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The steady heat transfer in a heat-generating fin with simultaneous surface convection and radiation is studied analytically using
optimal homotopy asymptotic method (OHAM).The steady response of the fin depends on the convection-conduction parameter,
radiation-conduction parameter, heat generation parameter, and dimensionless sink temperature. The heat transfer problem is
modeled using two-point boundary value conditions. The results of the dimensionless temperature profile for different values of
convection-conduction, radiation-conduction, heat generation, and sink temperature parameters are presented graphically and in
tabular form. Comparison of the solution using OHAMwith homotopy analysis method (HAM) and Runge-Kutta-Fehlberg fourth-
fifth-order numerical method for various values of controlling parameters is presented. The comparison shows that the OHAM
results are in excellent agreement with NM.

1. Introduction

Fins (extended surfaces) are widely used to enhance the
heat transfer rate between a hot surface and its surrounding
fluid. Fin applications have included the cooling of computer
processors, air conditioning units, refrigerators, air-cooled
engines, and oil carrying pipelines. In the past three decades,
fins have gained vast recognition for cooling electronic tools
as heat sinks. The subject of extended surface heat transfer
is now a fully developed technology but with continuing
contributions fromnumerous researchers. Background infor-
mation on heat transfer in extended surfaces may be found
in the books [1, 2], where the authors have presented wide-
ranging coverage of the various facts of this technology.

Numerous mathematical models related to heat transfer
in fins of various shapes with different boundary conditions
are well documented in the research literature. For instance,
the mathematical analysis of convective fins was first pro-
vided by Gardener [3] based on the assumption of constant
conductivity and a uniform coefficient of convective heat
transfer along the fin surface. Khani et al. [4] presented some
exact solutions for 1D fin problem with uniform thermal
conductivity and heat transfer coefficient. Khani et al. [5] also

provided a series solution for 1D fin problem with constant
heat transfer coefficient and temperature dependent thermal
conductivity.

A variety of approximate analytical methods have been
used to study the transient response of fins. Aziz and Na
[6] presented a coordinate perturbation expansion for the
response of an infinitely long fin due to a step change
in the base temperature. Chang et al. [7] used the meth-
ods of optimal linearization and variational embedding,
and Campo [8] utilized variational techniques to analyze
radiative-convective fins under unsteady operating condi-
tions. Solutions for transient heat transfer were constructed
for fins by Onur [9]. Aziz and Torabi [10] have presented
the numerical analysis of transient heat transfer in fin with
temperature dependent heat transfer coefficient.

Exact steady-state solutions of 2D models of fin having
constant thermal conductivity and heat transfer coefficient
andwith no internal heat generationwere analyzed in [11–17].
The addition of internal heat generation function based with
spatial dependence is discussed [18–20].

In this paper, we used a new approximate method,
namely, optimal homotopy asymptotic method [21–27] for
steady-state heat transfer with internal heat generation fin,



2 Mathematical Problems in Engineering

Insulated tip

Cross-sectional 

h, T∞

𝜀

Tb

x

x = 0

x = b

k, 𝛼, q̇

Perimeter, P

area, A

Figure 1: A straight fin with constant cross-sectional area.

and investigated numerically the effects of the different
governing parameters on dimensionless temperature profile
in a nonlinear fin-type problem. For comparison purposes
the governing highly nonlinear problem is also solved using
Runge-Kutta-Fehlberg fourth-fifth-order method and homo-
topy analysis method (HAM) developed by Liao [28].

The paper is planned as follows: in Section 2 we formu-
late our nonlinear problem, basic principles of OHAM are
discussed in Section 3, solution of the problem via OHAM
is presented in Section 4, and Section 5 is reserved for results
and discussion. Conclusions are drawn in Section 6.

2. Mathematical Formulation

Consider a straight fin of constant cross-sectional area 𝐴

(rectangular, cylindrical, elliptic, etc.), perimeter of the cross-
section 𝑃, and length 𝑏 as shown in Figure 1. The fin has
a thermal conductivity 𝑘 and a thermal diffusivity 𝛼. The
surface of the fin behaves as a gray diffuse surface with an
emissivity 𝜀. The fin is deemed to be initially in thermal
equilibriumwith the surroundings at temperature𝑇

𝑠
. Its tip is

insulated. A volumetric internal heat generation rate ̇𝑞 occurs
in the fin. The fin loses heat by simultaneous convection and
radiation to its surroundings at temperature 𝑇

𝑠
. The same

sink temperature is used for both convection and radiation
to avoid the introduction of an additional parameter in the
problem.

For one-dimensional steady conduction in the fin, the
energy equation may be written as

𝜕
2

𝑇

𝜕𝑥2
−

ℎ𝑃

𝑘𝐴
(𝑇 − 𝑇

𝑠
) −

𝜀𝜎𝑃 (𝑇
4

− 𝑇
4

𝑠
)

𝑘𝐴
+

̇𝑞

𝑘
= 0. (1)

The initial and boundary conditions are

𝑇 (𝑥) = 𝑇
𝑠
,

𝑇 (𝑏) = 𝑇
𝑏
,

𝑑𝑇

𝑑𝑥
(0) = 0,

(2)

where 𝑥 is measured from the tip of the fin with the
introduction of the following definitions:

𝜃 =
𝑇

𝑇
𝑏

, 𝜃
𝑠
=

𝑇
𝑠

𝑇
𝑏
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𝑏
, ℎ

𝑏
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𝑠
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𝑃𝑏
2

𝑘𝐴
, 𝑁

𝑟
=

𝜀𝜎𝑃𝑇
3

𝑠
𝑏
2

𝑘𝐴
,

𝑄gen =
̇𝑞𝑏
2

𝑘𝑇
𝑏

.

(3)

Equations (2) and (3) can be written in dimensionless form
as follows:

𝑑
2

𝜃

𝑑𝑋2
−

𝑁
𝑐

(1 − 𝜃
𝑠
)
(𝜃 − 𝜃

𝑠
)
2

− 𝑁
𝑟
(𝜃
4

− 𝜃
4

𝑠
) + 𝑄gen = 0, (4)

𝜃 (𝑏) = 1, (5)

𝑑𝜃

𝑑𝑋
(0) = 0. (6)

The instantaneous base heat flow is given by:

𝑞
𝑏
= 𝑘𝐴

𝑑𝑇

𝑑𝑥
(𝑏) , (7)

which may be expressed in dimensionless form as follows.

𝑄
𝑏
=

𝑞
𝑏
𝑏

𝑘𝐴𝑇
𝑏

=
𝑑𝜃

𝑑𝑋
(1) . (8)

The instantaneous convective heat loss from the fin is given
by

𝑞
𝑐
= 𝑃∫

𝑏

0

ℎ (𝑇 − 𝑇
𝑠
) 𝑑𝑥, (9)

or in dimensionless form as

𝑄
𝑐
=

𝑞
𝑐
𝑏

𝑘𝐴𝑇
𝑏

=
𝑁
𝑐
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𝑠
)
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1
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(𝜃 − 𝜃
𝑠
)
2

𝑑𝑋. (10)

Similarly, the instantaneous radiative heat loss from the fin
can be obtained as

𝑞
𝑟
= 𝜀𝜎𝑃∫

𝑏

0

(𝑇
4

− 𝑇
4

𝑠
) 𝑑𝑥, (11)

or in dimensionless form as

𝑄
𝑟
=

𝑞
𝑟
𝑏

𝑘𝐴𝑇
𝑏

= 𝑁
𝑟
∫

1

0

(𝜃
4

− 𝜃
4

𝑠
) 𝑑𝑋. (12)

The instantaneous total surface heat loss in dimensionless
form is the sum of convective and radiative losses given by
(11) and (13); that is,

𝑄loss = 𝑄
𝑐
+ 𝑄
𝑟
. (13)
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The instantaneous rate of energy storage in the fin can be
calculated from the energy balance as follows:

𝑞stored = 𝑞
𝑏
+ 𝑞gen − 𝑞loss, (14)

or in dimensionless form as
𝑄stored = 𝑄

𝑏
+ 𝑄gen − 𝑄loss, (15)

where

𝑄gen =
̇𝑞𝑏
2

𝑘𝑇
𝑏

. (16)

3. Basic Principles of OHAM

We review the basic principles of OHAM as expounded by
Marinca et al. [21–24] as well as other researchers including
[25, 26].

(i) Let us consider the following differential equation:
I [v (𝜔)] + 𝑎 (𝜔) = 0, 𝑥 ∈ Ω, (17)

where Ω is problem domain, I(v) = 𝐿(v) + 𝑁(v),
where 𝐿 and 𝑁 are linear and nonlinear operators,
v(𝑥) is an unknown function, and 𝑎(𝜔) is a known
function.

(ii) Construct an optimal homotopy equation as
(1 − 𝑝)[𝐿 (𝜙 (𝜔; 𝑝))+𝑎 (𝜔)]−𝐻 (𝑝)[I (𝜙(𝜔; 𝑝))+𝑎 (𝜔)]=0,

(18)

where 0 ≤ 𝑝 ≤ 1 is an embedding parameter, and
𝐻(𝑝) = ∑

𝑚

𝑘=1
𝑝
𝑘

𝐶
𝑘
is auxiliary function on which

the convergence of the solution greatly depends. The
auxiliary function 𝐻(𝑝) also adjusts the convergence
domain and controls the convergence region.

(iii) Expand 𝜙(𝜔; 𝑝, 𝐶
𝑗
) in Taylor’s series about 𝑝. One has

an approximate solution:

𝜙 (𝜔; 𝑝, 𝐶
𝑗
) = v
0
(𝜔) +

∞

∑

𝑘=1

v
𝑘
(𝜔, 𝐶
𝑗
) 𝑝
𝑘

, 𝑗 = 1, 2, 3, . . . .

(19)

Many researchers have observed that the convergence
of the series equation (19) depends upon 𝐶

𝑗
, (𝑗 =

1, 2, . . . , 𝑚). If it is convergent, then we obtain

ṽ = v
0
(𝜔) +

𝑚

∑

𝑘=1

v
𝑘
(𝜔; 𝐶
𝑗
) . (20)

(iv) Substituting (20) in (17), we have the following resid-
ual:

𝑅 (𝜔; 𝐶
𝑗
) = 𝐿 (ṽ (𝜔; 𝐶

𝑗
)) + 𝑎 (𝜔) + 𝑁(ṽ (𝜔; 𝐶

𝑗
)) . (21)

If 𝑅(𝜔; 𝐶
𝑗
) = 0, then ṽ will be the exact solution.

For nonlinear problems, generally this will not be the
case. For determining𝐶

𝑗
(𝑗 = 1, 2, . . . , 𝑚), Galerkin’s

Method, Ritz Method, or the method of least squares
can be used.

(v) Finally, substitute these constants in (21), and one can
get the approximate solution.

4. OHAM Solution for Heat-Generating Fin

According to the OHAM, (1) can be written as

(1 − 𝑝) (𝜃


) − 𝐻 (𝑝)

× (𝜃


−
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𝑐
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4
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4

𝑠
) + 𝑄
𝑔
) = 0,

(22)

where prime denotes differentiation with respect to 𝑋.
We consider 𝜃 and 𝐻(𝑝) as follows:

𝜃 = 𝜃
0
+ 𝑝𝜃
1
+ 𝑝
2

𝜃
2
,

𝐻 (𝑝) = 𝑝𝐶
1
+ 𝑝
2

𝐶
2
.

(23)

Using (23) in (22) and after some simplifying and rearranging
the terms based on the powers of 𝑝, we obtain the zeroth-,
first-, and second-order problems as follows.

The zeroth-order problem is

𝑑
2

𝜃
0
(𝑋)

𝑑𝑋2
= 0 (24)

with boundary conditions

𝜃
0
(𝑏) = 1,

𝑑𝜃
0
(0)
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= 0. (25)

Its solution is

𝜃
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(𝑋) = 1. (26)

The first-order problem is
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1
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(27)

with boundary conditions

𝜃
1
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𝑑𝜃
1
(0)

𝑑𝑋
= 0 (28)

having solution

𝜃
1
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1
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4 Mathematical Problems in Engineering

Table 1: Comparison of percentage error between OHAM, HAM, and NM for temperature at 𝑁
𝑐
= 0.1, 𝑁

𝑟
= 0.1, and 𝜃

𝑠
= 0.01.

𝑋
𝑄
𝑔
= 0 𝑄

𝑔
= 1

OHAM HAM NM OHAM error HAM error OHAM HAM NM OHAM error HAM error
0 0.9078 0.9075 0.9078 0 0.033 1.8085 1.8081 1.8085 0 0.022
0.1 0.9088 0.9081 0.9087 0.011 0.066 1.8005 1.8011 1.8007 0.011 0.022
0.2 0.9115 0.9112 0.9115 0 0.032 1.7763 1.7759 1.7770 0.039 0.061
0.3 0.9161 0.9158 0.9161 0 0.032 1.7358 1.7352 1.7375 0.098 0.132
0.4 0.9226 0.9220 0.9224 0.021 0.043 1.6792 1.6788 1.6821 0.172 0.398
0.5 0.9308 0.9302 0.9306 0.021 0.042 1.6065 1.6062 1.6105 0.248 0.266
0.6 0.9410 0.9413 0.9407 0.032 0.063 1.5175 1.5181 1.5224 0.321 0.374
0.7 0.9529 0.9522 0.9526 0.031 0.041 1.4124 1.4111 1.4176 0.366 0.458
0.8 0.9668 0.9671 0.9665 0.031 0.062 1.2911 1.2909 1.2958 0.362 0.378
0.9 0.9825 0.9818 0.9822 0.031 0.04 1.1536 1.1521 1.1567 0.268 0.397
1.0 1 1 1 0 0 1 1 1 0 0

Table 2: Comparison of percentage error between OHAM, HAM, and NM for temperature at 𝑁
𝑟
= 0.5, 𝑁

𝑐
= 0.5, and 𝑄

𝑔
= 2.

𝑋
𝜃
𝑠
= 0.01 𝜃

𝑠
= 0.4

OHAM HAM NM OHAM error HAM error OHAM HAM NM OHAM error HAM error
0 1.3389 1.3373 1.3383 0.044 0.074 1.3886 1.3878 1.3886 0 0.057
0.1 1.3357 1.3350 1.3352 0.277 0.014 1.3847 1.3844 1.3852 0.036 0.057
0.2 1.3256 1.3248 1.3260 0.031 0.090 1.3731 1.3727 1.3748 0.123 0.152
0.3 1.3086 1.3068 1.3106 0.152 0.289 1.3537 1.3540 1.3574 0.272 0.250
0.4 1.2849 1.2821 1.2887 0.295 0.512 1.3265 1.3247 1.3326 0.458 0.592
0.5 1.2544 1.2543 1.2600 0.444 0.452 1.2915 1.2911 1.3000 0.654 0.684
0.6 1.2171 1.2156 1.2243 0.588 0.710 1.2487 1.2472 1.2591 0.826 0.945
0.7 1.1729 1.1717 1.1809 0.677 0.779 1.2012 1.2010 1.2095 0.686 0.702
0.8 1.1221 1.1212 1.1295 0.655 0.734 1.1399 1.1386 1.1402 0.796 0.140
0.9 1.0644 1.0637 1.0694 0.467 0.533 1.0738 1.0725 1.0807 0.638 0.758
1.0 1 1 1 0 0 1 1 1 0 0

The second-order problem is
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(30)

with boundary conditions
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It is given by
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Table 3: Comparison of OHAM and NM for temperature at 𝑁
𝑟
= 0.1, 𝜃

𝑠
= 0.1, and 𝑄

𝑔
= 0.

𝑋
𝑁
𝑐
= 0.1 𝑁

𝑐
= 0.3 𝑁

𝑐
= 1

OHAM NM % error OHAM NM % error OHAM NM % error
0 0.8172 0.8187 0.183 0.7623 0.7668 0.586 0.6409 0.6465 0.866
0.1 0.8190 0.8190 0 0.7647 0.7691 0.572 0.6445 0.6496 0.785
0.2 0.8245 0.8259 0.169 0.7718 0.7758 0.515 0.6552 0.6592 0.607
0.3 0.8336 0.8348 0.143 0.7883 0.7871 0.152 0.6732 0.6752 0.296
0.4 0.8464 0.8474 0.118 0.8004 0.8029 0.311 0.6983 0.6979 0.057
0.5 0.8629 0.8636 0.081 0.8217 0.8234 0.206 0.7307 0.7375 0.922
0.6 0.8830 0.8834 0.045 0.8579 0.8586 0.081 0.7696 0.7646 0.654
0.7 0.9067 0.9069 0.022 0.8788 0.8788 0 0.8018 0.8096 0.963
0.8 0.9341 0.9341 0 0.9145 0.9138 0.076 0.8693 0.8632 0.707
0.9 0.9652 0.9651 0.010 0.9548 0.9541 0.073 0.9291 0.9263 0.302
1.0 1 1 0 1 1 0 1 1 0

Table 4: Comparison of OHAM and NM for temperature at 𝑁
𝑐
= 0.5, 𝜃

𝑠
= 0.3, and 𝑄

𝑔
= 1.

𝑋
𝑁
𝑟
= 0.1 𝑁

𝑟
= 0.3 𝑁

𝑟
= 0.5

OHAM NM % error OHAM NM % error OHAM NM % error
0 1.1866 1.1869 0.025 1.1166 1.1204 0.339 1.0521 1.0522 0.009

0.1 1.1848 1.1852 0.033 1.1154 1.1193 0.348 1.0516 1.0518 0.019

0.2 1.1792 1.1801 0.076 1.1119 1.1160 0.367 1.0501 1.0503 0.019

0.3 1.1698 1.1715 0.145 1.1061 1.1104 0.387 1.0477 1.0479 0.019

0.4 1.1568 1.1590 0.189 1.0979 1.1026 0.426 1.0442 1.0445 0.028

0.5 1.1400 1.1435 0.306 1.0874 1.0923 0.448 1.0398 1.0400 0.019

0.6 1.1194 1.1237 0.382 1.0746 1.0795 0.453 1.0342 1.0345 0.028

0.7 1.0952 1.0997 0.409 1.0594 1.0641 0.441 1.0275 1.0278 0.029

0.8 1.0672 1.0713 0.382 1.0419 1.0458 0.373 1.0196 1.0198 0.019

0.9 1.0354 1.0382 0.269 1.0221 1.0245 0.234 1.0104 1.0106 0.019

1.0 1 1 0 1 1 0 1 1 0
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𝑟
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4

𝑠
) .

(32)

The second-order approximate solution by OHAM for 𝑝 = 1

is

𝜃 (𝑋, 𝐶
1
, 𝐶
2
) = 𝜃
0
(𝑋) + 𝜃

1
(𝑋, 𝐶
1
) + 𝜃
2
(𝑋, 𝐶
1
, 𝐶
2
) . (33)

We use the method of least squares to obtain 𝐶
1
, 𝐶
2
the

unknown convergent constant in 𝜃.
In particular case,𝐶

1
= −0.00002137 and𝐶

2
= −0.79986,

for 𝑁
𝑟
= 0.3, 𝑁

𝑐
= 0.3, 𝑄

𝑔
= 0.4, 𝜃

𝑠
= 0.2, and 𝑏 = 1.

By considering the values of 𝐶
1
, 𝐶
2
in (33) and after

simplifying, the second-order approximate analytical OHAM
solution can be obtained

𝜃 = 1 +
1

2
(−0.000002982 + 2.982 × 10

−6

𝑋
2

)

+
1

12
(−0.6696 + 0.669596𝑋

2

+ 5.73 × 10
−11

𝑋
4

) .

(34)

5. Results and Discussion

Equation (4) shows that fin temperature is based on four
parameters:𝑁

𝑟
,𝑁
𝑐
, 𝜃
𝑠
, and𝑄

𝑔
which govern this highly non-

linear second-order differential equation. The effect of each
parameter on fin temperature is tabulated and graphically
presented for different values of the controlling parameters.

In order to validate the accuracy of our approximate
solution via OHAM, we have presented a comparative study
of OHAM solution with homotopy analysis method (HAM)
and numerical solution (Runge-Kutta-Fehlberg fourth-fifth-
ordermethod). Table 1 has been prepared to exhibit the com-
parison of dimensionless temperature 𝜃 obtained by OHAM,
homotopy analysis method (HAM), and the numerical
method (NM) for several values of heat-generating parameter
𝑄
𝑔
, when other parameters are fixed. It is observed that,

with increasing values of internal heat-generating parameter
𝑄
𝑔
, the temperature profile gradually increases. Clearly the

OHAM solutions are very close to the numerical solution as
compared to HAM. This can be seen from the percentage
error in the dimensionless temperature obtained by OHAM,
HAM, and NM.The increase in dimensionless temperature 𝜃

is also evident in Table 2, in which we have used different val-
ues of sink temperature parameter 𝜃

𝑠
, and other parameters



6 Mathematical Problems in Engineering

0.0 0.2 0.4 0.6 0.8 1.0
1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

𝜃

NM

Qg = 1, 1.5, 1.7, 2

OHAM

Nr = 0.5

Nc = 0.5

𝜃s = 0.2

X

Figure 2: Effect of internal heat generation on fin dimensionless
temperature for fixed values of 𝑁

𝑟
, 𝑁
𝑐
, and 𝜃

𝑠
.
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Figure 3: Effect of convection parameter on fin dimensionless
temperature for fixed values of 𝑁

𝑟
, 𝜃
𝑠
, and 𝑄

𝑔
.

values are predetermined. From Tables 1 and 2, it is observed
that our OHAM solutions are more accurate than HAM; this
confirms that OHAM is more consistent with approximate
analytical method than with HAM.Themajor factor in HAM
is its computational time for finding the ℎ (h curve), while
in OHAM the ensuring convergence of the solution depends
on parameters 𝐶

1
, 𝐶
2
, . . ., which are optimally determined,

resultantly HAM in more time consuming than OHAM.
In Table 3, we show the comparison of dimensionless

temperature 𝜃 obtained byOHAMand the numericalmethod
(NM) for several values of convection parameter 𝑁

𝑐
, while

other parameters are kept unchanged. It is observed that, with
the increase of 𝑁

𝑐
, the temperature profile shows decrease,

and the same phenomena of decrease in dimensionless
temperature 𝜃 can be observed in Table 4 for different values
of radiation parameter𝑁

𝑟
, when the other parameters values

are fixed.

Nr = 0.4, 0.6, 0.8, 1
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Figure 4: Effect of radiation parameter on fin dimensionless
temperature for fixed values of 𝑁

𝑐
, 𝜃
𝑠
, and 𝑄

𝑔
.
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Figure 5: Effect of sink temperature parameter on fin dimensionless
temperature for fixed values of 𝑁

𝑐
, 𝜃
𝑠
, and 𝑄

𝑔
.

In Figures 2, 3, 4, and 5 we depict the dimensionless
temperature profile 𝜃 and its variation for different values of
parameters. It is important to note that the dimensionless
temperature increases with each controlling parameter.

6. Conclusion

We have successfully applied the optimal homotopy asymp-
totic method for the approximate solution of steady state
of heat-generating fin with simultaneous surfaces convec-
tion and radiation. The effects of radiation parameter 𝑁

𝑟
,

convection parameter𝑁
𝑐
, internal heat-generating parameter

𝑄
𝑔
, and the sink temperature parameter 𝜃

𝑠
on temperature

profile in the fin are investigated analytically. It is observed
that dimensionless fin temperature profile is dependent on
the four parameters 𝑁

𝑟
, 𝑁
𝑐
, 𝑄
𝑔
, and 𝜃

𝑠
. Comparison for

the dimensionless temperature has been made between the
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solutions obtained using OHAM with HAM and Runge-
Kutta-Fehlberg fourth-fifth-order method. It is found that the
OHAM solution is very close to the numerical solution than
HAM, which reveals the reliability and efficiency of OHAM.
Approximate analytical solution to highly nonlinear problem
was achieved without any assumption of linearization, and
we can extend this approach to a variety of nonlinear heat
transfer problems.
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[24] V. Marinca and N. Herişanu, “Accurate analytical solutions to
oscillators with discontinuities and fractional-power restoring
force by means of the optimal homotopy asymptotic method,”
Computers & Mathematics with Applications, vol. 60, no. 6, pp.
1607–1615, 2010.

[25] S. Islam, R. A. Shah, I. Ali, andN.M. Allah, “Optimal homotopy
asymptotic solutions of couette and poiseuille flows of a third
grade fluid with heat transfer analysis,” International Journal of
Nonlinear Sciences and Numerical Simulation, vol. 11, no. 6, pp.
389–400, 2010.

[26] F.Mabood,W.A.Khan, andA. I.M. Ismail, “Optimal homotopy
asymptoticmethod for heat transfer in hollow spherewith robin
boundary conditions,” Heat Transfer-Asian Research, 7 pages,
2013.

[27] F. Mabood, W. A. Khan, and A. I. M. Ismail, “Solution of
Solution of nonlinear boundary layer equation for flat plate
via optimal homotopy asymptoticmethod,”Heat Transfer-Asian
Research, 7 pages, 2013.

[28] S. J. Liao, On the proposed homotopy analysis technique for
nonlinear problems and its applications [Ph.D. thesis], Shanghai
Jio Tong University, 1992.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


