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The Hurst exponent and variance are two quantities that often characterize real-life, high-frequency observations. Such real-life
signals are generally measured under noise environments. We develop a multiscale statistical method for simultaneous estimation
of a time-changingHurst exponent𝐻(𝑡) and a variance parameter𝐶 in amultifractional Brownianmotionmodel in the presence of
white noise.Themethod is based on the asymptotic behavior of the local variation of its sample paths which applies to coarse scales
of the sample paths. This work provides stable and simultaneous estimators of both parameters when independent white noise is
present. We also discuss the accuracy of the simultaneous estimators compared with a few selected methods and the stability of
computations with regard to adapted wavelet filters.

1. Introduction

Fractional Brownian motion (fBm) has been commonly
used to characterize a wide range of complex signals in
natural phenomena that exhibit self-similarity and long-
range dependence since the pioneering work of Mandelbrot
and Van Ness [1]. Examples of such complex signals in time
are abundant in medicine, economics, and geoscience, to list
a few. The fBm model is characterized by two parameters
of the regularity level and the variance level of a signal. The
regularity attribute, also called the Hurst exponent, expresses
the strength of statistical similarity atmany different frequen-
cies, and the variance attribute describes an order of energy
magnitude.

To model path regularity varying with time, multifrac-
tional Brownian motion (mBm) has been proposed as a
generalization of fractional Brownian motion (fBm). The
theory and applications of both fBm and mBm models have
attracted the interests of researchers in numerous problems
of, for example, sea level fluctuations [2], currency exchange
rates [3], and network traffic [4–6]. To model mBm, Lévy-
Véhel and Peltier [7] proposed a mean average approach,
and Benassi et al. [8] introduced a spectral approach. Lim

and Muniandy [9, 10] also proposed a mBm model based on
the fBm defined by the Riemann-Liouville type of fractional
integral. The proposed models represent mBm as a Gaussian
process 𝑊(𝑡) with a covariance function involving Hurst
exponent 𝐻 by a function of time, 𝐻(𝑡), and variance
parameter 𝐶. Specifically, a Gaussian process (𝑊(𝑡))

𝑡≥0
is

called mBm with Hurst function 𝐻(𝑡) and its variance level
(scaling factor) 𝐶 if its covariance function is represented as

E [𝑊 (𝑡)𝑊 (𝑠)]

=
𝐶
2

2
𝑔 (𝐻 (𝑡) ,𝐻 (𝑠))

× {|𝑡|
𝐻(𝑡)+𝐻(𝑠)

+ |𝑠|
𝐻(𝑡)+𝐻(𝑠)

− |𝑡 − 𝑠|
𝐻(𝑡)+𝐻(𝑠)

}

(1)

for 𝐻 ∈ C𝜂([0, 1]); 𝑡, 𝑠 ∈ [0, 1]; 𝑔(𝑥, 𝑦) = √𝐾(2𝑥)𝐾(2𝑦)/

𝐾(𝑥 + 𝑦); and 𝐾(𝛼) = Γ(𝛼 + 1) sin(𝛼𝜋/2)/𝜋, 0 < 𝛼 < 2.
The process is well defined, or square-integrable, if function
𝐻(𝑡) is the Hölderian of order 0 < 𝜂 ≤ 1 on [0, 1]. Clearly,
the process𝑊(𝑡) is not weakly stationary since the covariance
functionE[𝑊(𝑡)𝑊(𝑠)]does not depend on 𝑡−𝑠 only. From (1),
we have E[𝑊(𝑡)

2
] = 𝐶
2
𝑡
𝐻(𝑡), and consequently, Var[𝑊(1)] =

𝐶
2. In this sense, 𝐶 is called the variance level of the process.
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The time-changingHurst exponent𝐻(𝑡) characterizes the
path regularity of process 𝑊 at time 𝑡 since sample paths
near 𝑡 with small 𝐻(𝑡), close to 0, are space filling and
highly irregular, while paths with large 𝐻(𝑡), close to 1, are
very smooth.The variance constant 𝐶 determines the energy
level of the process. Alternatively, a spectral representation of
mBm is given by

𝑊(𝑡) = 𝐶√
𝐾 (2𝐻 (𝑡))

2
∫
R

𝑒
i𝑡𝜆

− 1

|𝜆|
𝐻(𝑡)+1/2

𝑑𝐵 (𝜆) , (2)

where 𝐶 is a constant scale (variance) parameter and 𝐵 the
standard Brownian [7].

Several approaches were proposed to estimate time-
changing Hurst exponent 𝐻(𝑡) and variance 𝐶 from sample
paths of mBm signals. Benassi et al. [8] investigated estima-
tion of a continuously differentiable 𝐻(𝑡) without the direct
estimation of 𝐶. A local version of quadratic variations was
used in several researches to estimate the constant Hurst
exponent [11–13]. Recently Fhima et al. [14] adopted the
increment ratio statistic method for 𝐻(𝑡) estimation only.
For an overview of estimating constant 𝐻(𝑡), the reader is
also referred to Beran [15] including various statistical meth-
ods or Bardet and Bertrand [16] concentrating on wavelet
approaches. Estimation of both𝐻(𝑡) and variance parameter
𝐶 has received little attention from the statistics community
while 𝐶 is mostly treated as a nuisance parameter. When a
signal is modeled with mBm, the estimation of 𝐻(𝑡) can be
improved by the accurate estimation of 𝐶 from covariance
structures involving both 𝐻(𝑡) and 𝐶. For that purpose,
the application of a local version of quadratic variations for
estimating 𝐻(𝑡) and 𝐶 in mBm was discussed in Coeurjolly
[17], in which 𝐶 was, however, locally estimated in each
sample path.Moreover, the existence of noise inmBm signals
has not been dealt with in the literature though real-life
signals are commonly measured under noise environments.

The main objective of this paper is to develop a stable
and accurate estimation procedure for unknown parameters
(𝐻(𝑡), 𝐶) given a path of𝑊(𝑡) in the presence of independent
white noise. Previous approaches by Coeurjolly [17] relied on
local sample paths in the absence of white noise that resulted
in estimators of 𝐶 sensitive to the sampled paths. It is widely
accepted that noise occurs from a variety of sources such as
measurement devices.

In this paper, we assume that mBm signals are con-
taminated by a moderate amount of noise. We extend the
quadratic variations method to estimate 𝐻(𝑡) and 𝐶 simul-
taneously for mBm by applying dilated high-pass filters to all
sampled paths (all subsample paths from a given sample path)
and aggregating all local conditions from the previous filter-
ing step.Thismethod includes filtering all sampled pathswith
a dilated filter possessing a sufficient number of vanishing
moments to capture regularity conditions at associated coarse
scales and generating stationary filtered signals. The method
further calculates empirical moments of the filtered signals
and then estimates 𝐻(𝑡) and 𝐶 simultaneously together with

a noise level in a regression setup specified by the empirical
moments.

This paper is organized as follows. Section 2 introduces
local variations in a mBm setting, discussing the proce-
dures and justification for the simultaneous estimators of
unknown parameters. Section 3 discusses numerical simula-
tions and computational issues with adapted wavelet filters.
The appendix presents proofs for the propositions in the
preceding sections.

2. Multiscale Local Variations of
Multifractional Brownian Motion

Let us consider a case inwhich a discretized sample path (W󸀠)
is given by

𝑊
󸀠
(

𝑖

𝑁
) = 𝑊(

𝑖

𝑁
) + 𝜎𝜀 (

𝑖

𝑁
) , 𝑖 = 1, . . . , 𝑁, (3)

in which 𝜀(𝑖/𝑁) is independent white noise and 𝜎 is the noise
level. Hurst function 𝐻(𝑡), generated by 𝑊(𝑖/𝑁), is assumed
to be Hölderian function of order 0 < 𝜂 ≤ 1 on [0, 1].
In addition, noise magnitude 𝜎 is assumed to be sufficiently
small compared to the variance of mBm. The covariance
function of (W󸀠) is

E [𝑊
󸀠
(𝑡)𝑊
󸀠
(𝑠)] =

𝐶
2

2
𝑔 (𝐻 (𝑡) ,𝐻 (𝑠))

× {|𝑡|
𝐻(𝑡)+𝐻(𝑠)

+ |𝑠|
𝐻(𝑡)+𝐻(𝑠)

−|𝑡 − 𝑠|
𝐻(𝑡)+𝐻(𝑠)

} + 𝜎
21 (𝑡 = 𝑠) ,

(4)
where 1(𝐴) is an indicator of relation 𝐴 and 𝑔(𝑥, 𝑦) =

√𝐾(2𝑥)𝐾(2𝑦)/𝐾(𝑥 + 𝑦) as defined above. From the above
covariance function, we have E[𝑊(𝑡)

2
] = 𝐶

2
𝑡
2𝐻(𝑡)

+ 𝜎
2,

and consequently, Var[𝑊(1)] = 𝐶
2

+ 𝜎
2. Noticeably the

estimation of 𝐶 is nontrivial because of the dependence
structure from the covariance function; that is to say, the
sample variance of a sample path does not lead to the direct
expression of 𝐶 alone but to an expression mixed with all
unknown parameters. The entries in (4) generate covariance
matrix Σ, which depends on unknown parameters 𝜃 :=

(𝐻(𝑡), 𝐶, 𝜎) ∈ 𝑅
𝑁+2.The covariancematrix consists of𝑁(𝑁+

1)/2 parameters (due to symmetry) that can be organized
into an 𝑁(𝑁 + 1)/2 × 1 vector Γ(𝜃). Model (4) is locally
identifiable almost everywhere if Jacobian matrix 𝜕Γ(𝜃)/𝜕𝜃

󸀠,
which is𝑁(𝑁 + 1)/2 × (𝑁 + 2), has full column rank [18].

In order to weaken the dependence in 𝑊
󸀠
(𝑡) in (3), a

differencing filter a of length 𝑙 + 1 and order 𝑝 > 1 (the
number of vanishing moments) is applied. Filter a is defined
by its taps (𝑎

0
, . . . , 𝑎

𝑙
) such that

𝑙

∑

𝑞=0

𝑎
𝑞
𝑞
𝑖
= 0, 𝑖 = 0, . . . , 𝑝 − 1,

𝑙

∑

𝑞=0

𝑎
𝑞
𝑞
𝑖

̸= 0, 𝑖 = 𝑝.

(5)
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Let us also introduce a(𝑚) based on filter a, defined by

𝑎
(𝑚)

𝑖
=

{

{

{

𝑎
𝑖/𝑚

,
𝑖

𝑚
is an integer,

0, otherwise.
(6)

We observe that a(𝑚), the filter a dilated 𝑚 times, focuses on
a resolution at a low frequency, corresponding to a coarse
space, as 𝑚 increases. For 𝑚 = 1, it captures the finest level
of detail. For example, a(1) = a by definition, and for a
second-order filter a := (1, −2, 1), a(2) becomes (1, 0, −2, 0, 1).
Furthermore, we can choose a as high-pass wavelet filters
corresponding to orthogonal wavelets such as Daubechies
and Symlet wavelets. A detailed discussion of wavelet filters
can be found in Daubechies [19] and Vidakovic [20].

Let (V󸀠a(𝑚)) be a process consisting of (W
󸀠) filtered by a(𝑚),

that is,

𝑉
󸀠

a(𝑚) (
𝑗

𝑁
) =

𝑚𝑙

∑

𝑞=0

𝑎
(𝑚)

𝑞
𝑊
󸀠
(
𝑗 − 𝑞

𝑁
) , for 𝑗 = 𝑚𝑙 + 1, . . . , 𝑁.

(7)

For example, when a is (1, −2, 1), the filter is of order 2, and
(𝑉
󸀠

a ) represents the second-order differences of (𝑊
󸀠
). The

process (Va(𝑚)) is defined similarly with (W) instead of (W󸀠):
(Va(𝑚)) is a process consisting of (W) filtered by a(𝑚). The
filtering by a(𝑚) breaks the dependence structure between
observations. Specifically the process (V󸀠a(𝑚)) is stationary due
to the vanishing moment property of filter a(𝑚). To verify
it, we need to introduce a sufficiently small neighborhood
covering 𝑗. Let ](𝑡) be an index set of a neighborhood of 𝑡,
defined as

] (𝑡) = {𝑗 ∈ Z | 𝑙 < 𝑗 ≤ 𝑁,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

𝑁
− 𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜖} (8)

for a parameter 𝜖 > 0. We set 𝜖 to be a function of 𝑁 in
such a way that 𝜖 → 0, 𝜖𝑁 → ∞, and 𝜖

𝜂 log(𝑁) → 0

as 𝑁 → ∞. In other words, for a sufficiently large 𝑁,
the size of one neighbor becomes sufficiently small while
maintaining the summation of the sizes of all the neighbors
that are sufficiently large. In addition, it is possible to make
𝜖
𝜂 converge to zero faster than log(𝑁) grows. Then we derive
the covariance of (V󸀠a(𝑚)) as follows.

Proposition 1. Let 𝑗
1
∈ ](𝑡
1
), 𝑗
2
∈ ](𝑡
2
). Then, the covariance

of 𝑉
󸀠

a(𝑚)(𝑗/𝑁) in (7), E[𝑉󸀠a(𝑚)(𝑗1/𝑁)𝑉
󸀠

a(𝑚)(𝑗2/𝑁)], depends on
𝑗
1
− 𝑗
2
as follows:

E [𝑉
󸀠

a(𝑚) (
𝑗
1

𝑁
)𝑉
󸀠

a(𝑚) (
𝑗
2

𝑁
)]

=
𝐶
2
𝑔 (𝐻 (𝑡

1
) ,𝐻 (𝑡

2
))

𝑁𝐻(𝑡1)+𝐻(𝑡2)

× 𝜋a(𝑚) ,𝐻(𝑡1)/2+𝐻(𝑡2)/2 (𝑗1 − 𝑗
2
)

+ 𝜎
2

∑

𝑝−𝑞=𝑗1−𝑗2

𝑎
(𝑚)

𝑝
𝑎
(𝑚)

𝑞
+ O (𝜖

𝜂 log𝑁) ,

(9)

where

𝜋a(𝑚) ,ℎ (𝑘) = −
1

2

𝑚𝑙

∑

𝑝,𝑞=0

𝑎
(𝑚)

𝑝
𝑎
(𝑚)

𝑞

󵄨󵄨󵄨󵄨𝑘 − 𝑝 + 𝑞
󵄨󵄨󵄨󵄨

2ℎ

. (10)

The above proposition states that 𝑉
󸀠

a(𝑚)(𝑗/𝑁) is weakly
stationary as Gaussian. Particularly for 𝑗

1
= 𝑗
2

= 𝑗, as
𝑁 → ∞, it simplifies to

𝐸[𝑉
󸀠

a(𝑚)(
𝑗

𝑁
)

2

] = 𝐶
2
(
𝑚

𝑁
)

2𝐻(𝑡)

𝜋a,𝐻(𝑡) (0) + 𝜎
2
∑

𝑞

𝑎
2

𝑞
. (11)

Observably the above proposition deals with two pointwise
positions, 𝑗

1
and 𝑗
2
, for two neighborhoods near 𝑡

1
and 𝑡
2
,

respectively. Thus an aggregate behavior of each neighbor-
hood is analyzed via the following setup.

Let us define the second empirical moment of the filtered
signal 𝑉󸀠a(𝑚) as follows:

𝑆
󸀠
(𝑡, a(𝑚)) =

1

|] (𝑡)|
∑

𝑗∈](𝑡)

𝑉
󸀠

a(𝑚)(
𝑗

𝑁
)

2

, for 𝑡 ∈ [0, 1] ,

(12)

which represents the average squared energy of the a(𝑚)-
filtered signal in the neighborhood of 𝑡. We notice that
𝑆
󸀠
(𝑡, a(𝑚)) is random because 𝑉

󸀠

a(𝑚)(𝑗/𝑁) is random and its
expectation 𝐸[𝑆

󸀠
(𝑡, a(𝑚))] equals that of 𝑉󸀠a(𝑚)(𝑗/𝑁)

2 because
𝑉
󸀠

a(𝑚)(𝑗/𝑁) is weakly stationary. That is to say,

𝐸 [𝑆
󸀠
(𝑡, a(𝑚))] = 𝐸[𝑉

󸀠

a(𝑚)(
𝑗

𝑁
)

2

]

= 𝐶
2
(
𝑚

𝑁
)

2𝐻(𝑡)

𝜋a,𝐻(𝑡) (0) + 𝜎
2
∑

𝑞

𝑎
2

𝑞
.

(13)

Now, to relate 𝑆󸀠(𝑡, a(𝑚)) to 𝐸[𝑆
󸀠
(𝑡, a(𝑚))]more specifically, we

define a statistic 𝑉(𝑡, a(𝑚)), called the 𝑚-scale local variation
of (W), as

𝑉(𝑡, a(𝑚)) =
1

|] (𝑡)|
∑

𝑗∈](𝑡)

{

{

{

𝑉a(𝑚)(𝑗/𝑁)
2

E [𝑉a(𝑚)(𝑗/𝑁)
2

]

− 1

}

}

}

, (14)

where |](𝑡)| is the cardinal number of ](𝑡). The statistic
𝑉(𝑡, a(𝑚)) captures the amount of deviations of the a(𝑚)-
filtered signal from the standard normal distribution near
𝑡 because 𝑉a(𝑚) is normalized by its standard deviation, the
square root of E[𝑉a(𝑚)(𝑗/𝑁)

2
]. The definition based on the

second order can be extended to the 𝑘th order Hermite
polynomial in the summation of (14): the second Hermite
polynomial is defined by 𝑡

2
− 1. In this paper, we use

local variations based on the second Hermite polynomial as
the minimum asymptotic variance estimators, as shown in
Coeurjolly [13] for fBm settings. Next, we connect the 𝑚-
scale local variation 𝑉(𝑡, a(𝑚)) with the empirical moment
𝑆
󸀠
(𝑡, a(𝑚)) through the following relationship.
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Figure 1: Tested Hurst functions are shown in (a) step-function𝐻(𝑡) and (c) straight-line𝐻(𝑡); their illustrations of signals are shown in (b)
and (d), correspondingly.

Proposition 2. Let 𝑚-scale local variation 𝑉(𝑡, a(𝑚)) and the
empirical moment 𝑆

󸀠
(𝑡, a(𝑚)) be defined by (14) and (12),

respectively, given 𝑊
󸀠
(𝑡) as above and a of order > 1. Then

log 𝑆󸀠 (𝑡, a(𝑚)) = logE [𝑆
󸀠
(𝑡, a(𝑚))] + 𝑉 (𝑡, a(𝑚)) (1 + 𝑜 (1)) ,

𝑎𝑠 𝑁 󳨀→ ∞.

(15)

The proposition connects the empirical moment 𝑆
󸀠
(𝑡, a(𝑚))

and the log of its expectation through𝑚-scale local variation
𝑉(𝑡, a(𝑚)). Since the𝑚-scale local variation converges almost
surely to 0 and its distribution follows normal distribu-
tion asymptotically [17], the above relationship establishes
a regression setup. We also note that a filter of an order of
at least 2 ensures asymptotic normality for all the values of
the function 𝐻(𝑡). For a filter of order 1, this convergence is
available if and only if 0 < sup

𝑡
𝐻(𝑡) < 3/4.

Next the relationship between the log of the expectation
of the empirical moment 𝑆

󸀠
(𝑡, a(𝑚)) and the parameters of

interest (𝐻(𝑡), 𝐶, and 𝜎) is derived naturally in the light of
Proposition 2 and (13). Thus for 𝑡

1
, . . . , 𝑡

𝑑
∈ [0, 1] we obtain a

regression model for log 𝑆󸀠(𝑡
𝑖
, a(𝑚)) as𝑁 → ∞:

log 𝑆󸀠 (𝑡
𝑖
, a(𝑚)) ∼ log(𝐶

2
(
𝑚

𝑁
)

2𝐻(𝑡𝑖)

𝜋a,𝐻(𝑡𝑖) (0) + 𝜎
2
∑

𝑞

𝑎
2

𝑞
) ,

∀𝑖, 𝑚,

(16)

which is nonlinear with respect to 𝐻(𝑡
𝑖
), 𝐶, and 𝜎. In

particular, when the noise level 𝜎 is considered to be zero, the
regression model simplifies to, for all 𝑖 and𝑚,

log 𝑆󸀠 (𝑡
𝑖
, a(𝑚)) ∼ 2 log𝐶 + 2𝐻 (𝑡

𝑖
) log(𝑚

𝑁
)

+ log (𝜋a,𝐻(𝑡𝑖) (0))
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Figure 2: Illustrations of the estimators: in panel (a), variance 𝐶 was 2; in panel (b), variance 𝐶 was 4; the best match to the true 𝐻(𝑡) was
the method of S-K-var among the four.

= [1 2 log(𝑚

𝑁
)]

× [
2 log𝐶 + log (𝜋a,𝐻(𝑡𝑖) (0))

𝐻 (𝑡
𝑖
)

] ,

(17)

which turns out to be linear with respect to 𝐻(𝑡
𝑖
) with inter-

cept 2 log𝐶, if log(𝜋a,𝐻(𝑡𝑖)(0)) is negligible. The above regres-
sion model possesses a computational advantage though
ignoring the presence of noise.

When 𝜎 is nonzero, the following least square estimator
of (H, 𝐶, 𝜎) is introduced:

(Ĥ, 𝐶, 𝜎̂) = argmin
(H,𝐶,𝜎)

×

𝑑

∑

𝑖=1

𝑀

∑

𝑚=1

(log 𝑆 (𝑡
𝑖
, a(𝑚)) − logE [𝑆 (𝑡

𝑖
, a(𝑚))])

2

.

(18)

The computation of the least-square estimator is feasible
because, based on (16), for fixed 𝐶 as 𝐶

𝑜
and 𝜎 as 𝜎

𝑜
, the

computation ofH is separable into each𝐻(𝑡
𝑖
). In otherwords,

a solution of𝐻(𝑡
𝑖
) is given by

𝐻̂ (𝑡
𝑖
) = argmin

ℎ

×

𝑀

∑

𝑚=1

( log 𝑆󸀠 (𝑡
𝑖
, a(𝑚))

− log(𝐶
2

𝑜
(
𝑚

𝑁
)

2ℎ

𝜋a,ℎ (0) + 𝜎
2

𝑜
∑

𝑞

𝑎
2

𝑞
))

2

.

(19)

Numerical approaches such as the bisection method can be
used for the above procedure, which is nonlinear in ℎ. The
bisection method achieves a desired precision level, 𝜏, for
𝐻̂(𝑡
𝑖
) with the number of iterations greater than log

2
𝜏
−1. In

other words, 10 iterations, for example, results in precision
𝜏 < 0.001.

3. Simulations and Comparisons

We present here a simulation study of the performance of
the approach suggested in this paper, denoted by S-K-var.
Simulation is done with the “known truth” of Hurst function
𝐻(𝑡) the controlled signal variance and the signal-to-noise
(SNR) ratio. Test functions are shown in Figure 1 with the
step function for 𝐻(𝑡) in Figure 1(a) and the straight-line
function in Figure 1(c).Their illustrations of𝑊󸀠(𝑡) are shown
in Figures 1(b) and 1(d), correspondingly. For the sake of
comparison, we chose several popular methods such as the
local spectra slope, which is summarized in Gao [21] and
denoted by LSS, and 𝑘-variation of variance-uncorrected,
denoted by K-var, and the 𝑘-variation of variance-corrected
version inCoeurjolly [13], denoted by K-var-VC.The average
mean squared error (AMSE) was used as a performance
measure to capture the difference between true 𝐻(𝑡) and
estimated 𝐻̂(𝑡). To simulate a sample path from a fBm on
[0, 1], we used the method of Wood and Chan [22]. One can
simulate a standard mBm𝑊 with covariance matrix 𝐶

𝐻(⋅)
by

generating 𝑍 ∼ 𝑁(0, 𝐼
𝑁
) and estimating 𝑊 := 𝐶

1/2

𝐻(⋅)
𝑍. This

method is exact in theory and sufficiently fast for a reasonable
sample size𝑁.

In this section we will use the following notations regard-
ing filters: Diff.i denoting the filter of differences of order 𝑖,
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Figure 3: Estimation of 𝐶 by K-var-VCwith empirical 95% confidence intervals in blue is shown in (a) for no noise and (c) for SNR 10 when
true 𝐶 = 2. Similarly, estimation of 𝐶 by S-K-var in red is shown in (b) for no noise and (d) for SNR 10. S-K-var yields more stable and
shorter confidence intervals.

Db.i denoting a Daubechies wavelet filter of order 𝑖, and
Sym.i denoting a Symlet wavelet filter of order 𝑖.We generate
1,000 series of length 𝑁 = 4096 for step-function 𝐻(𝑡) and
𝑁 = 1024 for straight-line function𝐻(𝑡). A simple difference
filter [1 −2 1] (Diff.2) was used for straight-line𝐻(𝑡), and
Db.6 was used for step-function 𝐻(𝑡). For the local spectra
slope of LSS, the length of the subsignal was set to be 512,
which is sufficient for its numerical stability, and the two
levels, by which spectral slopes are calculated, were 3 and 7.
The size of a neighborhood of 𝑡, ](𝑡) in (8), is set to be 50 for
S-K-var, K-var, and K-var-VC.

Illustrations of the estimators under no noise are shown
in Figure 2. Estimation by K-var-VCmost accurately follows
true 𝐻(𝑡) among the tested methods. Estimation results by

K-var, considering no scale parameter 𝐶, notably deviate
from true 𝐻(𝑡). We note that the distance between K-var
estimation and true 𝐻(𝑡) relates to 𝐶. Estimators by LSS
are bumpy because it assumes that subsignals during its
computation follow fBm without considering the variability
of𝐻(𝑡).We also observe thatK-var-VC ismore unstable than
S-K-var.

Regarding the estimation of 𝐶, the comparison between
K-var-VC and S-K-var is shown in Figure 3, in which
empirical confidence intervals for true 𝐶 = 2 are shown
with the upper panels for no noise and the lower panels
for SNR 10. We sampled 1000 series of 𝑊

󸀠
(𝑡) with 𝐶 =

2 and straight-line 𝐻(𝑡) under white noise of SNR 10.
Consistently, the estimation results by S-K-var at the right
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Figure 4: Performance according to different filters with straight-line 𝐻(𝑡); in panel (a), box plots for estimations of 𝐶 = 2; in (b), box plots
for AMSE of𝐻(𝑡). Filter numbers represent the following: 1, Diff.1; 2, Diff.2; 3, Diff.3; 4, Diff.4; 5, Sym.4; 6, Sym.6; 7, Sym.8; 8, Db.2;
9, Db.3; and as well as 10, Db.4.

Table 1: Average mean squared error for the S-K-var, K-var-VC, and K-var methods in various settings of variance constant 𝐶 and
SNR levels based on 1000 sample paths of 𝑊󸀠(𝑡) for each of step-function and straight-line 𝐻(𝑡). The asterisk marks show that S-K-var
outperformed the other methods.

Parameters
Average mean squared error

Step-function𝐻(𝑡) Straight-line𝐻(𝑡)

S-K-var K-var-VC K-var S-K-var K-var-VC K-var

𝐶 = 1, SNR 10 31.54∗ 178.6 107.1 84.62 215.5 81.31
30 22.85∗ 89.64 64.59 25.48 147.8 23.53
∞ 9.940∗ 26.31 48.16 .8242∗ 9.508 .9376
𝐶 = 4, SNR 10 15.56∗ 212.5 82.29 46.16∗ 176.9 175.2
30 4.406∗ 152.2 39.91 36.11∗ 92.07 120.2
∞ .9706∗ 10.00 8.173 10.04∗ 24.73 93.21
𝐶 = 10, SNR 10 61.80∗ 178.2 281.5 89.94∗ 216.5 223.9
30 55.97∗ 87.35 237.0 42.21∗ 150.9 144.6
∞ 33.86∗ 26.08 193.1 1.425∗ 9.288 77.32

panels are more accurate, and their confidence intervals are
sharper than those by K-var-VC. We also note that the
confidence intervals by S-K-var in Figures 3(b) and 3(d) are
constant in time since S-K-var employs a global constant
in regression model (16). A noise level of SNR 10 heavily
worsened the estimation results by K-var-VC while those by
S-K-var yielded a slight increase in the confidence intervals.
Accurate estimation of variance level 𝐶 by K-var-VC leads
to accurate estimation of 𝐻(𝑡), which will be demonstrated
in the following tests.

We compared S-K-var with K-var-VC and K-var in
terms of AMSE in various settings. The method LSS was
dropped due to obvious poor performance as is shown in
Figure 2. We varied the levels of variance 𝐶 from 1 to 4

and 10 under SNR levels of 10, 30, and the infinity. The
number of sample path 𝑊

󸀠
(𝑡) was 1000 in each setting, and

AMSE was computed for each of the methods. The results
are shown in Table 1 for each step-function and straight-
line 𝐻(𝑡). We observe that our proposed method S-K-var

consistently outperforms the other methods except for only
a few settings. Overall, there was little difference between
K-var-VC and K-var in performance. This experimental
result is not surprising since S-K-var reflects the existence
of white noise and globally includes variance constant 𝐶.

The effects of adapted filters are summarized in Figure 4.
The experiments were done with straight-line 𝐻(𝑡), variance
𝐶 = 2, and SNR = 7. We observe that the performance
of S-K-var on the estimation of 𝐶 does not change much
depending on the filter it uses. However, we mention that the
variance of AMSEs tends to increase according to the filter
size.

4. Conclusion

To conclude, we proposed the joint estimators of the time-
changing Hurst exponent 𝐻(𝑡) and its variance coefficient
𝐶 for mBm under white noise. The proposed method is
based on filtering sampled paths with dilated high-pass
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filters to derive regularity conditions at associated scales.
The second empirical moment, average squared energy, of
the filtered signals near a time position is connected to the
theoretical expectation and used to establish a regression
setup through the asymptotic distribution of multiscale local
variation statistics. The effectiveness of the approach was
verified through numerical experiments that compared it
with that of several other approaches. Simulation results show
that the proposed approach yields more precise and stable
estimation of Hurst exponents and variance constants under
noiseless or noised conditions.

Appendices

A. Proof of Proposition 1

Let 𝐺(𝑡) denote 𝐶√𝐾(2𝐻(𝑡))/2 for the sake of simplicity.
Then, the covariance E[𝑉󸀠a (𝑗1/𝑁)𝑉

󸀠

a (𝑗2/𝑁)] becomes, by 𝑢 =

𝜆/𝑁,

∑

𝑝,𝑞

𝑎
𝑝
𝑎
𝑞
(𝐺(

𝑗
1
− 𝑝

𝑁
)𝐺(

𝑗
2
− 𝑞

𝑁
)

× ∫
exp (i ((𝑗

1
− 𝑝) /𝑁) 𝜆) − 1

|𝜆|
𝐻((𝑗1−𝑝)/𝑁)+1/2

×
exp (−i ((𝑗

2
− 𝑞) /𝑁) 𝜆) − 1

|𝜆|
𝐻((𝑗2−𝑞

󸀠
)/𝑁)+1/2

𝑑𝜆

+𝜎
2
E [𝜀 (

𝑗
1
− 𝑝

𝑁
) 𝜀 (

𝑗
2
− 𝑞

𝑁
)])

= ∑

𝑝,𝑞

𝑎
𝑝
𝑎
𝑞

𝐺 ((𝑗
1
− 𝑝) /𝑁)𝐺 ((𝑗

2
− 𝑞) /𝑁)

𝑁𝐻((𝑗1−𝑝)/𝑁)+𝐻((𝑗2−𝑞)/𝑁)

× ∫
exp (i (𝑗

1
− 𝑝) 𝑢) − 1

|𝑢|
𝐻((𝑗1−𝑝)/𝑁)+1/2

×
exp (−i (𝑗

2
− 𝑞) 𝑢) − 1

|𝑢|
𝐻((𝑗2−𝑞)/𝑁)+1/2

𝑑𝑢

+ 𝜎
2

∑

𝑝−𝑞=𝑗1−𝑗2

𝑎
𝑝
𝑎
𝑞
.

(A.1)

By Taylor’s expansion and Hölderian order 𝜂 of 𝐻(𝑡), for
𝑗
1
−𝑝 in the neighborhood of 𝑡

1
we approximate𝐺((𝑗

1
−𝑝)/𝑁)

with

𝐺(
𝑗
1
− 𝑝

𝑁
) = 𝐺 (𝑡

1
) + O(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐻(
𝑗
1
− 𝑝

𝑁
) − 𝐻 (𝑡

1
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

= 𝐺 (𝑡
1
) + O (𝜖

𝜂
) .

(A.2)

Similarly, 𝐺((𝑗
2

− 𝑞)/𝑁) is approximated with 𝐺((𝑗
2

−

𝑞)/𝑁) = 𝐺(𝑡
2
) + O(𝜖

𝜂
). In addition, by Taylor’s expansion

of 𝑁
𝑥
/ log(𝑁)𝑁

𝑘 around the point 𝑘, 𝑁
𝑥
/ log(𝑁)𝑁

𝑘
=

1/ log(𝑁) + O(|𝑥 − 𝑘|), we have
1

𝑁𝐻((𝑗1−𝑝)/𝑁)+𝐻((𝑗2−𝑞)/𝑁)
=

1

𝑁𝐻(𝑡1)+𝐻(𝑡2)
(1 + O (𝜖

𝜂 log𝑁)) ,

1

|𝑢|
𝐻((𝑗1−𝑝)/𝑁)+𝐻((𝑗2−𝑞)/𝑁)

=
1

|𝑢|
𝐻(𝑡1)+𝐻(𝑡2)

(1 + O (𝜖
𝜂 log 𝑢)) .

(A.3)

Using also 𝜖
𝜂

→ 0 as 𝑁 goes to infinity, the covariance can
be written as follows:

∑

𝑝,𝑞

𝑎
𝑝
𝑎
𝑞

𝐺 (𝑡
1
) 𝐺 (𝑡
2
)

𝑁𝐻(𝑡1)+𝐻(𝑡2)

× ∫
exp (i (𝑗

1
− 𝑝) 𝑢) − 1

|𝑢|
𝐻(𝑡1)+1/2

×
exp (−i (𝑗

2
− 𝑞) 𝑢) − 1

|𝑢|
𝐻(𝑡2)+1/2

𝑑𝑢

+ 𝜎
2

∑

𝑝−𝑞=𝑗1−𝑗2

𝑎
𝑝
𝑎
𝑞
+ O (𝜖

𝜂 log𝑁) .

(A.4)

Since the order of filter a is at least 1,∑
𝑞
𝑎
𝑞
= 0, (A.4) becomes

∑

𝑝,𝑞

𝑎
𝑝
𝑎
𝑞

𝐺 (𝑡
1
) 𝐺 (𝑡
2
)

𝑁𝐻(𝑡1)+𝐻(𝑡2)
∫
cos ((𝑗

1
− 𝑝 − 𝑗

2
+ 𝑞) 𝑢) − 1

|𝑢|
𝐻(𝑡1)+𝐻(𝑡2)+1

𝑑𝑢

+ 𝜎
2

∑

𝑝−𝑞=𝑗1−𝑗2

𝑎
𝑝
𝑎
𝑞
+ O (𝜖

𝜂 log𝑁) .

(A.5)

Since𝐾(𝛼) ∫((1−cos(𝜅𝑢))/|𝑢|𝛼+1)𝑑𝑢 = |𝜅|
𝛼, for all 𝜅, 0 < 𝛼 <

2,

E [𝑉
󸀠

a (
𝑗
1

𝑁
)𝑉
󸀠

a (
𝑗
2

𝑁
)] = −∑

𝑝,𝑞

𝑎
𝑝
𝑎
𝑞

𝐺 (𝑡
1
) 𝐺 (𝑡
2
)

𝑁𝐻(𝑡1)+𝐻(𝑡2)

×

󵄨󵄨󵄨󵄨𝑗1 − 𝑝 − 𝑗
2
+ 𝑞

󵄨󵄨󵄨󵄨

𝐻(𝑡1)+𝐻(𝑡2)

𝐾(𝐻 (𝑡
1
) + 𝐻 (𝑡

2
))

+ 𝜎
2

∑

𝑝−𝑞=𝑗1−𝑗2

𝑎
𝑝
𝑎
𝑞
+ O (𝜖

𝜂 log𝑁)

= −
𝐶
2
𝑔 (𝐻 (𝑡

1
) ,𝐻 (𝑡

2
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𝑁𝐻(𝑡1)+𝐻(𝑡2)
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𝑝,𝑞

𝑎
𝑝
𝑎
𝑞

2

󵄨󵄨󵄨󵄨𝑗1 − 𝑝 − 𝑗
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󵄨󵄨󵄨󵄨

𝐻(𝑡1)+𝐻(𝑡2)

+ 𝜎
2
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𝑝−𝑞=𝑗−𝑗
󸀠

𝑎
𝑞
𝑎
󸀠

𝑞
+ O (𝜖

𝜂 log𝑁)

=
𝐶
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𝑔 (𝐻 (𝑡

1
) ,𝐻 (𝑡

2
))

𝑁𝐻(𝑡1)+𝐻(𝑡2)

× 𝜋a,𝐻(𝑡1)/2+𝐻(𝑡2)/2 (𝑗1 − 𝑗
2
)

+ 𝜎
2

∑

𝑝−𝑞=𝑗1−𝑗2

𝑎
𝑝
𝑎
𝑞
+ O (𝜖

𝜂 log𝑁) ,

(A.6)
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where 𝜋a,ℎ(𝑘) = −(1/2)∑
𝑙

𝑝,𝑞=0
𝑎
𝑝
𝑎
𝑞
|𝑘 − 𝑝 + 𝑞|

2ℎ. When we
replace a with a(𝑚), the proof is completed.

B. Proof of Proposition 2

Let 𝐴 and 𝐵 denote, respectively,

𝐴 =
1

|] (𝑡)|
∑

𝑗∈](𝑡)

𝑙

∑

𝑝,𝑞

𝑎
𝑝
𝑎
𝑞
𝑊(

𝑗 − 𝑝

𝑁
) 𝜀 (

𝑗 − 𝑞

𝑁
) ,

𝐵 =
1

|] (𝑡)|
∑

𝑗∈](𝑡)

(

𝑙

∑

𝑞

𝑎
𝑞
𝜀 (

𝑗 − 𝑞

𝑁
))

2

.

(B.1)

Then log 𝑆󸀠(𝑡, a) can be written as

log 𝑆󸀠 (𝑡, a) = log 1

|] (𝑡)|
∑

𝑗∈](𝑡)

𝑉
󸀠

a(
𝑗

𝑁
)

2

= log 1

|] (𝑡)|

× ∑

𝑗∈](𝑡)

((

𝑙

∑

𝑞

𝑎
𝑞
𝑊(

𝑗 − 𝑞

𝑁
))

2

+ 2𝜎

𝑙

∑

𝑝,𝑞

𝑎
𝑝
𝑎
𝑞
𝑊(

𝑗 − 𝑝

𝑁
) 𝜀 (

𝑗 − 𝑞

𝑁
)

+𝜎
2
(

𝑙

∑

𝑞

𝑎
𝑞
𝜀 (

𝑗 − 𝑞

𝑁
))

2

)

= log 𝑆 (𝑡, a) + (2𝜎
𝐴

𝑆 (𝑡, a)
+ 𝜎
2 𝐵

𝑆 (𝑡, a)
)

× (1 + 𝑜 (1))

(B.2)

by Taylor’s expansion of log(1 + 𝑥) = 𝑥(1 + 𝑜(1)) near 𝑥 = 0.
Similarly, logE[𝑆󸀠(𝑡, a)] is expressed as

logE [𝑆
󸀠
(𝑡, a)] = log(E [𝑆 (𝑡, a)] + 𝜎

2

𝑙

∑

𝑞

𝑎
2

𝑞
)

= log (E [𝑆 (𝑡, a)]) + (

𝜎
2
∑
𝑙

𝑞
𝑎
2

𝑞

E [𝑆 (𝑡, a)]
)

× (1 + 𝑜 (1)) .

(B.3)

Using independence of 𝑊(𝑡) and 𝜀(𝑡), the property of white
noise 𝜀(𝑡), and the convergence of 𝑆(𝑡, a) to E[𝑆(𝑡, a)] almost
surely as 𝑁 → ∞, we approximate 𝐴 → 0, 𝐵 →

∑
𝑙

𝑞
𝑎
2

𝑞
, and 𝜎

2
(𝐵/𝑆(𝑡, a)) → 𝜎

2
(∑
𝑙

𝑞
𝑎
2

𝑞
/E[𝑆(𝑡, a)]). Then the

difference between log 𝑆󸀠(𝑡, a) in (B.2) and logE[𝑆󸀠(𝑡, a)] in
(B.3) becomes

log 𝑆󸀠 (𝑡, a) − logE [𝑆
󸀠
(𝑡, a)]

= log 𝑆 (𝑡, a) − logE [𝑆 (𝑡, a)] + 𝑜 (1)

= log( 1

|] (𝑡)|
∑

𝑗∈](𝑡)

𝑉a(𝑗/𝑁)
2

E [𝑆 (𝑡, a)]
) + 𝑜 (1)

(by the definition of 𝑆 (𝑡, a))

= log( 1

|] (𝑡)|
∑

𝑗∈](𝑡)

𝑉a(𝑗/𝑁)
2

E [𝑉a(𝑗/𝑁)
2

]

) + 𝑜 (1)

(by the stationarity of 𝑉a)

= ((
1

|] (𝑡)|
∑

𝑗∈](𝑡)

𝑉a(𝑗/𝑁)
2

E [𝑉a(𝑗/𝑁)
2

]

) − 1) (1 + 𝑜 (1))

(by Taylor’s expansion)

= 𝑉 (𝑡, a) (1 + 𝑜 (1)) .

(B.4)
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[7] J. Lévy-Véhel and R. Peltier, “Multifractional brownian motion:
definition and preliminary results,” Rapport de Recherche de
L’INRIA n2645, 1995.

[8] A. Benassi, S. Cohen, and J. Istas, “Identifying the multifrac-
tional function of a gaussian process,” Statistics & Probability
Letters, vol. 39, no. 4, pp. 337–345, 1998.

[9] S. C. Lim and S. V. Muniandy, “On some possible generaliza-
tions of fractional Brownian motion,” Physics Letters. A, vol.
266, no. 2-3, pp. 140–145, 2000.

[10] S. V. Muniandy and S. C. Lim, “Modeling of locally self-similar
processes using multifractional brownian motion of Riemann-
Liouville type,” Physical Review E, vol. 63, no. 4, pp. 461041–
461047, 2001.

[11] J. Istas and G. Lang, “Quadratic variations and estimation of the
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