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Scheduling involving jobs with time-dependent processing times has recently attracted much research attention. However,
multiagent scheduling with simultaneous considerations of jobs with time-dependent processing times and ready times is relatively
unexplored. Inspired by this observation, we study a two-agent single-machine scheduling problem in which the jobs have both
time-dependent processing times and ready times. We consider the model in which the actual processing time of a job of the first
agent is a decreasing function of its scheduled position while the actual processing time of a job of the second agent is an increasing
function of its scheduled position. In addition, each job has a different ready time.The objective is to minimize the total completion
time of the jobs of the first agent with the restriction that no tardy job is allowed for the second agent. We propose a branch-and-
bound and several genetic algorithms to obtain optimal and near-optimal solutions for the problem, respectively. We also conduct
extensive computational results to test the proposed algorithms and examine the impacts of different problem parameters on their
performance.

1. Introduction

In many scheduling models researchers assume that the job
processing times are known and fixed parameters. However,
the job processing times can be prolonged due to deteri-
oration or shortened due to learning over time in real-life
situations. Browne and Yechiali [1] present fire-fighting as an
example of job deterioration while Biskup [2] cites workers’
skill improvement as an example of job learning. Both
examples and their corresponding situations are referred to
as “time-dependent scheduling” in the literature.

Time-dependent scheduling was first introduced by J. N.
D. Gupta and S. K. Gupta [3] and Browne and Yechiali [1]
for deterioration jobs, whereas by Biskup [2] for the learning
effect. Since then, a lot of scheduling models involving job
time-dependent processing times have been proposed from a
variety of perspectives. For more detailed reviews of schedul-
ing problems with deteriorating jobs, we refer the reader to
Alidaee andWomer [4] andCheng et al. [5], and for a detailed
review of scheduling problems with learning effects, we refer

the reader to Biskup [6]. More recently, scheduling research
that considers both deteriorating jobs and learning effects
has become popular. For details on this stream of scheduling
research, the reader may refer to Wang [7], Wang and Cheng
[8, 9], Wang and Liu [10], Wang and Guo [11], Zhang and Yan
[12], Yang [13], and Zhu et al. [14], among others.

In the past, the scheduling literature was dominated by
studies that deal with a single criterion. In reality, jobs might
come from several agents (customers) that have different
requirements to meet. However, scheduling research in the
multiple-agent setting involving jobs with time-dependent
processing times is relatively unexplored. Among the few
studies on this topic, Liu and Tang [15] studied multiagent
scheduling with deteriorating jobs in which they assumed
that the actual processing time of job 𝐽𝑗 is 𝛿𝑗𝑡, where 𝛿𝑗 > 0

and 𝑡 denote the deteriorating rate and starting time of
𝐽𝑗, respectively. Liu et al. [16] considered two two-agent
problems with position-dependent processing times. In the
aging-effect model, they assumed that the actual processing
time of 𝐽𝑗 is 𝑝𝑗 + 𝑏𝑟 (𝑝𝑗 + 𝑏V) if it belongs to agent 𝐴(𝐵).
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Meanwhile, in the learning-effect model, they assumed that
the actual processing time of 𝐽𝑗 is 𝑝𝑗−𝑏𝑟 (𝑝𝑗−𝑏V) if it belongs
to agent 𝐴(𝐵), where 𝑟 (or V) denotes the job position and
𝑏, 𝑏 > 0, is the aging or learning effect. Cheng et al. [17]
considered a two-agent scheduling problem in which they
assumed that, given a schedule, the actual processing time of
a job of the first agent is a function of position-based learning
while the actual processing time of a job of the second agent
is a function of position-based deterioration. The objective
is to minimize the total weighted completion time of the
jobs of the first agent with the restriction that no tardy job
is allowed for the second agent. Wu et al. [18] studied two-
agent scheduling in which the actual processing time of 𝐽𝑗
is 𝑝𝑗(1 + ∑

𝑟−1
𝑙=1 𝑝[𝑙])

𝑎
(𝑝𝑗(1 + ∑

𝑟−1
𝑙=1 𝑝[𝑙])

𝛽
) if it is a job of AG0

(AG1) scheduled in the 𝑟th position of a sequence. Their
objective function is to find an optimal schedule to minimize
∑
𝑛
𝑗=1 𝑤𝑗𝐶𝑗(𝑆)(1 − 𝐼𝑗), subject to max1≤𝑗≤𝑛{𝐿𝑗(𝑆)𝐼𝑗} ≤ 0. They

proposed branch-and-bound and ant colony algorithms to
solve the problem. However, they ignored job ready times.
Wu et al. [19] considered a single-machine problem with
the sum-of-processing time based learning effect and release
times, where the objective is to minimize the total weighted
completion time. They assumed that the actual processing
time of job 𝑗 is 𝑝𝑗𝑟 = 𝑝𝑗(1 − ∑

𝑟−1
𝑙=1 𝑝[𝑙]/∑

𝑛
𝑙=1 𝑝𝑙)

𝑎 if it is
scheduled in the 𝑟th position, where 𝑎 ≥ 1 is a learning ratio
common to all the jobs. They proposed a branch-and-bound
algorithm and a genetic heuristic-based algorithm to treat
the problem. Wu et al. [18] used a branch-and-bound and a
ant colony algorithm to solve a two-agent scheduling with
learning and deteriorating jobs. Lun et al. [20] and Zhang
et al. [21] gave applications of multiagent scheduling of jobs
with ready times in the shipping industry. Specifically, ships
belonging to shipping companies (multiple agents) call at
a port at different times. The port needs to find a suitable
schedule to serve the ships. In this context, the port is the
single machine and the arriving ships from different shipping
companies are jobs belonging to different agents with ready
times. Inspired by this and other applications, we study in
this paper a two-agent single-machine scheduling problem in
which the jobs have both time-dependent processing times
and ready times. We consider the model in which the actual
processing time of a job of the first agent is a decreasing
function of its scheduled position while the actual processing
time of a job of the second agent is an increasing function
of its scheduled position. The objective is to minimize the
total completion time of the jobs of the first agent with the
restriction that no tardy job is allowed for the second agent.

The remainder of this paper is organized as follows.
We present the problem formulation in the next section. In
Section 3 we discuss the computational complexity of the
problem. In Section 4 we develop some dominance proper-
ties and a lower bound to enhance the search efficiency for
the optimal solution, followed by introducing a branch-and-
bound and several genetic algorithms. In Section 5we present
the results of computational experiments conducted to assess
the performance of the proposed algorithms. We conclude
the paper and suggest some topics for future research in the
last section.

2. Model Formulation

We formulate the scheduling problem under study as follows.
There are 𝑛 jobs for processing on a single machine. Each job
𝐽𝑗 becomes available for processing at time 𝑟𝑗 ≥ 0. Each job
belongs to one of two agents, namely, AG0 and AG1. For job
𝐽𝑗, there is a normal processing time 𝑝𝑗 and an agent code 𝐼𝑗,
where 𝐼𝑗 = 0 if 𝐽𝑗 ∈ AG0 and 𝐼𝑗 = 1 if 𝐽𝑗 ∈ AG1. We assume
that all the jobs of AG0 have a position-based learning rate 𝑎
with 𝑎 ≤ 0, while all the jobs of AG1 have a position-based
deteriorating rate 𝑏 with 𝑏 ≥ 0. Under the proposed model,
the actual processing time of 𝐽𝑗 is 𝑝𝑗𝑟

𝑎 (𝑝𝑗𝑟
𝑏) if it belongs to

AG0 (AG1) and is scheduled in position 𝑟 of a sequence.
For a given schedule 𝑆, let 𝐶𝑗(𝑆) be the completion time

of 𝐽𝑗, and 𝑈𝑗(𝑆) = 1 if 𝐶𝑗(𝑆) > 𝑑𝑗 and zero otherwise.
The objective is to find an optimal schedule to minimize
∑
𝑛
𝑗=1 𝐶𝑗(𝑆)(1 − 𝐼𝑗), subject to ∑

𝑛
𝑗=1𝑈𝑗(𝑆)𝐼𝑗 = 0. Adopting

the three-field notation scheme 𝛼|𝛽|𝛾
𝐴

: 𝛾
𝐵 introduced by

Agnetis et al. [22], we denote the problem as 1|𝑟𝑗, 𝑝𝑗𝑟 = 𝑝𝑗𝑟
𝑥,

𝑥 ∈ {𝑎, 𝑏}| ∑
𝑛
𝑗=1 𝐶𝑗(𝑆)(1 − 𝐼𝑗) : ∑

𝑛
𝑗=1𝑈𝑗(𝑆)𝐼𝑗 = 0.

As for the major results of research on multiagent
scheduling without learning effects or deteriorating jobs, the
reader may refer to Baker and Smith [23], Agnetis et al. [22],
Yuan et al. [24], Cheng et al. [25, 26], Ng et al. [27], Agnetis
et al. [28], Mor and Mosheiov [29, 30], Yin et al. [31, 32], and
so forth.

3. Branch-and-Bound Algorithm

Due to the fact that our proposed problem is an NP-hard
one (see [33]), in this section we apply the branch-and-
bound technique to search for the optimal solution. In order
to facilitate the searching process, we first develop some
dominance properties, followed by presenting a lower bound
to fathom the searching tree. We then present the procedures
of branch-and-bound algorithm and suggest some heuristics.
3.1. Dominance Rules. Assume that schedule 𝑆 has two
adjacent jobs 𝐽𝑖 and 𝐽𝑗 with 𝐽𝑖 immediately preceding 𝐽𝑗.
Perform a pairwise interchange of 𝐽𝑖 and 𝐽𝑗 to derive a new
sequence 𝑆

. In addition, assume that 𝐽𝑖 and 𝐽𝑗 are in the 𝑟th
and (𝑟 + 1)th positions of 𝑆 and that the starting time to
process job 𝐽𝑖 in 𝑆 is 𝑡.

Lemma 1. If 𝐽𝑖, 𝐽𝑗 ∈ 𝐴𝐺0, 𝑟𝑗 ≥ max{𝑟𝑖, 𝑡} + 𝑝𝑖𝑟
𝑎, then 𝑆

dominates 𝑆.

Proof. The completion times of jobs 𝐽𝑖 and 𝐽𝑗 in 𝑆 and 𝑆
 are,

respectively,

𝐶𝑖 (𝑆) = max {𝑟𝑖, 𝑡} + 𝑝𝑖𝑟
𝑎
,

𝐶𝑗 (𝑆) = max {max {𝑟𝑖, 𝑡} + 𝑝𝑖𝑟
𝑎
, 𝑟𝑗} + 𝑝𝑗(𝑟 + 1)

𝑎
,

𝐶𝑗 (𝑆

) = max {𝑟𝑗, 𝑡} + 𝑝𝑗𝑟

𝑎
,

𝐶𝑖 (𝑆

) = max {max {𝑟𝑗, 𝑡} + 𝑝𝑗𝑟

𝑎
, 𝑟𝑖} + 𝑝𝑖(𝑟 + 1)

𝑎
,

(1)
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From 𝑟𝑗 ≥ max{𝑟𝑖, 𝑡} + 𝑝𝑖𝑟
𝑎, we have

𝐶𝑖 (𝑆

) > 𝐶𝑗 (𝑆


) = max {𝑟𝑗, 𝑡} + 𝑝𝑗𝑟

𝑎
> 𝑟𝑗 + 𝑝𝑗(𝑟 + 1)

𝑎

= 𝐶𝑗 (𝑆) > 𝐶𝑖 (𝑆) .

(2)

It follows that 𝐶𝑖(𝑆

) +𝐶𝑗(𝑆


) > 𝐶𝑗(𝑆) +𝐶𝑖(𝑆), so 𝑆 dominates

𝑆
.

Lemma 2. If 𝐽𝑖, 𝐽𝑗 ∈ 𝐴𝐺0, max{𝑟𝑖, 𝑡} ≤ 𝑟𝑗 < max{𝑟𝑖, 𝑡} + 𝑝𝑖𝑟
𝑎

and 𝑝𝑖 < 𝑝𝑗, then 𝑆 dominates 𝑆.

Proof. By the assumption andLemma 1, the completion times
of jobs 𝐽𝑖 and 𝐽𝑗 in 𝑆 and 𝑆

 can be reformulated as

𝐶𝑖 (𝑆) = max {𝑟𝑖, 𝑡} + 𝑝𝑖𝑟
𝑎
,

𝐶𝑗 (𝑆) = max {𝑟𝑖, 𝑡} + 𝑝𝑖𝑟
𝑎
+ 𝑝𝑗(𝑟 + 1)

𝑎
,

𝐶𝑗 (𝑆

) = max {𝑟𝑗, 𝑡} + 𝑝𝑗𝑟

𝑎
,

𝐶𝑖 (𝑆

) = max {𝑟𝑗, 𝑡} + 𝑝𝑗𝑟

𝑎
+ 𝑝𝑖(𝑟 + 1)

𝑎
,

(3)

respectively. From max{𝑟𝑖, 𝑡} ≤ 𝑟𝑗 and 𝑝𝑖 < 𝑝𝑗, it is easy to
see that 𝐶𝑖(𝑆


) > 𝐶𝑗(𝑆) and 𝐶𝑗(𝑆


) > 𝐶𝑖(𝑆). It follows that 𝑆

dominates 𝑆.

Lemma 3. If 𝐽𝑖, 𝐽𝑗 ∈ 𝐴𝐺0,max{𝑟𝑗, 𝑡} ≤ 𝑟𝑖 < max{𝑟𝑗, 𝑡} + 𝑝𝑗𝑟
𝑎,

and (𝑝𝑗 −𝑝𝑖)(𝑟
𝑎
− (𝑟 + 1)

𝑎
) ≥ 𝑟𝑖 −max{𝑟𝑗, 𝑡}, then 𝑆 dominates

𝑆
.

Proof. The proof is similar to that of Lemma 2.

Lemma 4. If 𝐽𝑖, 𝐽𝑗 ∈ 𝐴𝐺0,max{𝑟𝑖, 𝑟𝑗} ≤ 𝑡, and 𝑝𝑖 < 𝑝𝑗, then 𝑆

dominates 𝑆.

Proof. The proof is similar to that of Lemma 2.

Lemma 5. If 𝐽𝑖, 𝐽𝑗 ∈ 𝐴𝐺1, max{𝑟𝑖, 𝑡} + 𝑝𝑖𝑟
𝑏

≤ 𝑑𝑖 <

max{max{𝑟𝑗, 𝑡} + 𝑝𝑗𝑟
𝑏
, 𝑟𝑖} + 𝑝𝑖(𝑟 + 1)

𝑏, and max{max{𝑟𝑖, 𝑡} +
𝑝𝑖𝑟
𝑏
, 𝑟𝑗} + 𝑝𝑗(𝑟 + 1)

𝑏
≤ 𝑑𝑗, then 𝑆 dominates 𝑆.

Proof. The completion times of jobs 𝐽𝑖 and 𝐽𝑗 in 𝑆 and 𝑆
 are,

respectively,

𝐶𝑖 (𝑆) = max {𝑟𝑖, 𝑡} + 𝑝𝑖𝑟
𝑏
,

𝐶𝑗 (𝑆) = max {max {𝑟𝑖, 𝑡} + 𝑝𝑖𝑟
𝑏
, 𝑟𝑗} + 𝑝𝑗(𝑟 + 1)

𝑏
,

𝐶𝑗 (𝑆

) = max {𝑟𝑗, 𝑡} + 𝑝𝑗𝑟

𝑏
,

𝐶𝑖 (𝑆

) = max {max {𝑟𝑗, 𝑡} + 𝑝𝑗𝑟

𝑏
, 𝑟𝑖} + 𝑝𝑖(𝑟 + 1)

𝑏
.

(4)

The given conditions lead to 𝐶𝑖(𝑆) ≤ 𝑑𝑖 < 𝐶𝑖(𝑆

) and

𝐶𝑗(𝑆) ≤ 𝑑𝑗, implying that schedule 𝑆
 is infeasible. Hence,

𝑆 dominates 𝑆.

Lemma6. If 𝐽𝑖, 𝐽𝑗 ∈ 𝐴𝐺1 andmax{max{𝑟𝑗, 𝑡}+𝑝𝑗𝑟
𝑏
, 𝑟𝑖}+𝑝𝑖(𝑟+

1)
𝑏
< max{max{𝑟𝑖, 𝑡}+𝑝𝑖𝑟

𝑏
, 𝑟𝑗}+𝑝𝑗(𝑟+1)

𝑏
≤ min{𝑑𝑖, 𝑑𝑗}, then

𝑆 dominates 𝑆.

Proof. The given condition implies that 𝑈𝑖(𝑆

) + 𝑈𝑗(𝑆


) =

𝑈𝑖(𝑆) + 𝑈𝑗(𝑆) = 0 and 𝐶𝑖(𝑆

) > 𝐶𝑗(𝑆), so 𝑆 dominates 𝑆.

The proofs of Lemmas 7 to 9 are omitted since they are
similar to those of Lemmas 1 and 2.

Lemma 7. If 𝐽𝑖 ∈ 𝐴𝐺0, 𝐽𝑗 ∈ 𝐴𝐺1, 𝑟𝑖 < max{𝑟𝑗, 𝑡} + 𝑝𝑗𝑟
𝑏, and

max{max{𝑟𝑖, 𝑡}+𝑝𝑖𝑟
𝑎
, 𝑟𝑗}+𝑝𝑗(𝑟+1)

𝑏
≤ min{max{𝑟𝑗, 𝑡}+𝑝𝑗𝑟

𝑏
+

𝑝𝑖(𝑟 + 1)
𝑎
, 𝑑𝑗}, then 𝑆 dominates 𝑆.

Lemma 8. If 𝐽𝑖 ∈ 𝐴𝐺1, 𝐽𝑗 ∈ 𝐴𝐺0 andmax{𝑟𝑖, 𝑡}+𝑝𝑖𝑟
𝑏
≤ 𝑑𝑖 <

max{max{𝑟𝑗, 𝑡} + 𝑝𝑗𝑟
𝑎
, 𝑟𝑖} + 𝑝𝑖(𝑟 + 1)

𝑏, then 𝑆 dominates 𝑆.

Lemma 9. If 𝐽𝑖 ∈ 𝐴𝐺1, 𝐽𝑗 ∈ 𝐴𝐺0 and max{𝑟𝑖, 𝑡} + 𝑝𝑖𝑟
𝑏

≤

min{𝑑𝑖, 𝑟𝑗}, then 𝑆 dominates 𝑆.

Next, we present two lemmas to determine the feasibility
of a partial sequence. Let (𝜋, 𝜋) be a sequence of jobs where
𝜋 is the scheduled part with 𝑘 jobs and 𝜋

 is the unscheduled
part. Moreover, let 𝐶[𝑘] be the completion time of the last job
in 𝜋.

Lemma 10. If there is a job 𝐽𝑗 ∈ 𝐴𝐺1 ∩ 𝜋
 such that

max{𝐶[𝑘], 𝑟𝑗} + 𝑝𝑗(𝑘 + 1)
𝑏
> 𝑑𝑗, then sequence (𝜋, 𝜋


) is not

a feasible solution.

Lemma 11. If all the unscheduled jobs belong to𝐴𝐺0 and there
exists a job 𝐽𝑗 ∈ 𝜋

 such thatmax{𝐶[𝑘], 𝑟𝑗}+𝑝𝑗(𝑘+1)
𝑎
≤ 𝑟𝑘 for

all job 𝐽𝑘 ∈ 𝜋

\{𝐽𝑗}, then job 𝐽𝑗 may be assigned to the (𝑘+1)th

position.

Lemma 12. If all the unscheduled jobs belong to 𝐴𝐺0 and
max {𝑟𝑗}𝐽𝑗∈𝜋 ≤ 𝑡, then the shortest processing time (SPT) rule
gives an optimal sequence for the remaining unscheduled jobs.

3.2. A Lower Bound for 1|𝑟𝑗,𝑝𝐴𝑗𝑟=𝑝
𝐴
𝑗 𝑟
𝑎
,𝑝
𝐵
𝑗𝑟=𝑝
𝐵
𝑗 𝑟
𝑏
| ∑𝐶
𝐴
𝑗 : ∑𝑈

𝐵
𝑗 ≤

0. The efficiency of the branch-and-bound algorithm
depends greatly on the lower bounds for the partial
sequences. In this subsection we propose a lower bound.
Let PS be a partial schedule in which the order of the first
𝑘 jobs is determined and US be the unscheduled part with
(𝑛 − 𝑘) jobs, where there are 𝑛0 jobs belonging to AG0 and
𝑛1 jobs belonging to AG1 with 𝑛0 + 𝑛1 = 𝑛 − 𝑘. Moreover, let
𝑝[𝑗], 𝑟[𝑗], and 𝐶[𝑗] denote the normal processing time, release
time, and completion time of the 𝑗th job in a sequence,
respectively, where 𝑗 = {1, 2, . . . , 𝑛}. A lower bound for
the partial sequence PS is obtained by scheduling the jobs
belonging to AG0 first in the SPT order and then scheduling
the jobs belonging to AG1 in any order. Then the completion
time of the (𝑘 + 1)th job is

𝐶[𝑘+1] = max {𝑟[𝑘+1], 𝐶[𝑘]} + 𝑝[𝑘+1](𝑘 + 1)
𝑎

≥ 𝐶[𝑘] + 𝑝[𝑘+1]𝑛
𝑎
.

(5)
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Similarly, the completion time for the (𝑘 + 2)th job is

𝐶[𝑘+1] = max {𝑟[𝑘+2], 𝐶[𝑘+1]} + 𝑝[𝑘+2](𝑘 + 2)
𝑎

≥ 𝐶[𝑘+1] + 𝑝[𝑘+2]𝑛
𝑎
.

(6)

Continuing in this fashion, the completion time of the (𝑘+
𝑙)th job is

𝐶[𝑘+𝑙] = max {𝑟[𝑘+𝑙], 𝐶[𝑘+𝑙−1]} + 𝑝[𝑘+𝑙](𝑘 + 𝑙)
𝑎

≥ 𝐶[𝑘+𝑙−1] + 𝑝[𝑘+𝑙]𝑛
𝑎
.

(7)

Based on the above analysis, a lower bound for partial
sequence PS can be calculated as follows.

Algorithm 13. Step 1. Sort the jobs of AG0 in nondecreasing
order of their processing times, that is, 𝑝(1) ≤ 𝑝(2) ≤ ⋅ ⋅ ⋅ ≤

𝑝(𝑛0)
.

Step 2. Calculate 𝐶[𝑘+𝑙] = 𝐶[𝑘] + 𝑛
𝑎
∑
𝑙
𝑗=1 𝑝[𝑘+𝑗] for 1 ≤ 𝑙 ≤ 𝑛1.

Therefore, a lower bound for the partial sequence PS is

LB1 = ∑

𝑗∈PS
𝐶[𝑗] (1 − 𝐼𝑗) +

𝑛1

∑

𝑙=1

𝐶[𝑘+𝑙]. (8)

However, this lower bound may not be tight if the release
times are large. To overcome this situation, we propose a
second lower bound by taking account of the ready times. By
definition, the completion time of the (𝑘 + 1)th job is

𝐶[𝑘+1] = max {𝑟[𝑘+1], 𝐶[𝑘]} + 𝑝[𝑘+1](𝑘 + 1)
𝑎

≥ 𝑟[𝑘+1] + 𝑝[𝑘+1]𝑛
𝑎
.

(9)

Similarly, the completion time for the (𝑘 + 2)th job is

𝐶[𝑘+1] = max {𝑟[𝑘+2], 𝐶[𝑘+1]} + 𝑝[𝑘+2](𝑘 + 2)
𝑎

≥ 𝑟[𝑘+2] + 𝑝[𝑘+2]𝑛
𝑎
.

(10)

Continuing in this fashion, the completion time of the (𝑘+
𝑙)th job is

𝐶[𝑘+𝑙] = max {𝑟[𝑘+𝑙], 𝐶[𝑘+𝑙−1]} + 𝑝[𝑘+𝑙](𝑘 + 𝑙)
𝑎

≥ 𝑟[𝑘+𝑙] + 𝑝[𝑘+𝑙]𝑛
𝑎
.

(11)

Based on the above analysis, another lower bound for the
partial sequence PS can be calculated as follows:

LB2 = ∑

𝑗∈PS
𝐶[𝑗] (1 − 𝐼𝑗) +

𝑛1

∑

𝑙=1

(𝑟
𝐴
[𝑘+𝑙] + 𝑝

𝐴
[𝑘+𝑙]𝑛
𝑎
) . (12)

In order to make the lower bound tighter, we choose the
maximum value between (8) and (12) as the lower bound for
PS. That is,

LB = max {LB1, LB2} . (13)

3.3. Genetic Algorithms. Genetic algorithm (GA) is a meta-
heuristic method that is commonly used to tackle combina-
torial optimization problems [34]. A genetic algorithm starts
with a set of feasible solutions (population) and iteratively
replaces the current population by a new population. It
requires a suitable encoding for the problem and a fitness
function measures the quality of each encoded solution
(chromosome or individual). The reproduction mechanism
selects the parents and recombines them using a crossover
operator to generate offspring that are submitted to a muta-
tion operator in order to alter them locally [35]. The main
steps of the GA are summarized in the following.

3.3.1. Representation of Structure. In this paper we adopt a
structure as a sequence of the jobs of the problem based on
the method by Etiler et al. [36].

3.3.2. Initial Population. To get the final solution more
quickly, we construct the initial population by using three
heuristics [37]. We propose the use of three initial sequences.
We generate the first initial sequence by arranging the jobs
of AG1 in the earliest due date (EDD) order, followed by
arranging the jobs of AG0 in the smallest SPT order (recorded
as GA1), followed by arranging the jobs of AG0 in the earliest
ready times (ERT) first order (recorded asGA2), and followed
by arranging the jobs of AG0 in the EDD order (recorded as
GA3).

3.3.3. Population Size. Following Chen et al. [38], we use an
initial population as one schedule and create other members
by applying interchange mutation until the number of mem-
bers is equal to the population size.We set the population size
(say, 𝑁) equal to the number of jobs (i.e., 𝑁 = 𝑛) based on
preliminary tests.

3.3.4. Fitness Function. Given that the objective of the prob-
lem is to minimize the total completion time, we define the
fitness function of the strings as follows:

𝑓 (𝑆𝑖 (V)) = max
1≤𝑙≤𝑁

{

{

{

𝑛

∑

𝑗=1

𝐶𝑗 (𝑆𝑙 (V))
}

}

}

−

𝑛

∑

𝑗=1

𝐶𝑗 (𝑆𝑖 (V)) , (14)

where 𝑆𝑖(V) is the 𝑖th string chromosome in the Vth gen-
eration, ∑𝑛𝑗=1 𝐶𝑗(𝑆𝑖(V)) is the total completion time of 𝑆𝑖(V),
and 𝑓(𝑆𝑖(V)) is the fitness function of 𝑆𝑖(V). Therefore, the
probability of selection of a schedule 𝑃(𝑆𝑖(V)) is to ensure that
the probability of selection of a sequence with a lower value of
the objective function is higher, which is defined as follows:

𝑃 (𝑆𝑖 (V)) =
𝑓 (𝑆𝑖 (V))

∑
𝑁
𝑙=1 𝑓 (𝑆𝑙 (V))

. (15)

3.3.5. Crossover. Crossover is used to generate a new off-
spring from two parents. We adopt the partially matched
crossover method, which is commonly used in GA [36]. In
order to preserve the best schedule that has the minimum
total completion time in each generation, we keep it to the
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next population with no change.This operation enables us to
choose a higher crossover with the crossover rate 𝑃𝑐 = 1.

3.3.6. Mutation. Mutation is used to prevent premature
falling into a local optimal in the GA procedure. It can be
considered as a transition from a current solution to its
neighbourhood solution in a local search algorithm. In this
study we set the mutation rate 𝑃𝑚 at 1.0 based on preliminary
experiments.

3.3.7. Selection. In this paper we fix the population sizes at 𝑛
from generation to generation. Excluding the best schedule
that has the minimum total completion time, the rest of the
offspring are generated from the parent chromosomes by the
roulette wheel method.

3.3.8. Stopping Rule. We end the procedure of the GA after
10 ∗ 𝑛 generations based on preliminary experiments.

4. Computational Results

We carried out computational experiments to assess the
performance of proposed branch-and-bound and genetic
algorithms over a range of problem parameters. We coded
all the algorithms in FORTRAN using Compaq Visual
Fortran version 6.6 and conducted the experiments on a
personal computer powered by an Intel Pentium(R) Dual-
Core CPU E6300 @ 2.80GHz with 2GBRAM operating
under Windows XP. We generated the job processing times
from a uniform distribution 𝑈(1, 100). Following the design
of Reeves [37], we generated the ready times of the jobs
from another uniform distribution 𝑈(0, 20𝑛𝜆), where 𝑛 is
the number of jobs and 𝜆 is a control parameter. In our
tests we set the value of 𝜆 at 1/𝑛, 0.25, 0.5, 0.75, and 1. In
addition, following the design of Fisher [39], we generated
the due dates of the jobs of AG1 from a uniform distribution
𝑇 × 𝑈(1 − 𝜏 − 𝑅/2, 1 + 𝜏 + 𝑅/2), where 𝑇 is the sum of the
normal processing times of the 𝑛 jobs; that is, 𝑇 = ∑

𝑛
𝑖=1 𝑝𝑖, 𝜏

took the values 0.25 and 0.5, while 𝑅 took the values 0.25, 0.5,
and 0.75. We fixed the proportion of the jobs of agent AG1 at
pro = 0.5 in the experiments.

For the branch-and-bound algorithm, we recorded the
average and maximum numbers of nodes, as well as the
average (mean) and maximum of the execution times (in
seconds). For the proposed GA algorithms, we recorded
the mean and maximum percentage errors. We calculate
the percentage error of a solution produced by a heuristic
algorithm as

𝑉 − 𝑉
∗

𝑉∗
× 100%, (16)

where𝑉 and𝑉
∗ are the total completion time of the heuristic

and the optimal solution of the jobs of the first agent,
respectively. We did not record the computational times of
the GA algorithms because they all were less one second to
obtain a solution.

We carried out the computational experiments in two
parts. For the first part of the experiments, we tested instances
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Figure 1: The behavior of 𝜆 at 𝑛 = 14.
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Figure 2: The behavior of 𝜆 at 𝑛 = 16.

of the problem at 𝑛 = 14 and 16. Moreover, we took three
different values of the learning effect 70%, 80%, and 90%
(corresponding to 𝛼 = −0.515, −0.322, and − 0.152, resp.)
and three different values of the deteriorating effect 70%, 80%,
and 90% (corresponding to 𝛽 = 0.515, 0.322, and 0.152, resp.).
We randomly tested a set of 100 instances for each case. As
a result, we examined 54,000 instances. The instances with
numbers of nodes few than 10

8 were recorded as instance
solved or IS.We further extracted the relative results to report
in the following.

As regards the performance of the branch-and-bound
algorithm, we see from Figures 1, 2, 3, 4, 5, and 6 that the
number of nodes declines as the value of 𝜆, 𝜏, or 𝑅 increases
no matter whether 𝑛 = 14 or 16. The reason is due to the
fact that our proposed dominance rules and lower bound are
more effective at a bigger value of 𝜆, 𝜏, or 𝑅.

We observe from Figures 7 and 8 the performance trend
of the learning effect. As shown in Figures 9 and 10, the
instances with larger deteriorating values are easier to solve
than those with smaller deteriorating values.
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Figure 5: The behavior of 𝑅 at 𝑛 = 14.

We also see that the branch-and-bound algorithm gener-
ates more nodes for instances with a bigger value of 𝜆, 𝜏, or
𝑅. This also implies that the number of IS at a bigger value
of 𝜆, 𝜏, or 𝑅 is higher than that at a smaller value (i.e., see
Figures 11 and 12).

Moreover, Figures 13 and 14 show that the instances with
a weaker learning effect are easier to solve than those with
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Figure 6: The behavior of 𝑅 at 𝑛 = 16.
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Figure 9: The behavior of 𝛽 at 𝑛 = 14.
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Figure 10: The behavior of 𝛽 at 𝑛 = 16.
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a stronger learning effect, whereas Figures 15 and 16 show
that the deteriorating effect keeps the same trend of IS. The
performance of the branch-and-bound algorithm in terms
of CPU time over the range of problem parameters tested is
similar to that in terms of number of nodes generated.

For the performance of the GA heuristics, Figures 17, 18,
and 19 show that when 𝑛 = 14, the mean percentage errors of
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Figure 12: The behavior of IS as 𝜆 changes at 𝑛 = 16.
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GA1, GA2, and GA3 are within the ranges 4.3%–4.7%, 3.7%–
4.1%, and 3.75%–3.95%, respectively, regardless of value of 𝜆.
Since all the GAs only take less than a second of CPU time
to obtain a solution, we further take min{GA𝑖, 𝑖 = 1, 2, 3} as
GA∗.

We observe from Figure 20 that the mean percentage
error of GA∗ declines to within the range 2.3%–2.7%. When
𝑛 = 14, Figures 21, 22, 23, and 24 show that at a bigger
value of 𝜏 (𝜏 = 0.5), GA1, GA2, GA3, and GA∗ yield smaller
percentage errors than at a smaller value of 𝜏 (𝜏 = 0.25);
however, Figures 25, 26, 27, and 28 show that at a smaller
value of𝑅, GA1, GA2, GA3, andGA

∗ yield smaller percentage
errors than at a bigger value of 𝑅.

As regards the impacts of learning or deteriorating on the
proposedGAs, Figures 29, 30, 31, and 32 show that all theGAs
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Figure 21: The behavior of GA1 as 𝜏 varies.

perform better at a weaker learning effect than a stronger one,
but the performance reverses under the deteriorating effect as
shown in Figures 33, 34, 35, and 36.

Overall, we observe from Figures 37 and 38 that the grand
means of the mean error percentages of GA2 and GA3 are
smaller than those of GA1 when 𝑛 = 12 and 16, respectively.

The result also shows that GA∗ performs well and keeps
about 3% of the grand means of the mean error percentages,
which is clearly lower than those of GA1, GA2, and GA3.

In the second part of the experiments, we further assessed
the performance of the proposed GA algorithms in solving
instances with large numbers of jobs. We set 𝑛 at 30 and
40 and fixed the parameters as follows: 𝜏 took the values
of 0.25 and 0.5, while 𝑅 took the values of 0.25, 0.50, and
0.75. We fixed the proportion of the jobs of agent AG1 at
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Figure 31: The behavior of GA3 as 𝑎 varies.
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Figure 32: The behavior of GA∗ as 𝑎 varies.
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Figure 33: The behavior of GA1 as 𝛽 varies.
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Figure 34: The behavior of GA2 as 𝛽 varies.
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Figure 35: The behavior of GA3 as 𝛽 varies.

0

1

2

3

4

5

M
ea

n 
er

ro
r (

%
)

0.152 0.322 0.515
Deteriorating effect

Figure 36: The behavior of GA∗ as 𝛽 varies.

pro = 0.5 in the experiments. We set the learning effect at
70%, 80%, and 90% (corresponding to 𝛼 = −0.515, −0.322,
and −0.152, resp.) and the values of the deteriorating effect
at 70%, 80%, and 90% (corresponding to 𝛽 = 0.515, 0.322, and
0.152, resp.). We randomly generated a set of 100 instances
for each situation. As a result, we examined 270 experimental
situations. For each GA heuristic, we calculate its relative
percentage deviation as

RPD =
GA𝑖 − GA∗

GA∗
× 100%, (17)

where GA𝑖 is the objective function value generated by the
GA heuristic and GA∗ = min{GA𝑖, 𝑖 = 1, 2, 3} is the GA
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Figure 38: The behavior of GAs at 𝑛 = 16.
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Figure 42: The behavior of GAs at 𝑛 = 30.

heuristic that yields the smallest objective function value
among the three GA algorithms. We recorded the average
and maximum RPD, and the mean execution time for each
heuristic.The results are summarized in the following figures.

As shown in Figures 39, 40, and 41, we observe that the
RPD mean of GA1 is in general smaller than those of GA2
and GA3.The effects of 𝑎, 𝛽, 𝑅, and 𝜏 are similar to those with
smaller numbers of jobs.

Overall, we observe fromFigures 42 and 43 that the grand
mean of the RPD ofGA1 is smaller than that of GA2 andGA3.
The result also shows that GA2 and GA3 slightly outperform
GA1 with smaller numbers of jobs, but the result is reversed
with larger numbers of jobs. This implies that there is no
absolute dominance relationship among three GAs. Thus, we
recommend that the GA∗ be used in order to attain stability
and good quality solutions.

5. Conclusions

In this paperwe study a two-agent single-machine scheduling
problem with simultaneous considerations of deteriorating
jobs, learning effects, and ready times. To search for optimal
and near-optimal solutions, we propose a branch-and-bound
algorithm incorporated with some dominance rules and a
lower bound and three genetic algorithms, respectively.

The computational results show that our proposed
branch-and-bound algorithm can solve instances with up
to 16 jobs with reasonable numbers of nodes and execution



12 Mathematical Problems in Engineering

0

1

2

3

4

5

6

7

8
RP

D

Heuristic algorithms
GA3GA2GA1

Figure 43: The behavior of GAs at 𝑛 = 40.

times. In addition, the computational experiments reveal
that the proposed GA∗ does well in terms of efficiency
and solution quality. Future research may consider other
scheduling criteria or study the problem in the multimachine
setting.
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