lim

𝑘→∞
𝑡
𝑘
= ∞,

𝑝
1
, 𝑝
2
> 0 are the control gain to be determined, and 𝛿(⋅) is

the Dirac impulsive function.
Equivalently, the multiagent system (2) with impulsive

controller (4) can be rewritten as follows:

�̇�
𝑖 (𝑡) = V

𝑖 (𝑡) , V̇
𝑖 (𝑡) = 0, 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1

] ,

ΔV
𝑖
(𝑡
𝑘
) = −𝑝

1
(∑

𝑗∈V

𝑙
𝑖𝑗
𝑥
𝑗
(𝑡
𝑘
) + 𝑏
𝑖
(𝑥
𝑖
(𝑡
𝑘
) − 𝑥
0
))−𝑝

2
V
𝑖
(𝑡
𝑘
) ,

(5)

where ΔV
𝑖
(𝑡
𝑘
) = V

𝑖
(𝑡
+

𝑘
) − V
𝑖
(𝑡
𝑘
), V
𝑖
(𝑡
+

𝑘
) = lim

𝑡→ 𝑡
+

𝑘

V
𝑖
(𝑡
𝑘
). For

simplicity, it is assume that V
𝑖
(𝑡) is left continuous at 𝑡

𝑘
.

Remark 2. From (5), the control input of each agent only uses
the information from its neighbors at sampling instants and
are only applied at sampling instants. This is quite different
from the previously mentioned works, where the control
inputs are applied continuously. The velocity of the agent is
instantaneously changed at sampling times. This is feasible
when the operating time of the impulsive controller is much
smaller than the sampled period.

Lemma 3. The multiagent system (2) with impulsive control
(4) achieves leader-following consensus asymptotically if and
only if 𝜌(𝑃) < 1, where

𝑃 = (
𝐼
𝑁

ℎ𝐼
𝑁

−𝑝
1 (𝐿 + 𝐵) (1 − 𝑝

2
) 𝐼
𝑁
− 𝑝
1
ℎ (𝐿 + 𝐵)

) ,

𝐵 = (

𝑏
1

𝑏
2

d
𝑏
𝑁

).

(6)

Proof. Let 𝑥
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

0
(𝑡), for 𝑖 ∈ V and note that

∑
𝑗∈V 𝑙
𝑖𝑗
𝑥
0
= 0, system (5) can be rewritten as follows:

̇̂𝑥
𝑖 (𝑡) = V

𝑖 (𝑡) , V̇
𝑖 (𝑡) = 0, 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1

] ,

ΔV
𝑖
(𝑡
𝑘
) = −𝑝

1
(∑

𝑗∈V

𝑙
𝑖𝑗
𝑥
𝑗
(𝑡
𝑘
) + 𝑏
𝑖
𝑥
𝑖
(𝑡
𝑘
)) − 𝑝

2
V
𝑖
.

(7)

From (7), one has

𝑥
𝑖
(𝑡
𝑘+1

) = 𝑥
𝑖
(𝑡
𝑘
) + ℎV

𝑖
(𝑡
+

𝑘
) ,

V
𝑖
(𝑡
𝑘+1

) = V
𝑖
(𝑡
+

𝑘
) ,

V
𝑖
(𝑡
+

𝑘+1
) = (1 − 𝑝

2
) V
𝑖
(𝑡
𝑘+1

)

− 𝑝
1
(∑

𝑗∈V

𝑙
𝑖𝑗
𝑥
𝑗
(𝑡
𝑘+1

) + 𝑏
𝑖
𝑥
𝑖
(𝑡
𝑘+1

)) .

(8)

From (8), one has

V
𝑖
(𝑡
+

𝑘+1
) = (1 − 𝑝

2
) V
𝑖
(𝑡
+

𝑘
)

− 𝑝
1
ℎ ∑

𝑗∈V

𝑙
𝑖𝑗
V
𝑗
(𝑡
+

𝑘
) − 𝑝
1
𝑏
𝑖
ℎV
𝑖
(𝑡
+

𝑘
)

− 𝑝
1
(∑

𝑗∈V

𝑙
𝑖𝑗
(𝑥
𝑗
(𝑡
𝑘
)) + 𝑏

𝑖
𝑥
𝑖
(𝑡
𝑘
)) .

(9)

Then, the evolution of 𝑥
𝑖
(𝑡
𝑘
), V
𝑖
(𝑡
𝑘
) under impulsive control

(4) can be described as follows:

𝑥
𝑖
(𝑡
𝑘+1

) = 𝑥
𝑖
(𝑡
𝑘
) + ℎV

𝑖
(𝑡
+

𝑘
) ,

V
𝑖
(𝑡
+

𝑘+1
) = (1 − 𝑝

2
) V
𝑖
(𝑡
+

𝑘
)

− 𝑝
1
ℎ ∑

𝑗∈V

𝑙
𝑖𝑗
V
𝑗
(𝑡
+

𝑘
) − 𝑝
1
𝑏
𝑖
ℎV
𝑖
(𝑡
+

𝑘
)

− 𝑝
1
(∑

𝑗∈V

𝑙
𝑖𝑗
(𝑥
𝑗
(𝑡
𝑘
)) + 𝑏

𝑖
𝑥
𝑖
(𝑡
𝑘
)) .

(10)

Let 𝑥(𝑘) = (𝑥
1
(𝑡
𝑘
), . . . , 𝑥

𝑁
(𝑡
𝑘
))
𝑇 and V(𝑘) = (V

1
(𝑡
+

𝑘
), . . . ,

V
𝑁
(𝑡
+

𝑘
))
𝑇. Then, the multiagent system (2) achieves leader-

following consensus, if and only if lim
𝑘→+∞

𝑥(𝑘) = 0,
lim
𝑘→+∞

V(𝑘) = 0.
Equivalently, (10) can be rewritten as follows:

(
𝑥 (𝑘 + 1)

V (𝑘 + 1)
) = 𝑃 × (

𝑥 (𝑘)

V (𝑘)
) . (11)

Therefore, it is easy to obtain the result by the stability theory
of discrete-time systems.

The following lemmas and definition are needed for the
subsequent development.

Lemma 4 (bilinear transformation theorem [36]). Polyno-
mial 𝑅(𝑧) (of degree 𝑑) is Schur stable if and only if 𝑄(𝑧) is
Hurwitz stable, where

𝑅 (𝑧) = (𝑧 − 1)
𝑑
𝑄(

𝑧 + 1

𝑧 − 1
) . (12)
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For complex polynomial 𝑅(𝑧), let

𝑅 (𝑖𝜔) = 𝑚 (𝜔) + 𝑖𝑛 (𝜔) , (13)

where𝑚(𝜔), 𝑛(𝜔) ∈ R and 𝑖 is the imaginary unit.

Lemma 5 (see [37, 38]). The complex polynomial 𝑅(𝑧) = 𝑧
2
+

𝑎𝑧 + 𝑏, where 𝛼 ∈ C and 𝛽 ∈ C, is Hurwitz stable if and only if
Re(𝑎) > 0 andRe(𝑎) Im(𝑎) Im(𝑏)+Re2(𝑎)Re2(𝑏)−Im2(𝑏) > 0.

Next theoremwill showwhat kind of interaction topology
can reach leader-following consensus and how to determine
the control gains 𝑝

1
, 𝑝
2
and sampling period ℎ.

Theorem 6. The multiagent system (2) with impulsive control
(4) under fixed topology achieves the leader-following consen-
sus asymptotically if and only if

ℎ < min
1<𝑖<𝑁

2𝑝
2

2
(2 − 𝑝

2
)Re (𝜆

𝑖
)

Im2 (𝜆
𝑖
) 𝑝
1
(𝑝
2
− 2)
2
+ Re2 (𝜆

𝑖
) 𝑝
1
𝑝
2

2

, (14)

where 𝜆
𝑖
, 𝑖 = 1, 2, . . . , 𝑁 are the eigenvalues of 𝐿 + 𝐵.

Proof. Let the 𝛾 be an eigenvalue of matrix 𝑃. Then,

det (𝛾𝐼
2𝑁

− 𝑃)

= det((𝛾 − 1) 𝐼
𝑁

−ℎ𝐼
𝑁

𝑝
1 (𝐿 + 𝐵) 𝛾𝐼

𝑁
− (1 − 𝑝

2
) 𝐼
𝑁
+ 𝑝
1
ℎ (𝐿 + 𝐵)

)

=

𝑁

∏

𝑖=1

(𝛾
2
+ 𝛾 (𝑝

2
− 2 + 𝑝

1
ℎ𝜆
𝑖
) + 1 − 𝑝

2
) .

(15)

Let

𝑄
𝑖
(𝛾) = 𝛾

2
+ 𝛾 (𝑝

2
− 2 + 𝑝

1
ℎ𝜆
𝑖
) + 1 − 𝑝

2
, 𝑖 ∈ V. (16)

Then, we only need to prove that polynomials 𝑄
𝑖
(𝛾) for

𝑖 ∈ V are Schur stable.
Let

𝑅
𝑖 (𝜎) = (𝜎 − 1)

2
𝑄
𝑖
(
𝜎 + 1

𝜎 − 1
)

= 𝑝
1
ℎ𝜆
𝑖
𝜎
2
+ 2𝑝
2
𝜎 + 4 − 2𝑝

2
− 𝑝
1
ℎ𝜆i.

(17)

Let

𝑅

(𝜎) = 𝜎

2
+

2𝑝
2

𝑝
1
ℎ
𝜆


𝑖
𝜎 + (

4

𝑝
1
ℎ
−

2𝑝
2

𝑝
1
ℎ
)𝜆


𝑖
− 1, (18)

where 𝜆
𝑖
= 1/𝜆



𝑖
. Then, according to Lemma 4, polynomials

𝑅


𝑖
(𝜎), for 𝑖 = 1, 2, 3, . . . , 𝑁, are Hurwitz stable if and only if

polynomials 𝑄
𝑖
(𝛾) for 𝑖 = 1, 2, 3, . . . , 𝑁 are Schur stable.

It can be proved by Lemma 5 that 𝑅
𝑖
(𝜎) is Hurwitz stable

if and only if (14) is satisfied. Therefore, 𝜌(𝑃) < 1 if and only
if (14) is satisfied. The proof is thus completed.

Remark 7. It can be observed from the inequality (14) that
the real and imaginary part of the eigenvalues of 𝐿 + 𝐵, the

sampling period ℎ, and two control gains 𝑝
1
and 𝑝

2
play

important roles in achieving consensus. 𝑝
2
< 2 and Re(𝜆

𝑖
(𝐿+

𝐵)) > 0, for 𝑖 ∈ V, are necessary conditions for leader-
following consensus. It is easy to see that the critical value of
ℎ increases as 𝑝

1
decreases.

Remark 8. Let G̃ = {Ṽ, Ẽ, Ã} with Ṽ = {0, 1, 2, . . . , 𝑁}, and
the Laplace matrix is

�̃� = (

(

0 0 0 ⋅ ⋅ ⋅ 0

−𝑏
1

𝑙
11

+ 𝑏
1

𝑙
12

⋅ ⋅ ⋅ 𝑙
1𝑁

−𝑏
2

𝑙
21

𝑙
22

+ 𝑏
2

⋅ ⋅ ⋅ 𝑙
2𝑁

...
...

... d
...

−𝑏
𝑁

𝑙
𝑁1

𝑙
𝑁2

⋅ ⋅ ⋅ 𝑙
𝑁𝑁

+ 𝑏
𝑁

)

)

. (19)

Note that

𝐸
−1
�̃�𝐸 = (

0 0𝑇
𝑁

0
𝑁

𝐿 + 𝐵
) , (20)

where

𝐸 = (
1 0𝑇
𝑁

1
𝑁

𝐼
𝑁

) (21)

is an invertible matrix. Re(𝜆
𝑖
) > 0, for 𝑖 ∈ V imply that �̃�

has a simple eigenvalue 0, and all the other eigenvalues have
positive real parts. This implies that the graph G̃ contains a
spanning tree. The root of the spanning tree is the leader.

Remark 9. How to choose a suitable control gain 𝑝
1
and 𝑝

2

when the sampling period ℎ is given. According to
Theorem 6, 𝑝

2
< 2 is a necessary condition for consensus.

Therefore, one can choose 𝑝
2
from (0, 2], and then compute

Θ = min
𝑖∈V

2𝑝
2

2
(2 − 𝑝

2
)Re (𝜆

𝑖
)

(Im (𝜆
𝑖
) (𝑝
2
− 2))
2
ℎ + ℎ𝑝

2

2
Re2 (𝜆

𝑖
)

. (22)

Then, one can choose 𝑝
1
from (0, Θ).

4. Leader-Following Consensus under
Switching Topology

In this section, the leader-following consensus under switch-
ing topology is considered. The interaction between agents
at sampling time 𝑡

𝑘
is described by time-varying digraph

G(𝑡) = {V,E(𝑡),A(𝑡)}, where A(𝑡) = (𝑎
𝑖𝑗
(𝑡))
𝑁×𝑁

and the
connections between agents and leader at time 𝑡 are described
by 𝑏
𝑖
(𝑡), 𝑏
𝑖
(𝑡) > 0 if and only if the agent 𝑖 can obtain

information from the leader at time 𝑡; otherwise, 𝑏
𝑖
(𝑡) = 0.

In order to achieve leader-following consensus under
switching topology, the impulsive control input is designed
as

𝑢
𝑖 (𝑡) = −

+∞

∑

𝑘=1

𝑝
1
[

[

(∑

𝑗∈𝑁𝑖

𝑙
𝑖𝑗 (𝑡) (𝑥𝑗 (𝑡) − 𝑥

𝑖 (𝑡))

+ 𝑏
𝑖 (𝑡) (𝑥𝑖 (𝑡) − 𝑥

0
))+𝑝

2
V
𝑖
]

]

𝛿 (𝑡 − 𝑡
𝑘
) ,

(23)
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where 𝑖 = 1, 2, . . . , 𝑁. Let G̃(𝑡) = {Ṽ, Ẽ(𝑡), Ã(𝑡)}with Ṽ(𝑡) =

{0, 1, 2, . . . , 𝑁} and

Ã (𝑡) = (

0 0 0 ⋅ ⋅ ⋅ 0

𝑏
1 (𝑡) 0 𝑎

12 (𝑡) ⋅ ⋅ ⋅ 𝑎
1𝑁 (𝑡)

𝑏
2 (𝑡) 𝑎

21 (𝑡) 0 ⋅ ⋅ ⋅ 𝑎
2𝑁 (𝑡)

...
...

... d
...

𝑏
𝑁 (𝑡) 𝑎

𝑁1 (𝑡) 𝑎
𝑁2 (𝑡) ⋅ ⋅ ⋅ 0

) . (24)

Let �̃�(𝑡) = (̃𝑙
𝑖𝑗
)
(𝑁+1)×(𝑁+1)

denotes the Laplace matrix of G̃.
Equivalently, the multiagent system (2) with the impulsive
controller (23) can be rewritten as follows:

�̇�
𝑖 (𝑡) = V

𝑖 (𝑡) , V̇
𝑖 (𝑡) = 0, 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1

] ,

ΔV
𝑖
(𝑡
𝑘
) = −𝑝

1
∑

𝑗∈V

�̃�
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡𝑘) − 𝑝

2
V
𝑖
(𝑡
𝑘
) ,

(25)

where 𝑖 = 0, 1, . . . , 𝑁.

Remark 10. Note that the communication among agents only
occurs at sampling times. This implies that interation graph
does not contain any edgesG(𝑡) = 0 where 𝑡 ̸= 𝑡

𝑘
.

Similar to the discussion in Section 4, one has

𝑥
𝑖
(𝑡
𝑘+1

) = 𝑥
𝑖
(𝑡
𝑘
) + ℎV

𝑖
(𝑡
+

𝑘
) ,

V
𝑖
(𝑡
+

𝑘+1
) = (1 − 𝑝

2
) V
𝑖
(𝑡
+

𝑘
) − 𝑝
1

𝑁

∑

𝑗=0

�̃�
𝑖𝑗
(𝑡
𝑘
) 𝑥
𝑗
(𝑡
𝑘
)

− 𝑝
1
ℎ

𝑁

∑

𝑗=0

�̃�
𝑖𝑗
(𝑡
𝑘
) V
𝑗
(𝑡
+

𝑘
) .

(26)

Let 𝑥
𝑖
(𝑘) = 𝑥

𝑖
(𝑡
𝑘
), Ṽ
𝑖
(𝑘) = 𝑥

𝑖
(𝑡
𝑘
) + 𝛼V

𝑖
(𝑡
+

𝑘
), where 𝛼 = 2ℎ/𝑝

2
.

It is easy to know that the network (2) achieves leader-
following consensus, if 𝑥

𝑖
(𝑘) → 𝛽 and Ṽ

𝑖
(𝑘) → 𝛽, for some

𝛽 ∈ R, 𝑖 ∈ Ṽ.
From (26), one has

𝑥
𝑖 (𝑘 + 1) = (1 −

𝑝
2

2
) 𝑥
𝑖 (𝑘) +

𝑝
2

2
Ṽ
𝑖 (𝑘) ,

Ṽ
𝑖 (𝑘 + 1) =

𝑝
2

2
𝑥
𝑖 (𝑘) + (1 −

𝑝
2

2
) Ṽ
𝑖 (𝑘)

− (
2

𝑝
2

− 1)𝑝
1
ℎ

𝑁

∑

𝑗=0

𝑙
𝑖𝑗
(𝑥
𝑗
(𝑡
𝑘
))

− 𝑝
1
ℎ

𝑁

∑

𝑗=0

𝑙
𝑖𝑗
Ṽ
𝑗 (𝑘) .

(27)

Let 𝑥(𝑘) = (𝑥
𝑇

0
(𝑘), 𝑥
𝑇

1
(𝑘), 𝑥
𝑇

2
(𝑘), . . . , 𝑥

𝑇

𝑁
(𝑘))
𝑇

and Ṽ(𝑘) =

(Ṽ𝑇
0
(𝑘), Ṽ𝑇
1
(𝑘), Ṽ𝑇
2
(𝑘), . . . , Ṽ𝑇

𝑁
(𝑘))
𝑇; then,

(
𝑥 (𝑘 + 1)

Ṽ (𝑘 + 1)
) = P (𝑘) × (

𝑥 (𝑘)

Ṽ (𝑘)
) , (28)

where

P (𝑘)

= (

(1 −
𝑝
2

2
) 𝐼

𝑝
2

2
𝐼

𝑝
2

2
𝐼 − (

2

𝑝
2

− 1)𝑝
1
ℎ�̃� (𝑘) (1 −

𝑝
2

2
) 𝐼 − 𝑝

1
ℎ�̃� (𝑘)

) .

(29)

Before moving on, the following lemmas are needed.

Lemma 11 (see [16]). Let 𝑚 ≥ 2 be a positive integer, and let
𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑚
be non-negative 𝑁 × 𝑁 matrices with positive

diagonal entries; then, 𝑃
1
𝑃
2
⋅ ⋅ ⋅ 𝑃
𝑚

≥ 𝜀(𝑃
1
+ 𝑃
2
+ ⋅ ⋅ ⋅ + 𝑃

𝑚
),

where 𝜀 > 0 can be specified from matrices 𝑃
𝑖
, 𝑖 = 1, 2, . . . , 𝑚.

Lemma 12 (see [39]). Let 𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑘
∈ R𝑁×𝑁 be a

finite set of SIA matrices with the property that for each
sequence 𝑃

𝑖1
, 𝑃
𝑖2
, . . . , 𝑃

𝑖𝑗
of positive length, the matrix product

𝑃
𝑖1
𝑃
𝑖2
⋅ ⋅ ⋅ 𝑃
𝑖𝑗
is SIA. Then, for each infinite sequence 𝑃

𝑖1
, 𝑃
𝑖2
, . . . ,

𝑃
𝑖𝑗
, there exists a column vector 𝑦 such that

lim
𝑗→∞

𝑃
𝑖1
× 𝑃
𝑖2
× ⋅ ⋅ ⋅ 𝑃

𝑖𝑗
= 1
𝑁
𝑦
𝑇
. (30)

Lemma 13 (see [40]). Suppose that P ∈ R𝑁×𝑁 is a row
stochasticmatrixwith positive diagonal elements. If the digraph
G(P) has a directed spanning tree, then P is SIA.

Lemma 14. Let

P = (
(1 − 𝛼) 𝐼 𝛼𝐼

𝛽𝐼 − 𝜇
1
𝐿 (1 − 𝛽) 𝐼 − 𝜇

2
𝐿
) (31)

be non-negative matrix, where 𝛼, 𝜇
1
, 𝜇
2
> 0. If 𝐿 is a Laplace

matrix of a digraphG, which has a directed spanning tree, then
P is a row stochastic matrix and the digraph of P contains a
directed spanning tree.

Proof. It is easy to check the non-negative matrix P1
2𝑁

=

1
2𝑁
. Then, P is a row stochastic matrix. Let G(P) denote the

digraph of P. Then, the Laplace matrix ofG(P) is

𝐿 (P) = (
𝛼𝐼 −𝛼𝐼

−𝛽𝐼 + 𝜇
1
𝐿 𝛽𝐼 + 𝜇

2
𝐿
) . (32)

Let 𝛾
𝑖
, 𝑖 = 1, 2, . . . , 𝑁 denote the eigenvalues of 𝐿.

Let 𝜆 be an eigenvalue of matrix P; then, one has

det( 𝜆𝐼 − 𝛼𝐼 𝛼𝐼

𝛽𝐼 − 𝜇
1
𝐿 𝜆𝐼 − 𝛽𝐼 − 𝜇

2
𝐿
)

=

𝑁

∏

𝑖=1

((𝜆 − 𝛼) (𝜆 − 𝛽 − 𝜇
2
𝛾
𝑖
) − 𝛼 (𝛽 − 𝜇

1
𝛾
𝑖
)) .

(33)

Let 𝑄(𝜆) = (𝜆 − 𝛼)(𝜆 − 𝛽 − 𝜇
2
𝛾
𝑖
) − 𝛼(𝛽 − 𝜇

1
𝛾
𝑖
). Then,

𝑄 (0) = 𝛼𝜇
1
𝛾
𝑖
+ 𝛼𝜇
2
𝛾
𝑖
. (34)

Therefore, from (34), 𝜆 = 0 only if 𝛾
𝑖
= 0.
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When 𝛾
𝑖
= 0,

𝑄 (𝜆) = 𝜆
2
− 𝜆 (𝛼 + 𝛽) . (35)

Thus, when 𝛾
𝑖
(𝐿) = 0, the solutions of𝑄(𝜆) = 0 are 𝜆 = 0 and

𝜆 = 𝛼 + 𝛽. On the other hand, if G contains a spanning tree,
𝐿 only has one simple eigenvalue equal to zero. Therefore,
𝐿(P) only has one simple eigenvalue equal to zero, which
implies that the digraph of P has a spanning tree. The proof
is completed.

Theorem 15. If there exists a positive integer 𝑙, the union of
G̃(𝑡
𝑘
) across 𝑘 ∈ [𝑘

0
, 𝑘
0
+ 𝑙] contains a directed spanning tree,

for any non-negative integer 𝑘
0
, and

ℎ <
𝑝
2

2

2𝑝
1
(2 − 𝑝

2
) Δ

, 𝑝
2
≤ 1,

ℎ <
2 − 𝑝
2

2𝑝
1
Δ

, 1 < 𝑝
2
< 2,

(36)

where Δ = max
𝑖∈V, 𝑘∈N{𝑙𝑖𝑖(𝑘) + 𝑏

𝑖
(𝑘)}; then, the multiagent

system (2) achieves the leader-following consensus.

Proof. Let

P (𝑘) = (
𝑃
11 (𝑘) 𝑃

12 (𝑘)

𝑃
21 (𝑘) 𝑃

22 (𝑘)
) , (37)

where P(𝑘) is defined in (29). From (1), one has 𝑙
𝑖𝑗

< 0, for
𝑖 ̸= 𝑗. Then, the following statements are satisfied:

(i) 𝑃
11
(𝑘) is nonnegative if and only if 𝑝

2
< 2;

(ii) 𝑃
12
(𝑘) is nonnegative if and only if 𝑝

2
> 0;

(iii) 𝑃
21
(𝑘) is nonnegative if and only if

𝑝
2

2
− (

2

𝑝
2

− 1)𝑝
1
ℎ (𝑙
𝑖𝑖 (𝑘) + 𝑏

𝑖 (𝑘)) > 0, for 𝑖 ∈ V; (38)

(iv) 𝑃
22
(𝑘) is nonnegative if and only if

(1 −
𝑝
2

2
) − 𝑝
1
ℎ (𝑙
𝑖𝑖 (𝑘) + 𝑏

𝑖 (𝑘)) > 0, for 𝑖 ∈ V. (39)

If 0 < 𝑝
2
< 2, then 2/𝑝

2
− 1 > 0 and 1 − 𝑝

2
/2 > 0. Note that

𝑙
𝑖𝑗
+ 𝑏
𝑖
(𝑘) ≥ 0 and 𝑝

1
> 0. Then, the following four statements

are satisfied when 𝑝
2
< 2.

(i) If 𝑙
𝑖𝑗
+ 𝑏
𝑖
(𝑘) = 0, then we have

𝑝
2

2
− (

2

𝑝
2

− 1)𝑝
1
ℎ (𝑙
𝑖𝑖 (𝑘) + 𝑏

𝑖 (𝑘)) > 0,

(1 −
𝑝
2

2
) − 𝑝
1
ℎ (𝑙
𝑖𝑖 (𝑘) + 𝑏

𝑖 (𝑘)) > 0,

(40)

(ii) If 𝑙
𝑖𝑗
+ 𝑏
𝑖
(𝑘) > 0, and

ℎ <
𝑝
2
/2

(2/𝑝
2
− 1) 𝑝

1
(𝑙
𝑖𝑖 (𝑘) + 𝑏

𝑖 (𝑘))
, (41)

then we have

𝑝
2

2
− (

2

𝑝
2

− 1)𝑝
1
ℎ (𝑙
𝑖𝑖 (𝑘) + 𝑏

𝑖 (𝑘)) > 0, (42)

(iii) If 𝑙
𝑖𝑗
+ 𝑏
𝑖
(𝑘) > 0, and

ℎ <
1 − 𝑝
2
/2

𝑝
1
(𝑙
𝑖𝑖 (𝑘) + 𝑏

𝑖 (𝑘))
, (43)

then we have

(1 −
𝑝
2

2
) − 𝑝
1
ℎ (𝑙
𝑖𝑖 (𝑘) + 𝑏

𝑖 (𝑘)) > 0. (44)

According to the previous discussion, (38) is satisfied, if 𝑝
2
<

2, and

ℎ <
𝑝
2
/2

(2/𝑝
2
− 1) 𝑝

1
Δ
. (45)

Equation (39) is satisfied, if 𝑝
2
< 2, and

ℎ <
1 − 𝑝
2
/2

𝑝
1
Δ

. (46)

Note that

𝑝
2
/2

(2/𝑝
2
− 1) 𝑝

1
Δ

−
1 − 𝑝
2
/2

𝑝
1
Δ

=
2 − 2/𝑝

2

(2/𝑝
2
− 1) 𝑝

1
Δ
. (47)

Then, (38) and (39) are satisfied if (36) holds.This implies that
P
11
(𝑘),P
12
(𝑘),P
21
(𝑘), andP

22
(𝑘) are nonnegative.Then,P(𝑘)

is also nonnegative. Note that

P (𝑘) 12𝑁+2 = (

1
𝑁+1

1
𝑁+1

−
2

𝑝
2

𝑝
1
ℎ�̃� (𝑘) 1𝑁+1

) , (48)

and �̃�(𝑘)1
𝑁+1

= 0. Then, P(𝑘)1
2𝑁+2

= 1
2𝑁+2

, P(𝑘) is a row
stochastic matrix. Then, ∑𝑘0+𝑙

𝑘=𝑘0
P(𝑘) and∏

𝑘0+𝑙

𝑘=𝑘0
P(𝑘) are also a

row stochastic matrix.
Note that
𝑘0+𝑙

∑

𝑘=𝑘0

P (𝑘)

= (𝑙 + 1)

×(

(1 −
𝑝
2

2
) 𝐼

𝑝
2

2
𝐼

𝑝
2

2
𝐼 − (

2

𝑝
2

− 1)𝑝
1
ℎS𝑙
𝑘0

(1 −
𝑝
2

2
) 𝐼 − 𝑝

1
ℎS𝑙
𝑘0

),

(49)

where S𝑙
𝑘0

= (1/(𝑙 + 1))∑
𝑘0+𝑙

𝑘=𝑘0
�̃�(𝑘).

The union of G(𝑡
𝑘
) across 𝑘 ∈ [𝑘

0
, 𝑘
0
+ 𝑙], for any non-

negative integer 𝑘
0
contains a directed spanning tree. This

implies that the digraph with the Laplace matrix S𝑙
𝑘0
also con-

tains a directed spanning tree.
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1

3

0

4

2

Figure 1: Fixed topology.

By Lemma 14, from (49), the digraph of ∑𝑘0+𝑙
𝑘=𝑘0

P(𝑘) con-
tains a spanning tree.

According to Lemma 11, one has

𝑘0+𝑙

∏

𝑖=𝑘0

P (𝑖) ≥ 𝜀

𝑘0+𝑙

∑

𝑖=𝑘0

P (𝑖) , (50)

for some 𝜀. This implies that the digraph of ∏𝑘0+𝑙
𝑘=𝑘0

P(𝑘) also
contains a spanning tree. It follows from Lemma 13 that
∏
𝑘0+𝑙

𝑘=𝑘0
P(𝑘) is SIA. By Lemma 12,

lim
𝑘→∞

P (𝑘)P (𝑘 − 1) ⋅ ⋅ ⋅P (0) 𝑥 (0) = 1
2(𝑁+1)

𝑦
𝑇
𝑥 (0) . (51)

The proof is thus completed.

Remark 16. In this remark, we also show how to choose a
suitable control gain 𝑝

1
and 𝑝

2
when the sampling period ℎ

is given. According to Theorem 15, 𝑝
2
< 2 is also required.

Similar to Remark 9, one can choose 𝑝
2
from (0, 2], and then

compute

Θ =

{{{{

{{{{

{

𝑝
2

2

2ℎ (2 − 𝑝
2
) Δ

, 𝑝
2
≤ 1

2 − 𝑝
2

2ℎΔ
, 1 < 𝑝

2
< 2.

(52)

Then, one can choose 𝑝
1
from (0, Θ).

5. Illustrative Examples

In this section, two illustrative numerical examples will be
given to demonstrate the correctness of theoretical analysis.

5.1. Fix Topology. The communication topology is described
as in Figure 1. The Laplacian matrix 𝐿 and matrix 𝐵 are given
as follows:

𝐿 = (

1 0 −1 0

−1 2 0 −1

0 0 0 0

0 0 −1 1

) , 𝐵 = diag (0, 0, 1, 1) . (53)

0 100 200 300 400 500 600 700
0

5

10

15

20

25

30

t

(a)

Leader
Agent 1
Agent 2

Agent 3
Agent 4

0 100 200 300 400 500 600 700
t

10

5

0

−5

−10

(b)

Figure 2: Trajectory of the multiagent system (2) under fixed
topology, when 𝑝

1
= 0.49. Evolution of (a) 𝑥

𝑖
, and (b) V

𝑖
.

The eigenvalues of 𝐿 + 𝐵 are 𝜆
1
(𝐿 + 𝐵) = 𝜆

2
(𝐿 + 𝐵) = 1,

𝜆
3
(𝐿 + 𝐵) = 𝜆

4
(𝐿 + 𝐵) = 2. Let 𝑝

2
= 1, ℎ = 2; according to

Theorem 6, the network can achieve leader-following con-
sensus, if and only if

𝑝
1
< min
𝑖∈V

2𝑝
2

2
(2 − 𝑝

2
)Re (𝜆

𝑖
)

(Im (𝜆
𝑖
) (𝑝
2
− 2))
2
ℎ + ℎ𝑝

2

2
Re2 (𝜆

𝑖
)

= 0.5. (54)

Figure 2 shows that the leader-following consensus can be
achieved when 𝑝

1
= 0.49. But it cannot be achieved when

𝑝
1
= 0.51 (as shown in Figure 3).

5.2. Switching Topology. In this subsection, the network
topology switches from a set {G̃

1
, G̃
2
, G̃
3
, G̃
4
} as shown in
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Figure 3: Trajectory of the multiagent system (2) under fixed
topology, when 𝑝

1
= 0.51. Evolution of (a) 𝑥
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, and (b) V

𝑖
.
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Figure 5: Trajectory of the multiagent system (2) under switched
topology, when 𝑝

1
= 0.95. Evolution of (a) 𝑥

𝑖
, and (b) V

𝑖
.

Figure 4. The corresponding Laplacian matrices of G
1
, G
2
,

G
3
, G
4
and matrices 𝐵

1
, 𝐵
2
, 𝐵
3
, 𝐵
4
are

𝐿
1
= (

0 0 0 0

−1 1 0 0

0 0 0 0

0 0 0 0

) , 𝐿
2
= (

0 0 0 0

0 1 0 −1

0 0 0 0

0 0 −1 1

) ,

𝐿
3
= (

1 0 −1 0

0 0 0 0

0 0 0 0

0 0 0 0

) , 𝐿
4
= (

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

) ,

(55)

𝐵
1

= diag (0 0 1 0), 𝐵
2

= diag (0 0 0 0), 𝐵
3

=

diag (0 0 0 1), and 𝐵
4

= diag (0 0 0 0). Assume that
G(𝑡
0
) = G

1
, G(𝑡
1
) = G

2
, G(𝑡
2
) = G

3
, G(𝑡
3
) = G

4
, G(𝑡
4
) =

G
1
, . . . and 𝐵(𝑡

0
) = 𝐵

1
, 𝐵(𝑡
1
) = 𝐵

2
, 𝐵(𝑡
2
) = 𝐵

3
, 𝐵(𝑡
3
) = 𝐵

4
,

𝐵(𝑡
4
) = 𝐵
1
, . . .. Note that the union graph of G̃

1
, G̃
2
, G̃
3
, and

G̃
4
, and max

𝑖∈N, 𝑘∈N(𝑙𝑖𝑖(𝑘) + 𝑏
𝑖
(𝑘)) = 1.
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Let 𝑝
2
= 1, ℎ = 0.5, according toTheorem 15, if

𝑝
1
<

𝑝
2

2

2ℎ (2 − 𝑝
2
)max

𝑖∈N, 𝑘∈N {𝑙
𝑖𝑖 (𝑘) + 𝑏

𝑖 (𝑘)}
= 1. (56)

Figure 5 shows that the leader-following consensus can be
achieved when 𝑝

1
= 0.95.

6. Conclusions

In this paper, the leader-following consensus problem of
the multiagent system is considered. The impulsive control,
which only needs sampled information and regulates the
velocity of each agent at sampling times, is proposed for
the leader-following consensus. Several new criteria are
established for the leader-following consensus of the system
under both fixed and switching topology. Illustrated examples
have been given to show the effectiveness of the proposed
impulsive control.
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