
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 793062, 12 pages
http://dx.doi.org/10.1155/2013/793062

Research Article
Buckling Analyses of Axially Functionally Graded Nonuniform
Columns with Elastic Restraint Using a Localized Differential
Quadrature Method

Yasin Yilmaz, Zekeriya Girgin, and Savas Evran

Mechanical Engineering Department, Faculty of Engineering, Pamukkale University, Kinikli Campus, 20070 Denizli, Turkey

Correspondence should be addressed to Yasin Yilmaz; yyilmaz@pau.edu.tr

Received 24 April 2013; Accepted 7 July 2013

Academic Editor: Abdelouahed Tounsi

Copyright © 2013 Yasin Yilmaz et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A localized differential quadrature method (LDQM) is introduced for buckling analysis of axially functionally graded nonuniform
columns with elastic restraints. Weighting coefficients of differential quadrature discretization are obtained making use of
neighboring points in forward and backward type schemes for the reference grids near the beginning and end boundaries of the
physical domain, respectively, and central type scheme for the reference grids inside the physical domain. Boundary conditions
are directly implemented into weighting coefficient matrices, and there is no need to use fictitious points near the boundaries.
Compatibility equations are not required because the governing differential equation is discretized only once for each reference
grid using neighboring points and variation of flexural rigidity is taken to be continuous in the axial direction. A large case of
columns having different variations of cross-sectional profile and modulus of elasticity in the axial direction are considered. The
results for nondimensional critical buckling loads are compared to the analytical and numerical results available in the literature.
Some new results are also given. Comparison of the results shows the potential of the LDQM for solving such generalized eigenvalue
problems governed by fourth-order variable coefficient differential equations with high accuracy and less computational effort.

1. Introduction

Beams and columns with variable flexural rigidities are
commonly used in complex structures to achieve a better
distribution of strength and weight and sometimes to satisfy
architectural and functional requirements. The accurate pre-
diction of dynamic behavior of beams and columns, partic-
ularly when the properties of the material and cross-section
are variable, is of crucial importance in many areas of science
and engineering such as civil, mechanical, biomedical, and
aerospace engineering. Moreover, elastic restraints may also
become an important issue for determination of critical buck-
ling loads. The continuous change of the material properties
can be achieved by gradually varying the volume fraction
of the individual constituent materials from one point to
another through any of the spatial coordinates. These types
of materials are specifically called as functionally graded
materials (FGMs). Continuity in FGM properties allows the
elimination of interlayer delamination due to high stress and

crack initiation and propagation in intermediate faces caused
by high plastic deformation, frequently seen in laminated
composites. The property variation of FGMs can be tailored
to obtain the desired mechanical properties for different
applications. With the advent of more advanced techniques,
FGMs are now used in production of beam, plate, and shell
structures that are emerging as promising structural elements
in today’s industry (automotive and aircraft industry, space
vehicles, machine elements, etc.) [1].

There are many analytical and numerical studies for
buckling analysis of beams and columns in the literature, but
most of them are limited to the case of uniform case and
a few studies take into account variation of both material
properties and cross-section through the axial direction for
columns with elastic restraints. Closed form solutions for
these types of columns are only available for some special
cases [2–8], and to obtain a general solution, numerical
methods should be employed. As far as numerical methods
are concerned, differential quadrature method (DQM) is
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claimed to be an efficient and powerful numerical technique
with minimum computational effort and also an alternative
to the finite difference and finite element methods. DQM,
introduced firstly by Bellmann and his coworkers [9, 10],
discretizes any derivative at a point in the solution domain by
a weighted linear sum of function values along the direction
of its respective coordinate. Since its advance, DQMhas been
successfully applied to a variety of problems in engineering
science and a review can be found in [11]. The DQM and its
modified versions are applied to buckling analyses of nonuni-
form and functionally graded columns in [12–15]. Other
numerical methods such as differential transform method
[15], semi-inverse method [16–18], functional perturbation
method [19], variational iteration method [20, 21], homotopy
perturbation method [22, 23], finite difference method [24],
finite element method [25], integral-equation approach [26],
dynamic stiffness method [27], Newton’s eigenvalue iteration
method [28], and Fredholm integral technique [29] are also
successfully applied to buckling analyses of nonuniform and
axially functionally graded columns. Recently, Huang and
Luo [30] proposed a method that uses power series and inte-
gral technique to obtain a polynomial characteristic equation
in terms of critical buckling loads for axially inhomogeneous
beams with elastic restraint. Then they solved this equation
for smallest positive root using a commercial software.

The key procedure in DQM lies in the determination of
the weighting coefficients. Also, implementation of boundary
conditions is another important issue. With this respect,
many studies are conducted to overcome deficiencies of the
DQM. Detailed information about the DQM and its devel-
opment stages can be found in [31]. Even though, DQM has
been regarded as an efficient numerical technique with high
accuracy at the beginning, large number of grid numbers
cannot be used, that is, more than 21, due to the stability
problems. To overcome these deficiencies, more advanced
version of DQM, localized differential quadrature method
(LDQM) is proposed and applied to some engineering and
physical problems such as 2D wave equation [32], 2D stream
function formulation of Navier–Stokes equations [33], and
mild slope equation [34]. The basic idea in the LDQ method
is to apply DQ approximation to a small neighborhood of
the grid point of interest rather than to the whole domain.
The derivatives at each grid point are then approximated
by a weighted sum of function values on its neighboring
points, rather than on all of the grid points. Thus, a very
accurate solutionwithout losing stability can be obtained.The
discussion and basic ideas beyond the LDQM are given in
detail in [35].

In this study, LQDM is applied to the buckling analyses
of nonuniform axially functionally graded columns with
elastic restraints for different boundary conditions. To the
best of the authors’ knowledge, in the open literature, LDQM
is not applied before to solutions of generalized eigen-
value problems governed by fourth-order variable coefficient
differential equations. Fictitious points are not used for
implementation of boundary conditions at the tip nodes and
boundary conditions are directly implemented into weight-
ing coefficient matrices. It is seen that problems encountered
in original DQ method for implementation of clamped
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Figure 1: Column with continuous elastic restraint.

boundary conditions into weighting coefficient matrices are
eliminated using LDQM. There is no restriction in the
continuous variation of cross-section and elastic modulus in
the axial direction. In the following at first, mathematical
formulation of the problem is provided and an introduction is
given for classical DQM and LDQM.Then numerical results
for critical buckling loads are given for a large case of columns
using LDQM.

2. Mathematical Formulation

2.1. Governing Differential Equation. A nonuniform axially
functionally graded column of length 𝐿 subjected to an axial
compressive load 𝑃 at the centroid axis with a continuous
elastic restraint is considered (see Figure 1). The material
properties and cross-section of the beam are assumed to vary
continuously along the axial direction, 𝑥. According to Euler-
Bernoulli beam theory, the effects of shear deformation and
rotary inertia are neglected; thus the governing differential
equation for buckling of an axially FG nonuniform beam on
elastic foundation can be written as follows [8]:

𝑑
2

𝑑𝑥2
[𝐸 (𝑥) 𝐼 (𝑥)

𝑑
2
𝑤

𝑑𝑥2
] + 𝑃

𝑑
2
𝑤

𝑑𝑥2
+ 𝑘𝑤 = 0, 0 < 𝑥 < 𝐿,

(1)

where 𝑤(𝑥) is the lateral displacement, 𝐸(𝑥) and 𝐼(𝑥) are
axially varying modulus of elasticity and moment of inertia
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of the column, respectively, and 𝑘 is the stiffness of the uni-
formly distributed lateral springs per unit length. Introducing
nondimensional coordinate and deflection as

𝜉 =
𝑥

𝐿
, 𝑊 (𝜉) =

𝑤 (𝑥)

𝐿
, (2)

(1) can be written as [30]

𝑑
2

𝑑𝜉2
[𝐸 (𝜉) 𝐼 (𝜉)

𝑑
2
𝑊

𝑑𝜉2
] + 𝛼
∗ 𝑑
2
𝑊

𝑑𝜉2
+ 𝛽
∗
𝑊 = 0, 0 < 𝜉 < 1,

(3)

where 𝛼∗ = 𝑃𝐿
2 is the normalized critical load and 𝛽

∗
= 𝑘𝐿
4

is the normalized restrained stiffness parameter.

2.2. Boundary Conditions. End supports of the beam directly
affect the critical buckling load of the column. In the present
study, four types of boundary conditions shown in Figure 2
are considered [8]. The explicit expressions for the boundary
conditions can be given in terms of𝑊(𝜉) as follows.

Clamped support (C):

𝑊 = 0,
𝑑𝑊

𝑑𝜉
= 0. (4a)

Pin support (P):

𝑊 = 0,
𝑑
2
𝑊

𝑑𝜉2
= 0. (4b)

Free end (F):

𝑑
2
𝑊

𝑑𝜉2
= 0,

𝑑

𝑑𝜉
[𝐸 (𝜉) 𝐼 (𝜉)

𝑑
2
𝑊

𝑑𝜉2
] + 𝛼
∗ 𝑑𝑊

𝑑𝜉
= 0. (4c)

Guided end (G):

𝑑𝑊

𝑑𝜉
= 0,

𝑑

𝑑𝜉
[𝐸 (𝜉) 𝐼 (𝜉)

𝑑
2
𝑊

𝑑𝜉2
] + 𝛼
∗ 𝑑𝑊

𝑑𝜉
= 0. (4d)

The problem is to find the critical buckling load of the
column using the fourth-order variable coefficient ordinary
differential equation (3) subject to corresponding boundary
conditions given in (4a), (4b), (4c), and (4d). A closed-form
solution of the problem is not generally possible for arbitrarily
varying coefficients except for some special cases [3–7] and
it is of crucial importance to find the smallest root of the
equations for general case in engineering applications. In
Section 3, LDQM discretization of the governing differential
equation and boundary conditions will be shown for general
case of axial variation of material properties and cross-
section and, in Section 4, various types of nonuniform axially
FG beams will be considered and corresponding numerical
solutions will be obtained for the critical buckling loads.

C-F P-P C-P C-C C-G

Figure 2: Boundary conditions.

3. Numerical Discretization and
Method of Solution

3.1. Classical Differential Quadrature Method (DQM). The
method of differential quadrature (DQ) is based on an
assumption that the derivative of a function with respect to
a space variable at a given discrete point can be expressed as
a weighted linear sum of the function values at all discrete
points in the solution domain. Weighting coefficients of
DQM can be calculated in several ways. In order to find
simple algebraic expressions for the weighting coefficients
without restricting the choice of grid points, the generalized
DQM was developed by Shu and Richards [36]. Consider a
function 𝑓(𝑥) prescribed in a field domain 𝑎 ≤ 𝑥 ≤ 𝑏. Let
𝑓(𝑥
𝑖
) be the function values specified in a finite set of 𝑁

discrete points 𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑁) of the field domain. The

𝑟th-order derivative of 𝑓(𝑥) at any discrete point 𝑥
𝑖
can be

written in DQ analog form as

𝑑
𝑟
𝑓 (𝑥
𝑖
)

𝑑𝑥𝑟
=

𝑁

∑

𝑗=1

𝑎
(𝑟)

𝑖𝑗
𝑓 (𝑥
𝑗
) , 𝑖 = 1, 2, . . . , 𝑁, (5)

where 𝑎
(𝑟)

𝑖𝑗
are the weighting coefficients of the 𝑟th-order

derivative of the function 𝑓(𝑥) associated with points 𝑥
𝑖
.

In the generalized DQM, the test functions are assumed
to be the Lagrange interpolation test functions such as

ℓ
𝑗
(𝑥) =

𝑀 (𝑥)

(𝑥 − 𝑥
𝑗
)𝑀(1) (𝑥

𝑗
)

, 𝑗 = 1, 2, . . . , 𝑁, (6)

where

𝑀(𝑥) =

𝑁

∏

𝑚=1

(𝑥 − 𝑥
𝑚
) ,

𝑀
(1)

(𝑥
𝑗
) =

𝑑𝑀(𝑥
𝑗
)

𝑑𝑥
=

𝑁

∏

𝑚=1,𝑚 ̸= 𝑗

(𝑥
𝑗
− 𝑥
𝑚
) .

(7)



4 Mathematical Problems in Engineering

The weighting coefficients for the first-order derivative
can be obtained using Lagrange interpolation polynomial as
follows:

𝑎
(1)

𝑖𝑗
=

𝑑ℓ
𝑗
(𝑥
𝑖
)

𝑑𝑥
=

𝑀
(1)

(𝑥
𝑖
)

(𝑥
𝑖
− 𝑥
𝑗
)𝑀(1) (𝑥

𝑗
)

,

𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝑖 ̸= 𝑗,

(8a)

𝑎
(1)

𝑖𝑖
=
𝑑ℓ
𝑖
(𝑥
𝑖
)

𝑑𝑥
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
(1)

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑁, (8b)

and these coefficients give the [𝐴(1)]matrix as

[𝐴
(1)
] =

[
[
[
[
[
[

[

𝑎
(1)

11
𝑎
(1)

12
⋅ ⋅ ⋅ 𝑎
(1)

1𝑁

𝑎
(1)

21
𝑎
(1)

22
⋅ ⋅ ⋅ 𝑎
(1)

2𝑁

...
... d

...
𝑎
(1)

𝑁1
𝑎
(1)

𝑁2
⋅ ⋅ ⋅ 𝑎
(1)

𝑁𝑁

]
]
]
]
]
]

]

. (9)

Similarly, the weighting coefficients for the 𝑟th-order deriva-
tive can be evaluated using the following equations:

𝑎
(𝑟)

𝑖𝑗
=

𝑑
𝑟
ℓ
𝑗
(𝑥
𝑖
)

𝑑𝑥𝑟
= 𝑟(𝑎

(𝑟−1)

𝑖𝑖
𝑎
(1)

𝑖𝑗
−

𝑎
(𝑟−1)

𝑖𝑗

(𝑥
𝑖
− 𝑥
𝑗
)

) ,

𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝑖 ̸= 𝑗, 𝑟 ≥ 2,

(10a)

𝑎
(𝑟)

𝑖𝑖
=
𝑑
𝑟
ℓ
𝑖
(𝑥
𝑖
)

𝑑𝑥𝑟
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
(𝑟)

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑁, 𝑟 ≥ 2.

(10b)

The weighting coefficients for second- and higher-order
derivatives can also be evaluated using the following expres-
sion:

𝑎
(𝑟)

𝑖𝑗
=

𝑁

∑

𝑘=1

𝑎
(𝑟−1)

𝑖𝑘
𝑎
(1)

𝑘𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝑟 ≥ 2. (11)

These coefficients give the matrix 𝐴
(𝑟) which can be inter-

preted as follows:

[𝐴
(𝑟)
] =

[
[
[
[
[
[

[

𝑎
(𝑟)

11
𝑎
(𝑟)

12
⋅ ⋅ ⋅ 𝑎
(𝑟)

1𝑁

𝑎
(𝑟)

21
𝑎
(𝑟)

22
⋅ ⋅ ⋅ 𝑎
(𝑟)

2𝑁

...
... d

...
𝑎
(𝑟)

𝑁1
𝑎
(𝑟)

𝑁2
⋅ ⋅ ⋅ 𝑎
(𝑟)

𝑁𝑁

]
]
]
]
]
]

]

. (12)

When 𝑥 is taken in the interval 𝑥 ∈ [0, 𝐿] instead of
𝑥 ∈ [0, 1], the right-hand side of (14) must be divided by 𝐿𝑟
which can be smaller or greater than 1. Then, the weighting
coefficient matrix takes the following form:

[𝐴
(𝑟)
] = (

𝑑

𝑑𝑥
)

𝑟

=
𝑑
𝑟

𝑑𝑥𝑟
=

1

𝐿𝑟

[
[
[
[
[
[

[

𝑎
(𝑟)

11
𝑎
(𝑟)

12
⋅ ⋅ ⋅ 𝑎
(𝑟)

1𝑁

𝑎
(𝑟)

21
𝑎
(𝑟)

22
⋅ ⋅ ⋅ 𝑎
(𝑟)

2𝑁

...
... d

...
𝑎
(𝑟)

𝑁1
𝑎
(𝑟)

𝑁2
⋅ ⋅ ⋅ 𝑎
(𝑟)

𝑁𝑁

]
]
]
]
]
]

]

.

(13)

Figure 3: Discretization of boundary and near boundary reference
points for𝑁

𝑥
= 7 and𝑁 = 21.

Figure 4: Discretization of an interior reference point for 𝑁
𝑥
= 7

and𝑁 = 21.

After calculating the matrix 𝐴
(1), weighting coefficient

matrices for second- and higher-order derivatives can also be
calculated using the following formulae:

[𝐴
(𝑟)
] = [𝐴

(1)
] [𝐴
(𝑟−1)

] = [𝐴
(𝑟−1)

] [𝐴
(1)
] . (14)

3.2. Localized Differential Quadrature Method (LDQM) and
Sampling Points. In LDQM, firstly neighboring grids of any
discrete point 𝑥

𝑖
in the computational domain should be

determined according to the position of the point of interest
and order of the first derivative approximation. For example if
the function is discretized at the beginning boundary of the
physical domain with respect to space variable 𝑥 (at 𝑥 = 0)
or nearby it and a sixth-order first derivative approximation
is used that means 7 neighboring points are needed (𝑁

𝑥
=

7), the selection of the neighboring grid points should be
forward type in the direction of the space variable, and
if the function is discretized at the end boundary of the
physical domain with respect to space variable 𝑥 (at 𝑥 = 𝐿)
or nearby it, the selection of the neighboring grid points
should be backward type. At the other interior reference
points central type scheme is used. Figures 3 and 4 show the
selection of neighboring points of a discrete point 𝑥

𝑖
in the

solution domain for the previously mentioned cases. Then,
the discretization of the first-order derivative of a function
𝑓(𝑥) with respect to space variable, 𝑥, at any discrete point
𝑥
𝑖
can be approximated using a weighted linear combination

of the function values at some of the neighboring reference
points within the computational domain as [32]

𝑑𝑓 (𝑥
𝑖
)

𝑑𝑥
= ∑

𝑗∈𝑆𝑖

𝑎
(1)

𝑖𝑗
𝑓 (𝑥
𝑗
) , 𝑖 = 1, 2, . . . , 𝑁, (15)

where 𝑆
𝑖
represents the corresponding set of the neighboring

nodes for the discrete grid point 𝑥
𝑖
in the domain or

at the boundaries, 𝑁 is the total amount of grid points
in the direction of 𝑥. Weighting coefficients of the first-
order derivative with respect to spatial coordinate 𝑥 can be
evaluated using the following equations:

𝑎
(1)

𝑖𝑗
=

∏
𝑚∈𝑆𝑖 ,𝑚 ̸= 𝑖

(𝑥
𝑖
− 𝑥
𝑚
)

(𝑥
𝑖
− 𝑥
𝑗
) ⋅ ∏
𝑚∈𝑆𝑖 ,𝑚 ̸= 𝑗

(𝑥
𝑗
− 𝑥
𝑚
)

,

𝑖 = 1, 2, . . . , 𝑁, 𝑗 ∈ 𝑆
𝑖
, 𝑖 ̸= 𝑗,

(16a)

𝑎
(1)

𝑖𝑖
= − ∑

𝑗∈𝑆𝑖 ,𝑗 ̸= 𝑖

𝑎
(1)

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑁. (16b)
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Similarly, the discretization of the higher-order derivatives of
𝑓(𝑥)with respect to space variable, 𝑥, at any discrete point 𝑥

𝑖

can be expressed as

𝑑
𝑟
𝑓 (𝑥
𝑖
)

𝑑𝑥𝑟
= ∑

𝑗∈𝑆𝑖

𝑎
(𝑟)

𝑖𝑗
𝑓 (𝑥
𝑗
) , 𝑖 = 1, 2, . . . , 𝑁, 𝑟 ≥ 2. (17)

The weighting coefficients for the 𝑟th-order derivative at
any discrete point 𝑥

𝑖
can be evaluated using the following

equations:

𝑎
(𝑟)

𝑖𝑗
= 𝑟 ⋅ (𝑎

𝑖𝑗
𝑎
(𝑟−1)

𝑖𝑖
−

𝑎
(𝑟−1)

𝑖𝑗

(𝑥
𝑖
− 𝑥
𝑗
)

) ,

𝑖 = 1, 2, . . . , 𝑁, 𝑗 ∈ 𝑆
𝑖
, 𝑖 ̸= 𝑗, 𝑟 ≥ 2,

(18a)

𝑎
(𝑟)

𝑖𝑖
= − ∑

𝑗∈𝑆𝑖 ,𝑗 ̸= 𝑖

𝑎
(𝑟)

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑁, 𝑟 ≥ 2. (18b)

It is instructive to note that (18a) and (18b) are rewritten forms
of (10a) and (10b) in the neighborhood of the reference point
𝑥
𝑖
.
A frequently used and convenient choice for the sampling

points is that of the equally spaced sampling points which can
be given in normalized coordinate of the space variable 𝑥

𝑖
by

𝜉
𝑖
=

𝑖 − 1

𝑁 − 1
, 𝑖 = 1, 2, . . . , 𝑁. (19)

In the present study, equally spaced sampling points are used.

3.3. LDQM Formulation of the Governing Differential Equa-
tion and Boundary Conditions. Introducing 𝐷(𝜉) = 𝐸(𝜉)𝐼(𝜉)

for flexural rigidity, (3) can be expanded into following form:

𝐷 (𝜉)
𝑑
4
𝑊

𝑑𝜉4
+ 2

𝑑𝐷 (𝜉)

𝑑𝜉

𝑑
3
𝑊

𝑑𝜉3

+
𝑑
2
𝐷 (𝜉)

𝑑𝜉2

𝑑
2
𝑊

𝑑𝜉2
+ 𝛼
∗ 𝑑
2
𝑊

𝑑𝜉2
+ 𝛽
∗
𝑊 = 0.

(20)

For the numerical computation equation (20) can be dis-
cretized using LDQM as follows:

𝐷(𝜉
𝑖
) ∑

𝑗∈𝑆𝑖

𝑎
(4)

𝑖𝑗
𝑊(𝜉
𝑗
) + 2

𝑑𝐷 (𝜉)

𝑑𝜉

𝜉=𝜉𝑖

∑

𝑗∈𝑆𝑖

𝑎
(3)

𝑖𝑗
𝑊(𝜉
𝑗
)

+
𝑑
2
𝐷 (𝜉)

𝑑𝜉2

𝜉=𝜉𝑖

∑

𝑗∈𝑆𝑖

𝑎
(2)

𝑖𝑗
𝑊(𝜉
𝑗
) + 𝛼
∗
∑

𝑗∈𝑆𝑖

𝑎
(2)

𝑖𝑗
𝑊(𝜉
𝑗
)

+ 𝛽
∗
𝑊(𝜉
𝑖
) = 0, 𝑖 = 1, 2, . . . , 𝑁.

(21)

Boundary conditions given in (4a), (4b), (4c), and (4d) can
be discretized at 𝜉 = 0 using LDQM as follows.

Clamped support (C):

𝑊(𝜉
1
) = 0, ∑

𝑗∈𝑆𝑖

𝑎
(1)

1𝑗
𝑊(𝑥
𝑗
) = 0. (22a)

Pin support (P):

𝑊(𝜉
1
) = 0, ∑

𝑗∈𝑆𝑖

𝑎
(2)

1𝑗
𝑊(𝑥
𝑗
) = 0. (22b)

Free end (F):

∑

𝑗∈𝑆𝑖

𝑎
(2)

1𝑗
𝑊(𝑥
𝑗
) = 0,

𝑑𝐷 (𝜉)

𝑑𝜉

𝜉=0

∑

𝑗∈𝑆𝑖

𝑎
(2)

1𝑗
𝑊(𝑥
𝑗
)

+ 𝐷 (𝜉
1
) ∑

𝑗∈𝑆𝑖

𝑎
(3)

1𝑗
𝑊(𝑥
𝑗
) + 𝛼
∗
∑

𝑗∈𝑆𝑖

𝑎
(1)

1𝑗
𝑊(𝑥
𝑗
) = 0.

(22c)

Guided end (G):

∑

𝑗∈𝑆𝑖

𝑎
(1)

1𝑗
𝑊(𝑥
𝑗
) = 0,

𝑑𝐷 (𝜉)

𝑑𝜉

𝜉=0

∑

𝑗∈𝑆𝑖

𝑎
(2)

1𝑗
𝑊(𝑥
𝑗
)

+ 𝐷 (𝜉
1
) ∑

𝑗∈𝑆𝑖

𝑎
(3)

1𝑗
𝑊(𝑥
𝑗
) + 𝛼
∗
∑

𝑗∈𝑆𝑖

𝑎
(1)

1𝑗
𝑊(𝑥
𝑗
) = 0.

(22d)

Boundary conditions at 𝜉 = 1 can also be discretized in a
similar manner. Boundary conditions given in (22a), (22b),
(22c), and (22d) can directly be substituted into weighting
coefficient matrices as described by Shu [31]. It will be shown
in the next section that the disadvantages of substituting
boundary conditions into weighting coefficient matrices,
encountered in classical DQM for clamped boundary condi-
tion, disappeared in LDQM. It is also worth mentioning that
no compatibility equations are needed in LDQM because the
governing differential equation is discretized only once for
each reference grid using neighboring points and variation
of flexural rigidity is continuous in the axial direction.

Resulting set of algebraic equations can be put intomatrix
form to solve the generalized eigenvalue problem for critical
buckling loads. Required matrix dimension is (𝑁− 2) × (𝑁−

2) for combination of clamped and simply supported end
conditions since the function values at 𝜉 = 0 and 𝜉 = 1

are known. For combination of clamped and other boundary
conditions (free and guided), the resulting matrix dimension
is (𝑁 − 1) × (𝑁− 1) since function value is only known at the
clamped end.

4. Numerical Results and Discussions

In this section, LDQM is used to investigate the buckling
behavior of axially FG nonuniform beams with a continuous
elastic restraint. Firstly buckling behavior of homogeneous
uniform columns with elastic restraints that has analytical
solution is investigated to show the effectiveness of the
method. Then the effects of variable cross-section and vari-
able elastic modulus are investigated individually and both
together.
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4.1. Uniform Homogeneous Column with Elastic Restraints.
For this case, (3) has an analytic solution and Wang et al. [8]
have derived the stability criteria in nondimensional critical
buckling load𝛼 = 𝑃𝐿

2
/𝐸𝐼 andnormalized restrained stiffness

parameter 𝛽 = 𝑘𝐿
4
/𝐸𝐼 for the columns with different end

conditions. Stability criteria are as follows:

P-P Column:

sin𝑇 = 0. (23)

C-P Column:

𝑇 cos𝑇 sin 𝑆 − 𝑆 sin𝑇 cos 𝑆 = 0. (24)

C-G Column:

𝑇 sin𝑇 cos 𝑆 − 𝑆 cos𝑇 sin 𝑆 = 0. (25)

C-C Column:

2𝑆𝑇 [cos𝑇 cos 𝑆 − 1] + (𝑇
2
+ 𝑆
2
) sin𝑇 sin 𝑆 = 0. (26)

C-F Column:

[𝛼 (𝑆
2
+ 𝑇
2
) − 2𝑆

2
𝑇
2
] cos𝑇 cos 𝑆 − 𝛼 (𝑆

2
+ 𝑇
2
)

+ (𝑆
4
+ 𝑇
4
) + 𝑆𝑇 [2𝛼 − (𝑆

2
+ 𝑇
2
)] sin𝑇 sin 𝑆 = 0,

(27)

where

𝑆 =
√ 𝛼

2
− √(

𝛼

2
)

2

− 𝛽, 𝑇 =
√𝛼

2
+ √(

𝛼

2
)

2

− 𝛽.

(28)

The stability criteria given in (23)–(27) are extremely non-
linear and finding the smallest root of the equation which
is the critical buckling load is not easy for any assumed
stiffness parameter. To show the effectiveness of the LDQM,
nondimensional critical buckling loads, 𝛼 = 𝑃𝐿

2
/𝐸𝐼, are

calculated for clamped-clamped beams with different nor-
malized restrained stiffness parameters 𝛽 = 𝑘𝐿

4
/𝐸𝐼 and

compared to the exact results. In calculations the number of
neighboring grids 𝑁

𝑥
is taken to be 11 and total number of

grid points 𝑁 is changed from 21 to 41. As can be seen from
Table 1, critical buckling load converges to exact results as𝑁
increases from 11 to 41. In the following, neighboring grids𝑁

𝑥

is taken to be 11 and total number of grid points𝑁 is taken to
be 41 unless otherwise specified.

The critical buckling loads of the aforementioned
columns have also been calculated by Atay and Coşkun
[21] using a variation iteration approach and Huang and
Luo [30] using power series and the integral technic.

Nondimensional critical buckling loads for other boundary
conditions are also obtained using LDQM and compared
with the exact results [8], and with [21, 30]. The LDQM
results given in Table 2 are in good agreement with the exact
and other numerical results. It is also seen from Tables 1
and 2 that although the critical buckling load increases as
the normalized restrained stiffness parameter increases for
all of the boundary conditions, the column with C-G end
condition is more sensitive to normalized restrained stiffness
parameter change than the others.

4.2. Effect of Variable Cross-Section. Euler-Bernoulli columns
with nonuniform cross-section along the axial direction are
considered to see the effect of variable cross-section on
critical buckling load. For this case elastic modulus 𝐸 is taken
to be constant andmoment of inertia term changes according
to a power law:

𝐼 (𝜉) = 𝐼
0
(1 + 𝑎𝜉)

𝑝
, 𝑎 > −1, (29)

where 𝑎 is a geometric parameter and 𝑝 = 1, 2, and 3.
First let us consider the case 𝑝 = 1 which corresponds to

the columns of linearly varying width and constant height.
Nondimensional critical buckling loads, 𝛼 = 𝑃𝐿

2
/𝐸𝐼
0
, are

calculated using LDQM for different geometric parameter
values, 𝑎, and normalized restrained stiffness parameters
𝛽 = 𝑘𝐿

4
/𝐸𝐼
0
. The results are compared to available results

in the literature and given in Tables 3 and 4. It is seen
from Tables 3 and 4 that with 𝑎 changes from negative
to positive values, nondimensional critical buckling load
increases since negative values of 𝑎 correspond to decreasing
width and positive values of 𝑎 correspond to increasing width
as 𝜉 changes from 0 to 1. As normalized restrained stiffness
parameter increases, critical buckling loads also increase for
all of the boundary conditions as in the case of uniform
columns.

𝑝 = 2 case corresponds to the columns of parabolic
varying width and constant height. For this case nondimen-
sional critical buckling loads, 𝛼 = 𝑃𝐿

2
/𝐸𝐼
0
, are calculated

using LDQM for different geometric parameter values, 𝑎, and
normalized restrained stiffness parameters 𝛽 = 𝑘𝐿

4
/𝐸𝐼
0
. The

results are compared to available results in the literature and
given in Tables 5 and 6. Comparison of results given in Tables
3 and 4 with the results given in Tables 5 and 6 shows that
critical buckling loads for 𝑝 = 2 case are higher than 𝑝 = 1

case for 𝑎 > 0 and critical buckling loads for 𝑝 = 2 case
are lower than 𝑝 = 1 case for 𝑎 < 0 for all of the boundary
conditions since decrease and increase in column width are
influenced by a factor of 2 for the case of 𝑝 = 2. It is also
seen from Tables 5 and 6 that although C-P and P-C columns
have the same critical buckling loads for 𝛽 = 0, they have
somewhat different critical buckling loads for 𝛽 = 25, 50, and
100.

For the case of 𝑝 = 3, column has constant width and
linearly varying height. The numerical results for nondi-
mensional critical buckling loads, 𝛼 = 𝑃𝐿

2
/𝐸𝐼
0
, are given

in Table 7 for different geometric parameter values, 𝑎, and
normalized restrained stiffness parameters 𝛽 = 𝑘𝐿

4
/𝐸𝐼
0
.

Looking at Table 7, it is seen that the increase in critical
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Table 1: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸𝐼) for clamped-clamped uniform homogeneous columns with continuous elastic

restraint (𝛽 = 𝑘𝐿
4
/𝐸𝐼).

𝛽 Exact [8] DQM
𝑁 = 21

DQM
𝑁 = 31

DQM
𝑁 = 41

LDQM
𝑁
𝑥
= 11,

𝑁 = 21

LDQM
𝑁
𝑥
= 11,

𝑁 = 31

LDQM
𝑁
𝑥
= 11,

𝑁 = 41

0 39.47841760 39.47841735 39.46144027 — 39.47841219 39.47841756 39.47841760
50 43.26056590 43.26107726 38.55373074 — 43.26023292 43.26056213 43.26056583
100 47.00660086 47.00980042 37.89095672 — 47.00612534 47.00659571 47.00660072

Table 2: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸𝐼) for uniform homogeneous columns with continuous elastic restraint (𝛽 =

𝑘𝐿
4
/𝐸𝐼).

BC 𝛽 = 0 𝛽 = 50 𝛽 = 100

Exact [8] Reference
[21]

Reference
[30] LDQM Exact [8] Reference

[21]
Reference

[30] LDQM Exact
[8]

Reference
[21] Reference [30] LDQM

C-P 20.1907 20.1908 20.190729 20.190729 24.2852 24.2855 24.285198 24.285198 28.3066 28.3080 28.306631 28.306631
P-P 9.8696 9.8696 9.869604 9.869604 14.9357 14.9357 14.935664 14.935664 20.0017 20.0017 20.001723 20.001723
C-G 9.8696 9.8696 9.869604 9.869604 23.5717 23.5722 23.571661 23.571659 32.6690 32.6482 32.668976 32.668976
C-F 2.4674 2.4674 2.467401 2.467401 8.8614 8.8614 8.861396 8.861396 11.9964 11.9964 11.996413 11.996413

Table 3: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸𝐼
0
) for

the columns of linearly varying width and constant height (𝐼(𝜉) =

𝐼
0
(1 + 𝑎𝜉)) for 𝛽 = 0.

BC 𝑎 Reference [28] Reference [3] Reference [30] LDQM

C-F
−0.5 — — — 2.06209226
0.5 — — — 2.81006133
1.0 3.12277257 3.11769623 3.11769623 3.11769628

F-C
−0.5 — — — 1.55884812
0.5 — — — 3.31117993
1.0 — 4.12418445 4.12418445 4.12418442

P-P
−0.5 — — — 7.25562477
0.5 — — — 12.25041131
1.0 14.50520092 14.51124954 14.51124954 14.51124954

C-P
−0.5 — — — 14.73942213
0.5 — — — 24.99361144
1.0 29.49596465 29.44896281 29.44896281 29.44896281

P-C
−0.5 — — — 14.72448141
0.5 — — — 24.99874044
1.0 — 29.47884426 29.47884426 29.47884426

C-C
−0.5 — — — 28.69697807
0.5 — — — 48.81145815
1.0 57.44524609 57.39395614 57.39395614 57.39395614

C-G
−0.5 — — — 7.16883539
0.5 — — — 12.19969805
1.0 — — — 14.33767077

buckling loads for 𝑎 > 0 and the decrease in critical buckling
loads for 𝑎 < 0 are more pronounced as compared to 𝑝 = 2

case because this time moment of inertia term is affected
by a factor of 3. In Section 4.4, a column that has linearly
varying width and height is also considered with varying
elastic modulus.

4.3. Effect of Material Nonhomogeneity in the Axial Direc-
tion. Euler-Bernoulli columns with material nonhomogene-
ity along the axial direction are considered to see the effect
of variable elastic modulus on critical buckling loads. For
this case moment of inertia term, 𝐼, is taken to be constant
and elastic modulus varies according to a power law or an
exponential low gradient assumption.

4.3.1. Power Law Gradient Assumption. For power law gra-
dient assumption, the variation of elastic modulus along the
axial direction is taken as

𝐸 (𝜉) = 𝐸
0
+ (𝐸
1
− 𝐸
0
) 𝜉
𝑚
, 𝑚 > 0, (30)

where 𝑚 is a material gradient index and takes the values
of 0.25, 0.5, 1, 2, and 4 in the present study. Specifically,
two constituent materials are taken to be Aluminum and
Alumina. The elastic moduli of these constituents are 70GPa
(𝐸
0
) and 380Gpa (𝐸

1
), respectively [37]. Poisson’s ratio is

taken to be constant. The LDQM results for nondimensional
critical buckling loads, 𝛼 = 𝑃𝐿

2
/𝐸
0
𝐼, are given in Table 8 for

different material gradient index values, 𝑚, and normalized
restrained stiffness parameters 𝛽 = 𝑘𝐿

4
/𝐸
0
𝐼. It is seen

that although the constituent materials are not changed, the
critical buckling loads change drastically as material gradient
index value changes, that is, increase as𝑚 gets smaller values
because as 𝑚 goes to zero, the volume fraction of Alumina
becomes dominant.

4.3.2. Exponential Law Gradient Assumption. For exponen-
tial law gradient assumption, the variation of elastic modulus
along the axial direction is taken to be

𝐸 (𝜉) = 𝐸
0
𝑒
𝜇𝜉
, (31)

where 𝜇 is a material gradient index and takes the values
of −1, −0.5, 0.5, and 1 in the present study. Negative values
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Table 4: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸𝐼
0
) for the columns of linearly varying width and constant height (𝐼(𝜉) =

𝐼
0
(1 + 𝑎𝜉)) with continuous elastic restraint (𝛽 = 𝑘𝐿

4
/𝐸𝐼
0
).

BC 𝑎 = −0.5 𝑎 = 0.5 𝑎 = 1

𝛽 = 25 𝛽 = 50 𝛽 = 100 𝛽 = 25 𝛽 = 50 𝛽 = 100 𝛽 = 25 𝛽 = 50 𝛽 = 100

C-F 5.320851 7.249834 9.496180 7.002455 10.034833 13.926981 7.575957 10.969773 15.525985
F-C 5.484886 7.762992 10.365666 7.065179 9.787644 13.328385 7.822199 10.641702 14.499668
P-P 9.774589 12.290572 17.308835 14.778728 17.306502 22.359993 17.030858 19.549179 24.581143
C-P 16.663069 18.556531 22.240823 27.120454 29.236109 33.430687 31.622334 33.787588 38.091765
P-C 16.893794 19.045882 23.289167 26.982108 28.949869 32.834737 31.409689 33.326139 37.113062
C-C 30.583452 32.457228 36.164501 50.705246 52.591875 56.342983 59.283541 61.166905 64.914456
C-G 13.693532 18.852382 24.928160 19.887489 26.982550 38.296345 22.292684 29.808724 42.676370

Table 5: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸𝐼
0
) for

the columns of parabolic varying width and constant height (𝐼(𝜉) =
𝐼
0
(1 + 𝑎𝜉)

2
) for 𝛽 = 0.

BC 𝑎 Reference [28] Reference [3] Reference [30] LDQM

C-F
−0.5 — — — 1.68296637
0.5 — — — 3.17193009
1.0 3.85763006 3.83637692 3.83637692 3.83637679

F-C
−0.5 — — — 0.95909423
0.5 — — — 4.40655924
1.0 — 6.73186541 6.73186541 6.73186555

P-P
−0.5 — — — 5.19807211
0.5 — — — 15.07084413
1.0 20.79163330 20.79228846 20.79228846 20.79228846

C-P
−0.5 — — — 10.52729403
0.5 — — — 30.72425899
1.0 42.31345100 42.10917612 42.10917612 42.10917612

P-C
−0.5 — — — 10.52729403
0.5 — — — 30.72425899
1.0 — 42.10917612 42.10917612 42.10917612

C-C
−0.5 — — — 20.48084102
0.5 — — — 59.97123859
1.0 82.22844561 81.92336388 81.92336364 81.92336379

C-G
−0.5 — — — 5.19807212
0.5 — — — 15.07084413
1.0 — — — 20.79228847

of 𝜇 correspond to the case; the column is ceramic rich at
𝜉 = 0 and metal rich at 𝜉 = 1 whereas positive values of 𝜇
corresponds to the case; the column is metal rich at 𝜉 = 0 and
ceramic rich at 𝜉 = 1. The LDQM results for nondimensional
critical buckling loads, 𝛼 = 𝑃𝐿

2
/𝐸
0
𝐼, are given in Table 9 for

different material gradient index values, 𝜇, and normalized
restrained stiffness parameters 𝛽 = 𝑘𝐿

4
/𝐸
0
𝐼. As can be seen

from Table 9, critical buckling load increases for all of the
boundary conditions with an increase in material gradient
index as expected and it is also seen that restrained stiffness
parameter has an important influence on critical buckling
loads.

4.4. Effects of Both Material Nonhomogeneity and Variable
Cross-Section. To investigate the effects of varying elastic
modulus and cross-section along the axial direction together,
a column that has linearly varying width and height and
linearly varying elastic modulus is considered.

Width of the column:

𝑏 (𝜉) = 𝑏
0
(1 − 𝑐
𝑏
𝜉) , 0 < 𝑐

𝑏
< 1. (32a)

Height of the column:

ℎ (𝜉) = ℎ
0
(1 − 𝑐
ℎ
𝜉) , 0 < 𝑐

ℎ
< 1. (32b)

Moment of inertia of the column:

𝐼 (𝜉) = 𝐼
0
(1 − 𝑐
𝑏
𝜉) (1 − 𝑐

ℎ
𝜉)
3

. (32c)

Elastic modulus of the column:

𝐸 (𝜉) = 𝐸
0
(1 + 𝜉) , (32d)

where 𝑏
0
, ℎ
0
, 𝐼
0
, and 𝐸

0
are width, height, moment of inertia,

and elastic modulus of the column at 𝜉 = 0, respectively, 𝑐
𝑏

and 𝑐
ℎ
are geometric parameters that correspond towidth and

height taper ratios, respectively.
The case of 𝐸(𝜉) = 𝐸

0
(1 + 𝜉) with linearly varying

width and height is investigated by Shahba and Rajasekaran
[15] using differential quadrature element method of lowest
order (DQEL) for 𝛽 = 0 case, that is, there are no elastic
restraints. In [15], 12 elements each consisting of 11 nodes
were chosen; thus total number of reference grids were taken
to be 121. In DQEL, four compatibility equations should be
written at the connection points of the elements and required
matrix dimension to solve the problem is 576 × 576. To
be consistent with [15], in LDQM solution of the problem
total number of reference grids and neighboring nodes are
also taken to be 121 and 11, respectively, but now required
matrix dimension to solve the problem is 121 × 121. The
nondimensional critical buckling loads, 𝛼 = 𝑃𝐿

2
/𝐸
0
𝐼
0
, of

the columns for C-F, C-C, P-P, and C-P end conditions are
given in Tables 10, 11, 12, and 13, respectively. For 𝛽 = 0
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Table 6: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸𝐼
0
) for the columns of parabolic varying width and constant height (𝐼(𝜉) =

𝐼
0
(1 + 𝑎𝜉)

2
) with continuous elastic restraint (𝛽 = 𝑘𝐿

4
/𝐸𝐼
0
).

BC 𝑎 = −0.5 𝑎 = 0.5 𝑎 = 1

𝛽 = 25 𝛽 = 50 𝛽 = 100 𝛽 = 25 𝛽 = 50 𝛽 = 100 𝛽 = 25 𝛽 = 50 𝛽 = 100

C-F 4.341228 5.715021 7.305691 7.704323 11.199778 15.954946 8.844363 13.022270 19.259820
F-C 4.814955 6.692851 8.861021 8.038782 10.842500 14.737209 10.168566 13.021924 17.364909
P-P 7.672218 10.127971 14.937938 17.585157 20.097766 25.116851 23.271880 25.748067 30.688871
C-P 12.293759 14.009160 17.265144 32.912173 35.092823 39.430646 44.369842 46.626819 51.129119
P-C 12.782280 15.020605 19.433707 32.627483 34.516476 38.249232 43.893645 45.666325 49.175037
C-C 22.316590 24.131698 27.694119 61.849231 63.721127 67.446145 83.766543 85.604838 89.266360
C-G 10.832136 14.608627 18.532817 23.114885 30.762149 44.091245 29.276062 37.551999 53.151712

Table 7: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸𝐼
0
) for the columns of constant width and linearly varying height (𝐼(𝜉) =

𝐼
0
(1 + 𝑎𝜉)

3
) with continuous elastic restraint (𝛽 = 𝑘𝐿

4
/𝐸𝐼
0
).

𝑎 = −0.5 𝑎 = 0.5 𝑎 = 1

𝛽 = 0 𝛽 = 25 𝛽 = 50 𝛽 = 100 𝛽 = 0 𝛽 = 25 𝛽 = 50 𝛽 = 100 𝛽 = 0 𝛽 = 25 𝛽 = 50 𝛽 = 100

C-F 1.336426 3.406304 4.350010 5.487807 3.551010 8.394751 12.332922 18.020661 4.612119 10.082221 14.934526 22.864147
F-C 0.576515 4.175688 5.657646 7.558428 5.811363 9.281395 12.095892 16.252824 10.691414 13.774455 16.483421 20.954255
P-P 3.627812 6.022524 8.352143 12.576225 18.375617 20.866994 23.355361 28.321680 29.022499 31.437359 33.847167 38.650332
C-P 7.362241 8.951802 10.460281 13.205198 37.498111 39.736262 41.969764 46.421968 58.957688 61.272201 63.584952 68.205009
P-C 7.369711 9.677768 11.969157 16.483968 37.490417 39.306827 41.110477 44.677867 58.897925 60.520678 62.134215 65.333104
C-C14.348488 16.093293 17.802510 21.098101 73.217187 75.065707 76.908867 80.578722 114.787912 116.546905 118.302355 121.800784
C-G 3.757964 8.394621 10.934803 13.536789 18.603820 26.955608 35.048357 49.998675 30.063711 38.940072 47.723673 64.917551

Table 8: Non-dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸
0
𝐼) for

the axially functionally graded uniform columns with continuous
elastic restraint (𝛽 = 𝑘𝐿

4
/𝐸
0
𝐼) for power law gradient assumption

(𝐸(𝜉) = 𝐸
0
+ (𝐸
1
− 𝐸
0
)𝜉
𝑚
).

BC 𝛽 𝑚 = 0.25 𝑚 = 0.5 𝑚 = 1 𝑚 = 2 𝑚 = 4

C-F
0 10.246957 7.735606 4.817137 3.371243 2.744415
50 19.568013 17.538824 14.864166 12.616815 10.701577
100 27.169221 25.136738 22.408392 18.876263 15.432611

P-P
0 45.748909 38.940772 28.774564 18.792973 13.011352
50 50.803306 43.960898 33.699710 23.651864 17.958863
100 55.857000 48.977666 38.610936 28.483003 22.886075

C-P
0 88.219496 73.141853 56.085968 40.610932 29.196866
50 92.644745 77.725784 60.691265 45.136468 33.591204
100 97.057453 82.298033 65.2873438 49.648452 37.960864

C-C
0 171.978825 141.782221 108.012834 79.801395 61.973263
50 194.878114 164.325089 111.724718 83.269291 65.289531
100 198.515086 167.927968 115.422272 86.713451 68.575996

C-G
0 43.162442 36.512699 26.886961 21.480866 17.319545
50 66.091837 59.354530 44.201739 38.490118 33.745313
100 79.619024 73.035781 60.849096 54.508426 48.551928

case, the results are compared to results of [15] for available
boundary conditions and found to be perfectly consistent.
The results show the potential of LDQM for solution of
generalized eigenvalue problems governed by fourth order
varying coefficient ordinary differential equations with high
accuracy and less computational effort.

Table 9: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸
0
𝐼) for

the axially functionally graded uniform columns with continuous
elastic restraint (𝛽 = 𝑘𝐿

4
/𝐸
0
𝐼) for exponential law gradient

assumption (𝐸(𝜉) = 𝐸
0
𝑒
𝜇𝜉
).

BC 𝛽 𝜇 = −1 𝜇 = −0.5 𝜇 = 0.5 𝜇 = 1

C-F
0 1.782102 2.112127 2.844778 3.241181
50 6.272146 7.534741 10.200538 11.507320
100 8.112043 9.940415 14.224745 16.544646

P-P
0 5.826546 7.634493 12.587151 15.838195
50 10.824282 12.684208 17.638042 20.845819
100 15.772528 17.725908 22.685148 25.842687

C-P
0 11.988386 15.639912 25.782548 32.554915
50 15.640533 19.528086 30.050913 36.962919
100 19.113129 23.299501 34.275138 41.344887

C-C
0 23.490038 30.598353 50.448156 63.852545
50 27.172950 34.353512 54.212593 67.556554
100 30.785108 38.059830 57.948273 71.236233

C-G
0 5.972525 7.682708 12.666644 16.235007
50 16.438031 19.863476 27.642188 32.240813
100 21.152920 26.511574 39.345458 46.225436

5. Conclusions

In this study an LDQM is proposed and applied to the
critical buckling load analyses of axially functionally graded
nonuniform columns with elastic restraint. The method can
be applied for any type of nonhomogeneity in the axial
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Table 10: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸
0
𝐼
0
) for the axially functionally graded non-uniform columns with continuous

elastic restraint (𝛽 = 𝑘𝐿
4
/𝐸
0
𝐼
0
) for C-F boundary condition.

𝛽 𝑐
ℎ

𝑐
𝑏

0 0.2 0.4 0.6 0.8

0

0 Reference [15] 3.1177 2.9497 2.7676 2.5652 2.3285
LDQM 3.117663 2.949668 2.767637 2.565141 2.328495

0.2 Reference [15] 2.6225 2.4638 2.2915 2.0992 1.8725
LDQM 2.622455 2.463779 2.291515 2.099165 1.872518

0.4 Reference [15] 2.1054 1.9585 1.7988 1.6200 1.4074
LDQM 2.105415 1.958547 1.798693 1.619887 1.407356

0.6 Reference [15] 1.5522 1.4217 1.2798 1.1208 0.9309
LDQM 1.552205 1.421546 1.279989 1.120782 0.930901

0.8 Reference [15] 0.9245 0.8217 0.7109 0.5883 0.4441
LDQM 0.924469 0.821641 0.710897 0.588251 0.444050

50

0 LDQM 10.969897 10.399534 9.730454 8.911626 7.828378
0.2 LDQM 9.235948 8.649698 7.968922 7.148865 6.086033
0.4 LDQM 7.195173 6.631250 5.989832 5.235064 4.284203
0.6 LDQM 4.857766 4.387832 3.866699 3.271051 2.544323
0.8 LDQM 2.344717 2.062718 1.758631 1.421514 1.024155

100

0 LDQM 15.525762 14.520910 13.367622 11.997451 10.254518
0.2 LDQM 12.557084 11.612707 10.545695 9.300364 7.742857
0.4 LDQM 9.374096 8.560820 7.656126 6.617654 5.337232
0.6 LDQM 6.093411 5.484473 4.816329 4.058816 3.136808
0.8 LDQM 2.854117 2.516107 2.150262 1.741823 1.254405

Table 11: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸
0
𝐼
0
) for the axially functionally graded non-uniform columns with continuous

elastic restraint (𝛽 = 𝑘𝐿
4
/𝐸
0
𝐼
0
) for C-C boundary condition.

𝛽 𝑐
ℎ

𝑐
𝑏

0 0.2 0.4 0.6 0.8

0

0 Reference [15] 57.3940 51.7856 45.7356 38.9917 30.8922
LDQM 57.393956 51.785589 45.735646 38.991689 30.892202

0.2 Reference [15] 41.9169 37.6023 32.9638 27.8171 21.6802
LDQM 41.916891 37.602328 32.963838 27.817083 21.680218

0.4 Reference [15] 28.1794 25.0890 21.7813 18.1332 13.8242
LDQM 28.179398 25.089039 21.781290 18.133162 13.824196

0.6 Reference [15] 16.3412 14.3958 12.3266 10.0639 7.4275
LDQM 16.341179 14.395830 12.326582 10.063919 7.427477

0.8 Reference [15] 6.6801 5.7836 4.8399 3.8228 2.6649
LDQM 6.680051 5.783574 4.839860 3.822760 2.664885

50

0 LDQM 61.166910 55.582013 49.557537 42.839820 34.759070
0.2 LDQM 45.734227 41.416605 36.768958 31.599542 25.400286
0.4 LDQM 31.958849 28.829688 25.466443 21.730794 17.253425
0.6 LDQM 19.880964 17.847607 15.659665 13.222303 10.279687
0.8 LDQM 9.367432 8.320721 7.182753 5.897801 4.324708

100

0 LDQM 64.914455 59.351070 53.349176 46.652798 38.579025
0.2 LDQM 49.518379 45.193527 40.530226 35.326471 29.036478
0.4 LDQM 35.683768 32.505243 29.069896 25.216920 20.502165
0.6 LDQM 23.285078 21.132662 18.778906 16.088335 12.689894
0.8 LDQM 11.549700 10.288383 8.886242 7.271719 5.279100
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Table 12: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸
0
𝐼
0
) for the axially functionally graded non-uniform columns with continuous

elastic restraint (𝛽 = 𝑘𝐿
4
/𝐸
0
𝐼
0
) for P-P boundary condition.

𝛽 𝑐
ℎ

𝑐
𝑏

0 0.2 0.4 0.6 0.8

0

0 Reference [15] 14.5112 13.1398 11.6969 10.1451 8.3957
LDQM 14.511250 13.139786 11.696914 10.145084 8.395671

0.2 Reference [15] 10.6860 9.5971 8.4543 7.2284 5.8498
LDQM 10.686041 9.597121 8.454289 7.228449 5.849840

0.4 Reference [15] 7.2831 6.4715 5.6228 4.7164 3.7019
LDQM 7.283103 6.471476 5.622776 4.716370 3.701880

0.6 Reference [15] 4.3287 3.7892 3.2283 2.6338 1.9748
LDQM 4.328693 3.789166 3.228315 2.633792 1.974761

0.8 Reference [15] 1.8667 1.5950 1.3157 1.0239 0.7075
LDQM 1.866691 1.595022 1.315685 1.023937 0.707517

50

0 LDQM 19.549179 18.192929 16.760939 15.207995 13.417864
0.2 LDQM 15.752005 14.659979 13.503215 12.238938 10.750059
0.4 LDQM 12.298411 11.454703 10.551443 9.542443 8.289481
0.6 LDQM 9.058173 8.426077 7.721329 6.876642 5.694553
0.8 LDQM 5.246198 4.728938 4.126561 3.402176 2.479665

100

0 LDQM 24.581143 23.242950 21.824406 20.269884 18.419554
0.2 LDQM 20.817957 19.721682 18.544637 17.218652 15.521898
0.4 LDQM 17.286073 16.384686 15.372020 14.125521 12.234643
0.6 LDQM 13.406960 12.499393 11.357450 9.833780 7.688312
0.8 LDQM 6.909430 6.121287 5.250381 4.263196 3.070432

Table 13: Non dimensional critical buckling loads (𝛼 = 𝑃𝐿
2
/𝐸
0
𝐼
0
)

for the axially functionally graded non-uniform columns with
continuous elastic restraint (𝛽 = 𝑘𝐿

4
/𝐸
0
𝐼
0
) for C-P boundary

condition.

𝛽 𝑐
ℎ

𝑐
𝑏

0 0.2 0.4 0.6 0.8

0

0 29.448963 26.600568 23.560586 20.230563 16.374540
0.2 21.553772 19.335410 16.972868 14.391143 11.408619
0.4 14.537718 12.927659 11.218322 9.357427 7.216955
0.6 8.475484 7.447400 6.361291 5.186232 3.845576
0.8 3.499195 3.018030 2.514197 1.975492 1.371273

50

0 33.787588 30.872734 27.742199 24.278066 20.188428
0.2 25.672288 23.367048 20.888218 18.137705 14.868142
0.4 18.300248 16.579568 14.724334 12.655490 10.170102
0.6 11.626112 10.462193 9.200015 7.780077 6.049347
0.8 5.487561 4.864484 4.184411 3.415437 2.479706

100

0 38.091765 35.101502 31.866729 28.245336 23.874818
0.2 29.723039 27.314852 24.695929 21.738031 18.107927
0.4 21.920220 20.060135 18.018363 15.680300 12.748168
0.6 14.463191 13.118252 11.623244 9.887789 7.688601
0.8 6.910808 6.130247 5.269028 4.287546 3.090197

direction either in cross-section or in material properties.
No fictitious points are used and boundary conditions are
directly substituted into weighting coefficient matrices. The
matrix dimension in the solution procedure reduces drasti-
cally compared to other DQ methods since there is no need

to write any compatibility equations.The introduced method
can easily be extended to 2Dimensional problems.
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