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In this paper, a three-stage fifth-order Runge-Kuttamethod for the integration of a special third-order ordinary differential equation
(ODE) is constructed. The zero stability of the method is proven. The numerical study of a third-order ODE arising in thin film
flow of viscous fluid in physics is discussed. The mathematical model of thin film flow has been solved using a new method and
numerical comparisons are made when the same problem is reduced to a first-order system of equations which are solved using
the existing Runge-Kutta methods. Numerical results have clearly shown the advantage and the efficiency of the new method.

1. Introduction

A special third-order differential equation (ODE) of the form

𝑦
󸀠󸀠󸀠

(𝑥) = 𝑓 (𝑥, 𝑦 (𝑥)) , 𝑦 (𝑥
0
) = 𝛼,

𝑦
󸀠
(𝑥
0
) = 𝛽, 𝑦

󸀠󸀠
(𝑥
0
) = 𝛾, 𝑥 ≥ 𝑥

0

(1)

which is not explicitly dependent on the first derivative 𝑦󸀠(𝑥)
and the second derivative 𝑦󸀠󸀠(𝑥) of the solution is frequently
found in many physical problems such as electromagnetic
waves, thin filmflow, and gravity driven flows.The solution to
(1) can be obtained by reducing it to an equivalent first-order
system which is three times the dimension and can be solved
using a standard Runge-Kuttamethod or amultistepmethod.

Most researchers, scientists, and engineers solve problem
(1) by converting the problem to a system of first-order equa-
tions. However, there are also studies on numerical methods
which solve (1) directly. Such work can be seen in Awoyemi
[1], Waeleh et al. [2], Zainuddin [3], and Jator [4]. Awoyemi
and Idowu [5] and Jator [6] proposed a class of hybrid
collocation methods for the direct solution of higher-order

ordinary differential equations (ODEs). Samat and Ismail
[7] developed an embedded hybrid method for solving spe-
cial second-order ODEs. Waeleh et al. [2] developed a block
multistep method which can directly solve general third-
order equations; on the other hand, Ibrahim et al. [8]
developed a multistep method that can directly solve stiff
third-order differential equations. All of the methods dis-
cussed above are multistep methods; hence, they need start-
ing values when used to solve ODEs such as (1). Senu et al. [9]
derived the Runge-Kutta-Nyström method for solving sec-
ond-order ODEs directly. Mechee et al. [10] constructed new
Runge-Kutta methods for solving (1).

In this paper, we are concerned with a one-step method,
particularly the three-stage fifth-order Runge-Kutta method,
for directly solving special third-order ODEs. Accordingly,
we have developed a direct Runge-Kutta method (RKD)
which can be directly used to solve (1). The advantage of the
newmethod overmultistepmethods is that it initialises itself.
The method produces 𝑦

𝑛+1
, 𝑦󸀠
𝑛+1

, and 𝑦
󸀠󸀠

𝑛+1
to approximate

𝑦(𝑥
𝑛+1

), 𝑦󸀠(𝑥
𝑛+1

), and 𝑦
󸀠󸀠
(𝑥
𝑛+1

), where 𝑦
𝑛+1

is the computed
solution and 𝑦(𝑥

𝑛+1
) is the exact solution.
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2. Derivation of RKD Method

The general form of RKD method with 𝑠 stages for solving
initial value problem (1) can be written as

𝑦
𝑛+1

= 𝑦
𝑛
+ ℎ𝑦
󸀠

𝑛
+

ℎ
2

2
𝑦
󸀠󸀠

𝑛
+ ℎ
3

𝑠

∑

𝑖=1

𝑏
𝑖
𝑘
𝑖
,

𝑦
󸀠

𝑛+1
= 𝑦
󸀠

𝑛
+ ℎ𝑦
󸀠󸀠

𝑛
+ ℎ
2

𝑠

∑

𝑖=1

𝑏
󸀠

𝑖
𝑘
𝑖
,

𝑦
󸀠󸀠

𝑛+1
= 𝑦
󸀠󸀠

𝑛
+ ℎ

𝑠

∑

𝑖=1

𝑏
󸀠󸀠

𝑖
𝑘
𝑖
,

(2)

where

𝑘
1
= 𝑓 (𝑥

𝑛
, 𝑦
𝑛
) , (3)

𝑘
𝑖
= 𝑓(𝑥

𝑛
+ 𝑐
𝑖
ℎ, 𝑦
𝑛
+ ℎ𝑐
𝑖
𝑦
󸀠

𝑛
+

ℎ
2

2
𝑐
2

𝑖
𝑦
󸀠󸀠

𝑛
+ ℎ
3

𝑖−1

∑

𝑗=1

𝑎
𝑖𝑗
𝑘
𝑗
) (4)

for 𝑖 = 2, 3, . . . , 𝑠.
The parameters of the RKD method are 𝑐

𝑖
, 𝑎
𝑖𝑗
, 𝑏
𝑖
, 𝑏
󸀠

𝑖
, 𝑏
󸀠󸀠

𝑖

for 𝑖 = 1, 2, . . . , 𝑠 and 𝑗 = 1, 2, . . . , 𝑠 are assumed to be real.
If 𝑎
𝑖𝑗
= 0 for 𝑖 ⩽ 𝑗, it is an explicit method, and otherwise it

is an implicit method. The RKD method can be expressed in
the Butcher notation using the table of coefficients as follows:

𝑐 𝐴

𝑏
𝑇

𝑏
󸀠𝑇

𝑏
󸀠󸀠𝑇

(5)

To determine the coefficients of the method given by (2)–
(4), the RKD method expression is expanded using Taylor’s
series expansion. After some algebraic manipulations, this
expansion is equated to the true solution that is given by
Taylor’s series expansion. General order conditions for the
RKD method can be found from the direct expansion of the
local truncation error. This idea is based on the derivation of
order conditions for the Runge-Kutta method introduced in
Dormand [11]. The RKD formulae in (2) may be expressed as

𝑦
𝑛+1

= 𝑦
𝑛
+ ℎΦ (𝑥

𝑛
, 𝑦
𝑛
) ,

𝑦
󸀠

𝑛+1
= 𝑦
󸀠

𝑛
+ ℎΦ
󸀠
(𝑥
𝑛
, 𝑦
𝑛
) ,

𝑦
󸀠󸀠

𝑛+1
= 𝑦
󸀠󸀠

𝑛
+ ℎΦ
󸀠󸀠
(𝑥
𝑛
, 𝑦
𝑛
) ,

(6)

where the increment functions are

Φ(𝑥
𝑛
, 𝑦
𝑛
) = 𝑦
󸀠

𝑛
+

ℎ

2
𝑦
󸀠󸀠

𝑛
+ ℎ
2

𝑠

∑

𝑖=1

𝑏
𝑖
𝑘
𝑖
,

Φ
󸀠
(𝑥
𝑛
, 𝑦
𝑛
) = 𝑦
󸀠󸀠

𝑛
+ ℎ

𝑠

∑

𝑖=1

𝑏
󸀠

𝑖
𝑘
𝑖
,

Φ
󸀠󸀠
(𝑥
𝑛
, 𝑦
𝑛
) =

𝑠

∑

𝑖=1

𝑏
󸀠󸀠

𝑖
𝑘
𝑖
,

(7)

and 𝑘
𝑖
is defined in formula (4). If Δ is the Taylor series

increment function, then the local truncation errors of the
solution, the first derivative, and the second derivative may
be obtained by substituting the true solution 𝑦(𝑥) of (1) into
the RKD increment function. This gives

𝑡
𝑛+1

= ℎ [Φ − Δ] , 𝑡
󸀠

𝑛+1
= ℎ [Φ

󸀠
− Δ
󸀠
] ,

𝑡
󸀠󸀠

𝑛+1
= ℎ [Φ

󸀠󸀠
− Δ
󸀠󸀠
] .

(8)

These expressions are best given in terms of elementary
differentials and the Taylor series increment may be written
as

Δ = 𝑦
󸀠
+

1

2
ℎ𝑦
󸀠󸀠
+

1

6
ℎ
2
𝐹
(3)

1
+

1

24
ℎ
3
𝐹
(4)

1
+ 𝑂 (ℎ

4
) ,

Δ
󸀠
= 𝑦
󸀠󸀠
+

1

2
ℎ𝐹
(3)

1
+

1

6
ℎ
2
𝐹
(4)

1
+

1

24
ℎ
3
𝐹
(5)

1
+ 𝑂 (ℎ

4
) ,

Δ
󸀠󸀠
= 𝐹
(3)

1
+

1

2
ℎ𝐹
(4)

1
+

1

6
ℎ
2
𝐹
(5)

1
+ 𝑂 (ℎ

3
) ,

(9)

where for the scalar case the first few elementary differentials
are

𝐹
(3)

1
= 𝑓,

𝐹
(4)

1
= 𝑓
𝑥
+ 𝑓
𝑦
𝑦
󸀠
,

𝐹
(5)

1
= 𝑓
𝑥𝑥

+ 2𝑓
𝑥𝑦
𝑦
󸀠
+ 𝑓
𝑦
𝑦
󸀠󸀠
+ 𝑓
𝑦𝑦
(𝑦
󸀠
)
2

.

(10)

Using the above terms, the increment functions Φ, Φ
󸀠,

and Φ
󸀠󸀠 for the RKD formula become

𝑠

∑

𝑖=1

𝑏
𝑖
𝑘
𝑖
=

𝑠

∑

𝑖=1

𝑏
𝑖
𝑓 +

𝑠

∑

𝑖=1

𝑏
𝑖
𝑐
𝑖
(𝑓
𝑥
+ 𝑓
𝑦
𝑦
󸀠
) ℎ

+
1

2

𝑠

∑

𝑖=1

𝑏
𝑖
𝑐
2

𝑖
(𝑓
𝑥𝑥

+ 2𝑓
𝑥𝑦
𝑦
󸀠
+ 𝑓
𝑦
𝑦
󸀠󸀠
+ 𝑓
𝑦𝑦
(𝑦
󸀠
)
2

) ℎ
2

+ 𝑂 (ℎ
3
) ,

𝑠

∑

𝑖=1

𝑏
󸀠

𝑖
𝑘
𝑖
=

𝑠

∑

𝑖=1

𝑏
󸀠

𝑖
𝑓 +

𝑠

∑

𝑖=1

𝑏
󸀠

𝑖
𝑐
𝑖
(𝑓
𝑥
+ 𝑓
𝑦
𝑦
󸀠
) ℎ

+
1

2

𝑠

∑

𝑖=1

𝑏
󸀠

𝑖
𝑐
2

𝑖
(𝑓
𝑥𝑥

+ 2𝑓
𝑥𝑦
𝑦
󸀠
+ 𝑓
𝑦
𝑦
󸀠󸀠
+ 𝑓
𝑦𝑦
(𝑦
󸀠
)
2

) ℎ
2

+ 𝑂 (ℎ
3
) ,

𝑠

∑

𝑖=1

𝑏
󸀠󸀠

𝑖
𝑘
𝑖
=

𝑠

∑

𝑖=1

𝑏
󸀠󸀠

𝑖
𝑓 +

𝑠

∑

𝑖=1

𝑏
󸀠󸀠

𝑖
𝑐
𝑖
(𝑓
𝑥
+ 𝑓
𝑦
𝑦
󸀠
) ℎ

+
1

2

𝑠

∑

𝑖=1

𝑏
󸀠󸀠

𝑖
𝑐
2

𝑖
(𝑓
𝑥𝑥

+ 2𝑓
𝑥𝑦
𝑦
󸀠
+ 𝑓
𝑦
𝑦
󸀠󸀠
+ 𝑓
𝑦𝑦
(𝑦
󸀠
)
2

) ℎ
2

+ 𝑂 (ℎ
3
) .

(11)
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The expressions for the local truncation errors in the 𝑦

solution, the first derivative, and the second derivative are

𝑡
𝑛+1

= ℎ
3
[

𝑠

∑

𝑖=1

𝑏
𝑖
𝑘
𝑖
− (

1

6
𝐹
(3)

1
+

1

24
𝐹
(4)

1
+ ⋅ ⋅ ⋅ )] ,

𝑡
󸀠

𝑛+1
= ℎ
2
[

𝑠

∑

𝑖=1

𝑏
󸀠

𝑖
𝑘
𝑖
− (

1

2
𝐹
(3)

1
+

1

6
𝐹
(4)

1
+ ⋅ ⋅ ⋅ )] ,

𝑡
󸀠󸀠

𝑛+1
= ℎ[

𝑠

∑

𝑖=1

𝑏
󸀠󸀠

𝑖
𝑘
𝑖
− (𝐹
(3)

1
+

1

2
𝐹
(4)

1
+

1

6
ℎ
2
𝐹
(5)

1
+ ⋅ ⋅ ⋅ )] .

(12)

Substituting (11) into (12) and expanding as a Taylor
expansion usingMAPLE 4 software as introduced by Gander
and Gruntz [12], the error equations or the order conditions
for 𝑠-stage six-order RKD method can be written as follows.

Order conditions for 𝑦:

Order 3

∑𝑏
𝑖
=

1

6
. (13)

Order 4

∑𝑏
𝑖
𝑐
𝑖
=

1

24
. (14)

Order 5

∑𝑏
𝑖
𝑐
2

𝑖
=

1

60
. (15)

Order 6

∑𝑏
𝑖
𝑐
3

𝑖
=

1

120
, ∑𝑏

𝑖
𝑎
𝑖𝑗
=

1

720
. (16)

Order conditions for 𝑦󸀠:

Order 2

∑𝑏
󸀠

𝑖
=

1

2
. (17)

Order 3

∑𝑏
󸀠

𝑖
𝑐
𝑖
=

1

6
. (18)

Order 4

∑𝑏
󸀠

𝑖
𝑐
2

𝑖
=

1

12
. (19)

Order 5

∑𝑏
󸀠

𝑖
𝑐
3

𝑖
=

1

20
, ∑𝑏

󸀠

𝑖
𝑎
𝑖𝑗
=

1

120
. (20)

Order 6

∑𝑏
󸀠

𝑖
𝑐
4

𝑖
=

1

30
, ∑𝑏

󸀠

𝑖
𝑎
𝑖𝑗
𝑐
𝑗
=

1

720
,

∑𝑏
󸀠

𝑖
𝑐
𝑖
𝑎
𝑖𝑗
=

1

180
.

(21)

Order conditions for 𝑦󸀠󸀠:

Order 1

∑𝑏
󸀠󸀠

𝑖
= 1. (22)

Order 2

∑𝑏
󸀠󸀠

𝑖
𝑐
𝑖
=

1

2
. (23)

Order 3

∑𝑏
󸀠󸀠

𝑖
𝑐
2

𝑖
=

1

3
. (24)

Order 4

∑𝑏
󸀠󸀠

𝑖
𝑐
3

𝑖
=

1

4
, ∑𝑏

󸀠󸀠

𝑖
𝑎
𝑖𝑗
=

1

24
. (25)

Order 5

∑𝑏
󸀠󸀠

𝑖
𝑐
4

𝑖
=

1

5
, ∑𝑏

󸀠󸀠

𝑖
𝑎
𝑖𝑗
𝑐
𝑗
=

1

120
, ∑𝑏

󸀠󸀠

𝑖
𝑐
𝑖
𝑎
𝑖𝑗
=

1

30
.

(26)

Order 6

∑𝑏
󸀠󸀠

𝑖
𝑐
2

𝑖
𝑎
𝑖𝑗
=

1

36
, ∑𝑏

󸀠󸀠

𝑖
𝑎
𝑖𝑗
𝑐
2

𝑗
+ ∑𝑏

󸀠󸀠

𝑖
𝑐
𝑖
𝑎
𝑖𝑗
𝑐
𝑗
=

7

720
,

∑𝑏
󸀠󸀠

𝑖
𝑐
5

𝑖
=

1

6
,

∑𝑏
󸀠󸀠

𝑖
𝑎
𝑖𝑗
𝑐
2

𝑗
=

1

360
, ∑𝑏

󸀠󸀠

𝑖
𝑐
𝑖
𝑎
𝑖𝑗
𝑐
𝑗
=

1

144
,

1

2
∑𝑏
󸀠󸀠

𝑖
𝑎
𝑖𝑗
𝑐
2

𝑗
+ ∑𝑏

󸀠󸀠

𝑖
𝑐
𝑖
𝑎
𝑖𝑗
𝑐
𝑗
=

1

120
.

(27)

All indices are from 1 to 𝑠. To obtain the fifth-order
RKD method, the following simplifying assumption is used
in order to reduce the number of equations to be solved:

𝑏
󸀠

𝑖
= 𝑏
󸀠󸀠

𝑖
(1 − 𝑐
𝑖
) , 𝑖 = 1, . . . , 𝑠. (28)

To derive the three-stage fifth-order RKDmethod, we use
the algebraic conditions up to order five (13)–(15), (17)–(20),
and (22)–(26). The resulting system of equations consists of
16 nonlinear equations with 13 unknown variables for which
we need to solve. Consequently, there is no solution since the
number of equations exceeds the number of unknowns to be
solved for. To overcome this, the simplifying assumption (28)
is imposed. This will reduce the number of equations to 11
with 11 unknowns making the system solvable. This system
has no free parameter but is consistent and yields a unique
solution. The coefficients of the method are given below (see
The RKD5 method in (29)). The error norms for 𝑦

𝑛
,𝑦󸀠
𝑛
, and

𝑦
󸀠󸀠

𝑛
are given by ‖𝜏

(6)
‖
2

= 4.392052306 × 10
−4, ‖𝜏󸀠(6)‖

2
=

4.108422255 × 10
−3, ‖𝜏󸀠󸀠(6)‖

2
= 4.925724188 × 10

−3, respec-
tively, where 𝜏(6), 𝜏󸀠(6), and 𝜏

󸀠󸀠(6) are error terms of the sixth-
order conditions for 𝑦

𝑛
,𝑦󸀠
𝑛
, and 𝑦

󸀠󸀠

𝑛
, respectively.
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The RKD5 Method. Consider the following:

0 0

3

5
+

√6

10

27

500
+

19√6

1000
0

3

5
−

√6

10

33

2500
−

51√6

5000

51

1250
−

11√6

1250
0

1

18

1

18
−

√6

48

1

18
+

√6

48

1

9

7

36
−

√6

18

7

36
+

√6

18

1

9

4

9
−

√6

36

4

9
+

√6

36

(29)

Next, we will discuss the zero stability of the method
which is one of the criteria for the method to be convergent.
Zero stability is an important tool for proving the stability
and convergence of linear multistep methods. The interested
reader is referred to the textbooks by Lambert [13] and
Butcher [14] in which zero stability is discussed. Zero stability
has been discussed in Hairer et al. [15] to determine an
upper bound on the order of convergence of linear multistep
methods. In studying the zero stability of the RKD method,
we can write method (2) as follows:

(

1 0 0

0 1 0

0 0 1

)(

𝑦
𝑛+1

ℎ𝑦
󸀠

𝑛

ℎ
2
𝑦
󸀠󸀠

𝑛+1

) = (

1 1
1

2

0 1 1

0 0 1

)(

𝑦
𝑛+1

ℎ𝑦
󸀠

𝑛

ℎ
2
𝑦
󸀠󸀠

𝑛+1

),

𝑝 (𝜉) = det [𝐼𝜉 − 𝐴] = det(
𝜉 − 1 −1 −

1

2

0 𝜉 − 1 −1

0 0 𝜉 − 1

) .

(30)

Thus, the characteristic polynomial is

𝑝 (𝜉) = (𝜉 − 1)
3
. (31)

Hence, the method is zero stable since the roots, 𝜉 = 1, are
less than or equal to one.

3. Problems Tested and Numerical Results

In this section, we will apply the new method to some third-
order differential equation problems. The following explicit
RK methods are selected for the numerical comparisons.

(i) RKD5: the three-stage fifth-order RKD method de-
rived in this paper.

(ii) RK4: the four-stage fourth-order RK method as in
Butcher [14].

(iii) DOPRI: the seven-stage fifth-order Runge-Kutta de-
rived by Dormand [11].

Problem 1. Consider

𝑑
3
𝑦 (𝑥)

𝑑𝑥3
=

3

8√(1 + 𝑥)
5

, 𝑦 (0) = 1, 𝑦
󸀠

(0) =
1

2
,

𝑦
󸀠󸀠

(0) = −
1

4
.

(32)

Exact solution: 𝑦(𝑥) = √1 + 𝑥.

Problem 2. Consider

𝑑
3
𝑦 (𝑥)

𝑑𝑥3
= 𝑦
2

(𝑥) + cos2 (𝑥) − cos (𝑥) − 1, 𝑦 (0) = 0,

𝑦
󸀠

(0) = 1, 𝑦
󸀠󸀠

(0) = 0.

(33)

Exact solution: 𝑦(𝑥) = sin(𝑥).

4. An Application to a Problem in
Thin Film Flow

In this section, we will apply the proposed method to a well-
known problem in physics regarding the thin film flow of a
liquid. Many problems have discussed this problem; see, for
example, [16–23]. In a survey paper, Tuck and Schwartz [16]
discussed the flow of a thin film of viscous fluid over a solid
surface. Tension and gravity as well as viscosity are taken into
account.The problemwas formulated using third-order ordi-
nary differential equations (ODEs) as follows:

𝑑
3
𝑦

𝑑𝑥3
= 𝑓 (𝑦) (34)

for the film profile 𝑦(𝑥) in a coordinate frame moving with
the fluid. The form of 𝑓(𝑦) varies according to the physical
context. Different forms of the function 𝑓 are studied in
Tuck and Schwartz [16]. For drainage down a dry surface,
the form of 𝑓(𝑦) was given as

𝑑
3
𝑦

𝑑𝑥3
= −1 +

1

𝑦2
. (35)

When the surface is prewetted by a thin film with
thickness 𝛿 > 0 (where 𝛿 > 0 is very small), the function
𝑓 is given by

𝑓 (𝑦) = −1 +
1 + 𝛿 + 𝛿

2

𝑦2
−

𝛿 + 𝛿
2

𝑦3
. (36)

Problems concerning the flow of thin films of viscous
fluid with a free surface in which surface tension effects play
a role typically lead to third-order ordinary differential equa-
tions governing the shape of the free surface of the fluid, 𝑦 =

𝑦(𝑥). According to Tuck and Schwartz [16], one such equa-
tion is

𝑦
󸀠󸀠󸀠

= 𝑦
−𝑘
, 𝑥 ≥ 𝑥

0
(37)
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Table 1: Table comparing values of the numerical solution, a fifth-
order Runge-Kutta method (DOPRI), fourth-order Runge-Kutta
method (RK4), and our new RKD5 method at 𝑥 ∈ [0, 0.2, 0.4, 0.6,

0.8, 1.0] taking ℎ = 0.01 and 𝑘 = 2 with the initial conditions
𝑦(0) = 𝑦

󸀠
(0) = 𝑦

󸀠󸀠
(0) = 1.

𝑥 Exact solution DOPRI RK4 RKD5
0.0 1.000000000 1.0000000000 1.0000000000 1.0000000000

0.2 1.221211030 1.2212100045 1.2212100046 1.2212100045

0.4 1.488834893 1.4888347799 1.4888347800 1.4888347799

0.6 1.807361404 1.8073613977 1.8073613978 1.8073613977

0.8 2.179819234 2.1798192339 2.1798192341 2.1798192339

1.0 2.608275822 2.6082748676 2.6082748678 2.6082748676

Table 2: Table comparing values of the numerical solution, a fifth-
order Runge-Kutta method (DOPRI), fourth-order Runge-Kutta
method (RK4), and our new RKD5 method at 𝑥 ∈ [0, 0.2, 0.4, 0.6,

0.8, 1.0] taking ℎ = 0.1 and 𝑘 = 2 with the initial conditions
𝑦(0) = 𝑦

󸀠
(0) = 𝑦

󸀠󸀠
(0) = 1.

𝑥 Exact solution DOPRI RK4 RKD5
0.0 1.000000000 1.0000000000 1.0000000000 1.0000000000

0.2 1.221211030 1.2212100041 1.2212105060 1.2212099592

0.4 1.488834893 1.4888347796 1.4888356990 1.4888344801

0.6 1.807361404 1.8073613979 1.8073626884 1.8073605532

0.8 2.179819234 2.1798192349 2.1798208831 2.1798175255

1.0 2.608275822 2.6082748696 2.6082768844 2.6082719667

with initial conditions

𝑦 (𝑥
0
) = 𝛼, 𝑦

󸀠
(𝑥
0
) = 𝛽, 𝑦

󸀠󸀠
(𝑥
0
) = 𝛾, (38)

where 𝛼, 𝛽, and 𝛾 are constants, is of particular importance
because it describes the dynamic balance between surface and
viscous forces in a thin fluid layer in the absence (or neglect)
of gravity.

For comparison purposes, wewill use Runge-Kuttameth-
ods which are fourth-order (RK4) and fifth-order (DOPRI)
methods, respectively. To use Runge-Kutta methods we write
(1) as a system of three first-order equations. Following Biazar
et al. [17], we can write (37) as the following system:

𝑑𝑦
1

𝑑𝑥
= 𝑦
2
(𝑥) ,

𝑑𝑦
2

𝑑𝑥
= 𝑦
3
(𝑥) ,

𝑑𝑦
3

𝑑𝑥
= 𝑦
−𝑘

1
(𝑥) ,

(39)

where

𝑦
1
(0) = 1, 𝑦

2
(0) = 1, 𝑦

3
(0) = 1, (40)

we have taken 𝑥
0
= 0 and 𝛼 = 𝛽 = 𝛾 = 1.

Unfortunately, for general 𝑘, (37) cannot be solved analyt-
ically. We can, however, use these reductions to determine an
efficient way to solve (1) numerically. We focus on the cases
𝑘 = 2 and 𝑘 = 3. The results are displayed in Tables 1 and 2
for the case 𝑘 = 2 and Tables 3 and 4 for the case 𝑘 = 3.

For comparison purposes, we present efficiency curve
where the common logarithm of the maximum global error

Table 3: Table comparing values of the numerical solution using
a fifth-order Runge-Kutta method (DOPRI), fourth-order Runge-
Kutta method (RK4), and our new RKD5 method at 𝑥 ∈ [0, 0.2, 0.4,

0.6, 0.8, 1.0] taking ℎ = 0.01 and 𝑘 = 3 with the initial conditions
𝑦(0) = 𝑦

󸀠
(0) = 𝑦

󸀠󸀠
(0) = 1.

𝑥 RK4 DOPRI RKD5
0.0 1.0000000000 1.0000000000 1.0000000000

0.2 1.2211551425 1.2211551424 1.2211551423

0.4 1.4881052844 1.4881052842 1.4881052838

0.6 1.8042625484 1.8042625481 1.8042625471

0.8 2.1715227984 2.1715227981 2.1715227960

1.0 2.5909582594 2.5909582591 2.5909582556

Table 4: Table comparing values of the numerical solution using
a fifth-order Runge-Kutta method (DOPRI), fourth-order Runge-
Kutta method (RK4), and our new RKD5 method at 𝑥 ∈ [0, 0.2, 0.4,

0.6, 0.8, 1.0] taking ℎ = 0.1 and 𝑘 = 3 with the initial conditions
𝑦(0) = 𝑦

󸀠
(0) = 𝑦

󸀠󸀠
(0) = 1.

𝑥 RK4 DOPRI RKD5
0.0 1.0000000000 1.0000000000 1.0000000000

0.2 1.2211559590 1.2211551421 1.2211550887

0.4 1.4881067401 1.4881052848 1.4881049238

0.6 1.8042645823 1.8042625503 1.8042615558

0.8 2.1715254210 2.1715228023 2.1715208324

1.0 2.5909615178 2.5909582657 2.5909549758

along the integration versus the function evaluations as
shown in Figures 1 and 2. From Figures 1 and 2, we observed
that the method RKD5 performs better when integrating
third-order ODE compared to RK4 and DOPRI methods.

From Tables 1 and 2 we observe that the numerical results
using RKD5 are correct to five decimal places. Applying
the fourth- and fifth-order RK methods (RK4 and DOPRI)
to (39) for 𝑘 = 2 also yields five-decimal-place accuracy.
While from Tables 3 and 4 we observed the numerical
results for the new method, RKD5 agrees to eight decimal
places when compared with the fourth- and fifth-order RK
methods (RK4 and DOPRI). This is consistent with the
results displayed in Tables 1 and 2. In Figures 3 and 4, we plot
the numerical solution, 𝑦

𝑖
for 𝑘 = 2 and 𝑘 = 3, respectively,

with ℎ = 0.01. Figure 5 shows that the new RKD5 method
requires less function evaluations than the RK4 and DOPRI
methods. This is because when problem (37) is solved using
RK4 and DOPRI method, it need to be reduced to a system
of first-order equations which is three times the dimen-
sion.

5. Discussion and Conclusion

In this paper, we have derived the order conditions for a
Runge-Kutta method which can be used to directly solve
special third-order ordinary differential equations. A three-
stage fifth-order RKD method has been derived and applied
to the thin film flow problem. Numerical results show that
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Figure 3: Plot of the solution 𝑦
𝑖
for problem (37) for 𝑘 = 2, ℎ = 0.01.
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Figure 4: Plot of the solution 𝑦
𝑖
for problem (37) for 𝑘 = 3, ℎ = 0.01.
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Figure 5: Plot of graph for function evaluations against step size, ℎ
for 𝑘 = 3, ℎ = 1/10

𝑖, 𝑖 = 1, . . . , 4.

the new method agrees very well with well-known existing
methods in the literature and required less function evalua-
tions. As such, this method is more cost effective in terms of
computation time than other existing methods.
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