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By searching the hyperlinks with domain name “.edu.cn” which constitutes the China Education and Research Network, we build a
complex directed network containing 366,422 web pages containing 540,755 URLs. These URLs constitute a complex directed
network through self-organization. By analyzing the topology of China Education and Research Network, we found that it is
different from the common Internet in several aspects. Most of the vertices have incoming links, a few vertices have outgoing links,
and very few vertices have both incoming and outgoing links. The vertex distribution has a power-law tail. A large proportion of
newly added edges always connect with those pages selected from one subnetwork that they belong to, instead of connecting with
the pages selected from the whole network. According to these features, we presented the evolution model of this complex directed
network. The results indicate that this model reflects some main characteristics of China Education and Research Network.

1. Introduction

The research on complex networks is developing at a brisk
pace, and significant achievements have been made in recent
years; among them is the introduction of scale-free net-
work and related models [1–4], as it makes big progress in
revealing the characteristics of dynamic evolution of complex
networks. Theoretical and empirical research on complex
network has been carried out with some important achieve-
ments [5–9].

China Education and Research Network (CERNET) was
established since 1995. More than 1000 universities and
research institutes have been connected to this network so
far. It has 36 regional network centers andmain nodes, which
are distributed among different provinces of China. As of
now this network has hostmachinesmore than 1,200,000 and
has become the second largest internet in China. However,
compared with the large number of researches that has been
done on the general Internet [10–13], only a few work is
on CERNET can be found. From these studies we found
that the features of CERNET are different from those of

the general Internet, especially in the structure and formation
mechanism [14, 15]. Hence, the study on CERNET is quite
important.

We have beenworking onCERNET since 2005 and trying
to establish the evolution model of CERNET for analysis and
prediction purposes [14–16].However, duemainly to the large
scale of CERNET and lack of computing power, it took quite a
long time to adjust the parameters tomodify themodel at that
time. Therefore, the model we got is relatively simple which
cannot well reflect the main features of CERNET [16]. For
example, the average shortest path length of the simulation
model is only about 2.8, far from 8.95 of the real network [17].

In this paper, the CERNETwe analyze is a virtual network
made up of web pages where “.edu.cn” is included in the
addresses of all these pages. In this network, all web pages are
nodes, and all the hyperlinks in these pages that link to other
pages are the directed edges. This directed complex network
has 366,422 nodes and 540,755 edges.We analyze the features
of this network and extract the evolution model using
empirical methods to reveal the formation mechanism of
CERNET.
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The remainder of the paper is organized as follows. Topo-
logical structure of CERNET is analyzed in Section 2, and
the evolution model of CERNET and comparison between
the real and simulated networks are described in Section 3,
before giving conclusion and future work in Section 4.

2. Topological Structure of CERNET

There are several features that can be used to characterize
a network, for example, the degree distribution, the average
shortest path length, and the clustering coefficients. Among
them the degree distribution is considered to be the most
important [2].

From graph theory we know that the number of edges
connected to one node is the degree of this node. For directed
graph, the outdegree is the number of output edges and the
indegree the number of input edges. Using the datawe collect,
we setup a database ofCERNETand get the𝑃out(𝑘) and𝑃in(𝑘),
where 𝑃out(𝑘) is the probability that one page has 𝑘 output
pages and 𝑃in(𝑘) is the probability that one page has 𝑘 input
pages. The formulas we use to calculate the output and input
probability of node 𝑖 are listed in (1) and (2), respectively,
where 𝑀out is the maximum outdegree of the network and
𝑀in the maximum indegree of the network:

𝑃out (𝑘𝑖) =
(𝑘
𝑖
)

∑
𝑀out
𝑗=1
(𝑘
𝑗
)

, (1)

𝑃in (𝑘𝑖) =
(𝑘
𝑖
)

∑
𝑀in
𝑗=1
(𝑘
𝑗
)

. (2)

We plot the double logarithmic curves of 𝑃out(𝑘) and
𝑃in(𝑘) that change as a function of 𝑘, as shown in Figures
1 and 2, respectively. Linear-regression analysis is done on
the linearized data, as shown in the straight red lines in
these figures. From Figure 1 we see that the tail of outdegree
distribution of CERNET follows the power law distribution,
𝑃out(𝑘) ∼ 𝑘

−𝑟out , where 𝑟out = 2.48. From Figure 2 we see that
the indegree distribution generally follows the power law dis-
tribution, but the tail is not very smooth,𝑃in(𝑘) ∼ 𝑘

−𝑟in , where
𝑟in = 2.40, which differs greatly with the Poisson distribution
predicted using the traditional theory of random graph.

We make statistical analysis of these data and get the
accumulated frequency of degree and the corresponding ratio
of the degree to total degree in CERNET, as shown in Table 1.
From Table 1 we can see that a large amount of pages have
small connections, a few pages have a medium number of
connections, while a tiny minority of notable pages have a
large number of connections. This phenomenon is similar to
the research result made by Albert et al. [1].

This virtual network of CERNET is made up of subsets of
web pages of different universities. The number of web pages
of each subset is determined by the corresponding univer-
sities; the addition and deletion of pages totally depended
on the university that these pages belong to. However, we
find that though the number of pages is different for different
universities they do share some similar features. For example,
the proportion of pages that have output links to the total
number of pages is less than 25% in every university, while
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Figure 1: Distribution of outdegree of real data.
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Figure 2: Distribution of indegree of real data.

the proportion of pages that have input links to the total
number of pages is usually bigger than 85%. Only a very
small number of pages have both output links and input links.
Hence, if each university is treated as a subnetwork, then in
each network most nodes only have input edges, a few nodes
only have output edges, and the number of nodes with both
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Table 1: The accumulated frequency and percentage of degree in CERNET.

Outdegree Accumulated frequency Ratio to total
outdegree (%) Indegree Accumulated frequency Ratio to total

indegree (%)
1∼50 30463 93.7 1∼5 341535 98.0
51∼300 32478 6.2 6∼199 348477 1.9
301∼1449 32510 0.1 201∼626 348491 0.1

Table 2: Degree and link features in some universities.

Name of
university

Number of web
pages

Number of
outdegrees

Number of
indegrees

Ratio of pages with
output edge to total
number of pages (%)

Ratio of pages with
input edge to total

number of pages (%)
CIM 9576 14532 13515 0.15 0.87
SHUFE 9151 13546 12620 0.12 0.93
ZJU 11537 20586 18943 0.085 0.973
CQU 864 1403 1326 0.075 0.987
NBU 1985 2995 2785 0.159 0.908
SHU 15035 19443 18522 0.096 0.939
SUDA 13643 20197 18051 0.071 0.964
CUMT 9371 18089 12293 0.134 0.914
SHISU 10733 13734 12941 0.089 0.933
ECUN 13707 19890 17379 0.068 0.959
SHSMU 3663 6335 5730 0.114 0.916
CUN 6120 7020 6762 0.18 0.84

input edges and output edges is rare. From these features
we know that each university connects to other universities
through a small number of pages, as shown in Table 2.

3. The Evolution Model of CERNET

Using the mechanism of growth and preferential attachment,
the scale-free model proposed by Barabasi et al. can to some
degree disclose the nature of many complicated phenomena
in the practical world. However, this model cannot be applied
to CERNET. For example, every newly attached node has
output edges in this scale-free model, but for the directed
network of CERNET a larger amount of newly attached nodes
have only one input edge; that is, these nodes have zero outde-
gree. Also in this model, the preferential attachment of newly
added nodes will search the whole network for the best node
to connect to, while in CERNET the newly added pages will
generally choose some pages in the same university to con-
nect to. Only occasionally, the newly added pages will choose
pages in other universities, but these pages will not search
the whole CERNET for the best pages to connect to. From
these features of CERNET, we propose the evolution model
of CERNET, as follows.

(i) The CERNET starts from𝑚
0
nodes and 𝑒

0
edges. The

𝑚
0
nodes are randomly divided into 𝑙 subsets. There

are𝑚
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, 𝑚
02
, . . ., and𝑚

0𝑙
nodes and 𝑒

01
, 𝑒
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, . . ., and 𝑒

0𝑙

edges in each subset, respectively, where ∑𝑙
𝑖=1
𝑚
0𝑖
=

𝑚
0
, and ∑𝑙

𝑖=1
𝑒
0𝑖
= 𝑒
0
.

(ii) At each moment, a new node will randomly be added
into one of the subsets of the network. There are 5
cases for the edges that are added together with the
new node:

(1) the new node has only one input edge;
(2) the new node has only𝑚 output edges;
(3) the new node has one input edge and one output

edge;
(4) the new node has one input edge and 𝑚 − 1

output edges;
(5) the new node has one output edge and 𝑚 − 1

input edges,
where 𝑚 ≤ (𝑚

0min) and 𝑚0min is the minimum
initial number of nodes among 𝑙 subsets and
𝑚
0min = min(𝑚01,𝑚02, . . . , 𝑚0𝑙).

(iii) When the new node with one input edge is added
to the network with probability 𝛼, this node will
randomly choose a subset and let itself be connected
by a preferentially selected node in this subset. Let
∏out(𝑖) denote the probability of node 𝑖 to be selected
as the source node; then∏out(𝑖) is determined by 𝑘𝑖out,
the outdegree of 𝑖.

(iv) When the new node with 𝑚 output edges is added
to the network, there are 2 cases we should consider.
The probabilities of the two cases are 𝛽

1
and 𝛽

2
,

respectively.
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(1) For the first case, the new node will randomly
choose a subset and let itself connect to a pref-
erentially selected node in this subset. Let∏in(𝑖)
denote the probability of node 𝑖 be selected as
the target node; then ∏in(𝑖) is determined by
𝑘
𝑖

in, the indegree of 𝑖. For the rest of the 𝑚 − 1
output edges, at each moment only one edge
randomly chooses a subset which has not been
connected by the new node and connects itself
to a preferentially selected node in this subset,
till all𝑚 − 1 output edges are processed.

(2) For the second case, the new node will still
randomly choose a subset, but this time this
node will preferentially choose 𝑚 − 1 nodes in
this subset and let itself be connected. Let∏in(𝑖)
denote the probability of node 𝑖 be selected as
the target node; then ∏in(𝑖) is determined by
𝑘
𝑖

in, the indegree of 𝑖. For the rest of the edges
that this new node carries, it will randomly pick
a subset which has not been connected by this
new node and connect itself to a preferentially
selected node in this subset.

(v) When the new node with one input edge and one
output edge is added to the network, there are also 2
cases we should consider. The probabilities of the two
cases are 𝛾

1
and 𝛾
2
, respectively.

(1) For the first case, the new node will randomly
choose a subset and let itself be connected by
a preferentially selected node in this subset.
The probability of node 𝑖 to be selected as the
source node is determined by 𝑘𝑖out, the outdegree
of 𝑖. The output edge of the new node will
randomly select a subset which has not been
connected by the new node and connect itself
to a preferentially selected node.The probability
of a node 𝑖 to be selected as the target node is
determined by 𝑘𝑖in, the indegree of 𝑖.

(2) For the second case, the newnodewill randomly
choose a subset and let itself be connected by a
preferentially selected node in this subset. The
probability of node 𝑖 to be selected as the source
node is determined by 𝑘𝑖out, the outdegree of 𝑖.
For the output edge that this new node carries,
it will still pick a node in the same subset and
connect itself to a preferentially selected node
which has not been connected by the input edge
of the new node. The probability of a node 𝑖 to
be selected as the target node is determined by
𝑘
𝑖

in, the indegree of 𝑖.

(vi) When the new node with 1 input edge and 𝑚 − 1
output edges is added to the network with probability
𝛿, this node will randomly choose a subset and let
itself be connected by a preferentially selected node in
this subset. The probability of node 𝑖 to be selected as
the source node is determined by 𝑘𝑖out, the outdegree

of 𝑖. For the rest of the 𝑚 − 1 output edges, at each
moment only one edge randomly chooses a subset
which has not been connected by the new node and
connects itself to a preferentially selected node in this
subset, till all the 𝑚 − 1 output edges are processed.
The probability of node 𝑖 to be selected as the target
node is determined by 𝑘𝑖in, the indegree of 𝑖.

(vii) When the new node with 1 output edge and 𝑚 − 1
input edges is added to the networkwith probability 𝜁,
this node will randomly choose a subset and connect
itself to a preferentially selected node in this subset.
The probability of node 𝑖 to be selected as the target
node is determined by 𝑘𝑖in, the indegree of 𝑖. For the
rest of the 𝑚 − 1 input edges, at each time only one
edge randomly chooses a subset which has not been
connected by the new node and lets itself be con-
nected to a preferentially selected node in this subset,
till all𝑚−1 input edges are processed.The probability
of node 𝑖 to be selected as the source node is
determined by 𝑘𝑖out, the outdegree of 𝑖.

The definitions of ∏in(𝑖) and ∏out(𝑖) are listed in (3) and
(4), respectively. The relation between different probabilities
is listed in (5). We have the following equations:

∏

in
(𝑖) =

𝑘
𝑖

in

∑
𝑛𝑙

𝑗=1
(𝑘
𝑗

in)
, (3)

∏

out
(𝑖) =

𝑘
𝑖

out

∑
𝑛𝑙

𝑗=1
(𝑘
𝑗

out)
, (4)

𝛼 + 𝛽
1
+ 𝛽
2
+ 𝛾
1
+ 𝛾
2
+ 𝛿 + 𝜁 = 1. (5)

In (3) and (4), 𝑛
𝑙
is the number of nodes of the subset that

has new edges connected to it. The denominator of (3) is the
sum of indegree of the same subset and the denominator of
(4) is the sum of outdegree in this subset.

After 𝑡moments, we get a directed random network with
𝑁 nodes and 𝑉 edges, where𝑁 = 𝑚

0
+ 𝑡, and

𝑉 = 𝑒
0
+ 𝛼 ∗ 𝑡 + (𝛽

1
+ 𝛽
2
) ∗ 𝑚 ∗ 𝑡

+ (𝛾
1
+ 𝛾
2
) ∗ 2𝑡 + (𝛿 + 𝜁) ∗ 𝑚 ∗ 𝑡.

(6)

From the analysis of CERNET we set 𝛼 = 0.60, 𝛽
1
= 0.2,

𝛽
2
= 0.12, 𝛾

1
= 0.04, 𝛾

2
= 0.02, 𝛿 = 0.01, and 𝜁 = 0.01.

When 𝑚
0
= 12, 𝑚 = 3, and 𝑙 = 3, we get the distribution

of outdegree and indegree of this simulated model. The
outdegree and indegree distributions are illustrated in Figures
3 and 4, respectively. Figures 5 and 6 illustrate the comparison
between the simulated data and the real data. From the
comparison of outdegree distribution we can see that the
slope of the simulated data is 2.48, the same as that of the
real data, but the beginning part of the simulated data cannot
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Figure 3: Distribution of outdegree of simulated data.
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Figure 4: Distribution of indegree of simulated data.

fully reflect the statistical result of the real data. From the
comparison of indegree distribution we see that the slope of
simulated data is 2.40, the same as that of the real data, but the
beginning part of the simulated data cannot fully reflect the
statistical result of the real data.The tail is smoother than that
of the real data. The slope is 2.40, the same as the real data.
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Figure 5: Comparison of outdegree distribution.
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4. Conclusions

From the figures of degree distribution, we can see that the
simulated network can partly reflect the characteristic of
CERNET. The degree distribution of the simulated network
matchesmuch better the real network than that inmodel [16].
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We also compared other features of the simulated and the real
networks. For example, the average shortest path length for
the real network is 8.95, while for the simulated network, it
is 7.81, which is much closer than that of the model listed in
[16].

The main contribution of this paper is the evolution
model of the CERNET. The result shows that the simulated
model can partly disclose the property of this network.
However, the model introduced in this paper is only the ideal
model, which means that only the main features of the real
network are considered. With the help of the fast growing
computing power, we intend to adjust this model so that it
can be used in the analysis of the ever increasing large scale
complex networks.
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