
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 816385, 8 pages
http://dx.doi.org/10.1155/2013/816385

Research Article
Analytic Solutions for Heat Conduction in Functionally
Graded Circular Hollow Cylinders with Time-Dependent
Boundary Conditions

Sen-Yung Lee and Chih-Cheng Huang

Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan

Correspondence should be addressed to Sen-Yung Lee; sylee@mail.ncku.edu.tw

Received 16 May 2013; Revised 27 June 2013; Accepted 1 July 2013

Academic Editor: Abdelouahed Tounsi

Copyright © 2013 S.-Y. Lee and C.-C. Huang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

An analytic solutionmethod, without integral transformation, is developed to find the exact solutions for transient heat conduction
in functionally graded (FG) circular hollow cylinders with time-dependent boundary conditions. By introducing suitable shifting
functions, the governing second-order regular singular differential equation with variable coefficients and time-dependent
boundary conditions is transformed into a differential equation with homogenous boundary conditions. The exact solution of the
system with thermal conductivity and specific heat in power functions with different orders is developed. Finally, limiting studies
and numerical analyses are given to illustrate the efficiency and the accuracy of the analysis.

1. Introduction

The applications of heat conduction in functionally graded
(FG) circular hollow cylinders with time-dependent bound-
ary conditions can be widely found in many engineering
fields, such as cannon barrels, heat exchanger tubes, time var-
ied heating on walls of circular structure, and heat treatment
on hollow cylinders. As such, an accurate solution method is
very helpful for relevant developments.

The problem of heat conduction with time-dependent
boundary conditions cannot be solved directly by themethod
of separation of variables. In most of the analyses, an integral
transformhas been used to remove the time-dependent term.
For the problem of heat conduction in circular hollow uni-
form cylinders with time-dependent boundary conditions,
the associated governing differential equation is a second-
order Bessel differential equation with constant coefficients.
After conducting a Laplace transformation, the analytical
solution can be obtained and found in the book by Őzisik [1].

When the structure is an FG circular hollow cylinder,
the associated governing differential equation is a second-
order regular singular differential equation with variable
coefficients. For problems with time-independent boundary

conditions, various numerical methods have been developed,
such as the perturbation method [2], the finite difference
method [3], and the finite element method [4]. Jabbari et al.
[5, 6] derived analytical solutions for thermal stresses of
FG hollow cylinders whose material properties vary with
power law distribution through the thickness due to radially
symmetric loads and nonaxisymmetric loads. By using the
Laplace transformation and a series expansion of Bessel func-
tions, Ootao and Tanigawa [7] analyzed one-dimensional
transient thermoelastic problem with the material properties
varying with the powerlaw form of the radial coordinate
variable. Zhao et al. [8] analyzed the temperature change
when the thermal and thermoelastic properties are assumed
to vary exponentially in the radial direction. Hosseini et al.
[9] considered the material properties to be nonlinear with
a power law distribution through the thickness, while the
temperature distribution was derived analytically using the
Bessel functions.

In the study of heat conduction in FG circular hollow
cylinders with time-dependent boundary conditions, only
limited studies can be found. Ootao et al. [10] studied
the transient temperature and thermal stress distribution in
an infinitely long nonhomogeneous hollow cylinder due to



2 Mathematical Problems in Engineering

a moving heat source in the axial direction from the inner
and/or outer surfaces using the layerwise theory in con-
junction with the method of Fourier cosine and the Laplace
transformations. Shao and Ma [11] employed the Laplace
transform techniques and the series solving method to study
thermomechanical stresses in FG circular hollow cylinders
with linearly increasing boundary temperature. Jabbari et al.
[12] developed an analytical solution for the one-dimensional
temperature distribution, mechanical and thermal stresses in
an infinitely long FG hollow cylinder under a moving heat
source, which moves across the thickness of the cylinder.
Asgari andAkhlaghi [13] employed the finite elementmethod
to study the transient thermal stresses in a thick hollow
cylinder with finite length mad of 2D-FGM that its material
properties are varied in the radial and axial directions with
a power law function. The thermal boundary conditions at
the inner and outer radiuses are time dependent. Singh et al.
[14] applied the finite integral transform method and the
separation of variables method to solve time-dependent heat
conduction problem in a multilayer annulus. Malekzadeh
andHeydarpour [15] used the differential quadraturemethod
(DQM) in conjunctionwith the finite elementmethod (FEM)
to study the response of FG cylindrical shells under moving
thermomechanical loads. Recently, Wang and Liu [16] have
employed the method of separation of variables to develop
the analytical solution of transient temperature fields for two-
dimensional transient heat conduction in a fiber-reinforced
multilayer cylindrical composite.

In the study of thermal elastic response of FG cylinders
without mechanical loading, the heat conduction problem
is not incorporated with the elastic field and can be studied
independently. However, the thermal field will be coupled
with the temperature field. In this paper, one considers
the heat conduction problem of FG cylinders only. A new
solution method, which is a modification on the method
developed by Lee and Lin [17] and Chen et al. [18], is used to
develop the analytical solution for transient heat conduction
in FG circular hollow cylinders with time-dependent bound-
ary conditions. By introducing suitable shifting functions,
the governing second-order differential equation with vari-
able coefficients and time-dependent boundary conditions is
transformed into a differential equation with homogenous
boundary conditions.The analytic solution of the systemwith
thermal conductivity and specific heat in power functions
with different orders is developed. Finally, limiting studies
and numerical analysis are given to illustrate the efficiency
and accuracy of the solution method.

2. Mathematical Modeling

Consider the transient heat conduction in an FG circular
hollow cylinder with time-dependent boundary condition
at the inner and outer surfaces, as shown in Figure 1. The
governing differential equation of the system is

1

𝑟

1

𝜕𝑟
[𝑟𝑘 (𝑟)

𝜕𝑇 (𝑟, 𝑡)

𝜕𝑟
] + ̇𝑔 (𝑟, 𝑡) = 𝜌𝑐 (𝑟)

𝜕𝑇 (𝑟, 𝑡)

𝜕𝑡
.

𝑎 < 𝑟 < 𝑏, 𝑡 > 0.

(1)

a

b

Initially
T0(r)

T(b, t) = T2(t)

T(a, t) = T1(t)

Figure 1: FG circular hollow cylinder with time-dependent bound-
ary conditions.

The boundary conditions are

𝑇 (𝑎, 𝑡) = 𝑇
1
(𝑡) ,

𝑇 (𝑏, 𝑡) = 𝑇
2
(𝑡) ,

(2)

and the initial condition is

𝑇 (𝑟, 0) = 𝑇
0
(𝑟) . (3)

Here, 𝑟 is the space variable and 𝑡 is the time variable, 𝑐(𝑟)
is the specific heat, 𝑘(𝑟) is the thermal conductivity, 𝑇(𝑟, 𝑡) is
the temperature, 𝜌 is the mass density, and ̇𝑔(𝑟, 𝑡) is the heat
source inside the circular hollow cylinder. 𝑇

1
(𝑡) and 𝑇

2
(𝑡)

are the time-dependent temperatures at the inner and outer
surfaces, respectively.

In terms of the following dimensionless parameters

𝐾 (𝜉) =
𝑘 (𝑟)

𝑘 (𝑎)
, 𝐶 (𝜉) =

𝑐 (𝑟)

𝑐 (𝑎)
, 𝐺 (𝜉, 𝜏) =

̇𝑔 (𝑟, 𝑡) 𝑏
2

𝑘 (𝑎) 𝑇
𝑟

,

𝜉 =
𝑟

𝑏
, 𝑟 =

𝑎

𝑏
, 𝜃 =

𝑇

𝑇
𝑟

, 𝜃
0
=
𝑇
0

𝑇
𝑟

,

𝜃
𝑖
=
𝑇
𝑖

𝑇
𝑟

, 𝜏 =
𝑘 (𝑎) 𝑡

𝑐 (𝑎) 𝜌𝑏
2
,

(4)

where 𝑇
𝑟
is the reference temperature, the boundary value

problem of heat conduction becomes

1

𝜉

1

𝜕𝜉
[𝜉𝐾 (𝜉)

𝜕𝜃 (𝜉, 𝜏)

𝜕𝜉
] + 𝐺 (𝜉, 𝜏) = 𝐶 (𝜉)

𝜕𝜃 (𝜉, 𝜏)

𝜕𝜏
,

𝑟 < 𝜉 < 1, 𝜏 > 0,

𝜃 (𝑟, 𝜏) − 𝜃
1
= 0,

𝜃 (1, 𝜏) − 𝜃
2
= 0,

𝜃 (𝜉, 0) = 𝜃
0
(𝜉) .

(5)
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3. Solution Method

3.1. Change of Variables. To find the solution for the second-
order differential equation with nonhomogeneous boundary
conditions, the shifting variable method developed by Lee
and Lin [17] and Chen et al. [18] was extended by taking

𝜃 (𝜉, 𝜏) = ] (𝜉, 𝜏) + 𝑓
1
(𝜏) 𝑔
1
(𝜉) + 𝑓

2
(𝜏) 𝑔
2
(𝜉) , (6)

where 𝑔
𝑖
(𝜉), 𝑖 = 1, 2 are shifting functions to be specified and

](𝜉, 𝜏) is the transformed function. Substituting (6) into (5)
yields the following partial differential equation:

1

𝜉

𝜕

𝜕𝜉
[𝜉𝐾 (𝜉)

𝜕] (𝜉, 𝜏)

𝜕𝜉
] − 𝐶 (𝜉)

𝜕] (𝜉, 𝜏)

𝜕𝜏

= −𝐺 (𝜉, 𝜏) +

2

∑

𝑖=1

{{{

{{{

{

𝐶 (𝜉) 𝑔
𝑖
(𝜉)
𝑑𝑓
𝑖
(𝜏)

𝑑𝜏

−𝑓
𝑖
(𝜏)
1

𝜉

𝑑

𝑑𝜉
[𝜉𝐾 (𝜉)

𝑑𝑔
𝑖
(𝜉)

𝑑𝜉
]

}}}

}}}

}

,

(7)

the associated boundary conditions:

] (𝑟, 𝜏) + 𝑓
1
(𝜏) 𝑔
1
(𝑟) + 𝑓

2
(𝜏) 𝑔
2
(𝑟) = 𝑓

1
(𝜏) ,

] (1, 𝜏) + 𝑓
1
(𝜏) 𝑔
1
(1) + 𝑓

2
(𝜏) 𝑔
2
(1) = 𝑓

2
(𝜏) ,

(8)

and the associated initial condition

] (𝜉, 0) = 𝜃 (𝜉, 0) − 𝑓
1
(0) 𝑔
1
(𝜉) − 𝑓

2
(0) 𝑔
2
(𝜉) . (9)

3.2. Shifting Functions. To simplify the analysis, the shifting
functions are specifically chosen such that they satisfy the
following differential equations and the boundary conditions

𝑑
2
𝑔
𝑖
(𝜉)

𝑑𝜉
2
= 0, 𝑖 = 1, 2,

𝑔
1
(𝑟) = 1,

𝑔
1
(1) = 0,

𝑔
2
(𝑟) = 0,

𝑔
2
(1) = 1.

(10)

These two shifting functions can be easily determined as

𝑔
1
(𝜉) =

1

1 − 𝑟
(1 − 𝜉) ,

𝑔
2
(𝜉) =

1

1 − 𝑟
(−𝑟 + 𝜉) .

(11)

3.3. Reduced Homogenous Problem. With these two shift-
ing functions, (11), the governing differential equation (7)
becomes

1

𝜉

𝜕

𝜕𝜉
[𝜉𝐾 (𝜉)

𝜕] (𝜉, 𝜏)

𝜕𝜉
] − 𝐶 (𝜉)

𝜕] (𝜉, 𝜏)

𝜕𝜏
= 𝐹 (𝜉, 𝜏) , (12)

where

𝐹 (𝜉, 𝜏)

= −𝐺 (𝜉, 𝜏)

+

2

∑

𝑖=1

{𝐶 (𝜉) 𝑔
𝑖
(𝜉)
𝑑𝑓
𝑖
(𝜏)

𝑑𝜏
−
𝑓
𝑖
(𝜏)

𝜉

𝑑

𝑑𝜉
[𝜉𝐾 (𝜉)]

𝑑𝑔
𝑖
(𝜉)

𝑑𝜉
} .

(13)

The two nonhomogenous boundary conditions, (8), for the
transformed function ](𝜉, 𝜏) are reduced to homogenous
ones:

] (𝑟, 𝜏) = 0,

] (1, 𝜏) = 0.
(14)

The transformed initial condition is

] (𝜉, 0) = 𝜃
0
(𝜉) − 𝑓

1
(0) 𝑔
1
(𝜉) − 𝑓

2
(0) 𝑔
2
(𝜉) = ]

0
(𝜉) . (15)

3.4. Solution of Transformed Variable

3.4.1. Characteristic Solution. To find the solution ](𝜉, 𝜏), we
use the eigenfunction expansion method and assume the
solution to be in the form

] (𝜉, 𝜏) = 𝜙 (𝜉) 𝐵 (𝜏) . (16)

The separation equation for the dimensionless time variable
𝐵(𝜏) is

𝑑𝐵 (𝜏)

𝑑𝜏
= −𝜆
2
𝐵 (𝜏) , (17)

and the dimensionless space variable 𝜙(𝜉) satisfies the follow-
ing self-adjoin operator:

1

𝜉

d
𝑑𝜉
[𝜉𝐾 (𝜉)

𝑑𝜙 (𝜉)

𝑑𝜉
] + 𝜆
2
𝐶 (𝜉) 𝜙 (𝜉) = 0, 𝜉 ∈ (𝑟, 1) ,

(18)

𝜙 (𝑟) = 0, (19)

𝜙 (1) = 0. (20)

Let 𝑋
𝑗
(𝜉), 𝑗 = 1, 2, be the two linearly independent fun-

damental solutions of the system; then, the solution of the
differential equation (18) can be expressed as

𝜙 (𝜉) = 𝐶
1
𝑋
1
(𝜉) − 𝐶

2
𝑋
2
(𝜉) , (21)

where 𝐶
1
and 𝐶

2
are constants to be determined from the

boundary conditions, (19)-(20).
After substituting solutions, (21), into the boundary con-

ditions, (19)-(20), we obtain the following characteristic
equation

𝑋
1
(1)𝑋
2
(𝑟) − 𝑋

1
(𝑟)𝑋
2
(1) = 0. (22)
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Consequently, the eigenvalues 𝜆
𝑛
, 𝑛 = 1, 2, 3, . . . can be deter-

mined.The associated 𝑛th eigenfunction 𝜙
𝑛
(𝜉) is determined

as

𝜙
𝑛
(𝜉) = 𝑋

2
(1)𝑋
𝑛,1
(𝜉) − 𝑋

1
(1)𝑋
𝑛,2
(𝜉) , (23)

where 𝑋
𝑛,1
(𝜉) and 𝑋

𝑛,2
(𝜉) are, respectively, the fundamental

solutions𝑋
1
(𝜆
𝑛
, 𝜉) and𝑋

2
(𝜆
𝑛
, 𝜉) associated with eigenvalues

𝜆
𝑛
, 𝑛 = 1, 2, 3, . . .. They are defined as 𝑋

𝑛,1
(𝜉) = 𝑋

1
(𝜆
𝑛
, 𝜉)

and 𝑋
𝑛,2
(𝜉) = 𝑋

2
(𝜆
𝑛
, 𝜉). The eigenfunctions 𝜙

𝑛
(𝜉) constitute

an orthogonal set in the interval 𝑟 ≤ 𝜉 ≤ 1, with respect to a
weighting function 𝜉𝐶(𝜉):

∫

1

𝑟

𝜉𝐶 (𝜉) 𝜙
𝑚
(𝜉) 𝜙
𝑛
(𝜉) 𝑑𝜉 = {

0, for 𝑚 ̸= 𝑛

𝛿
𝑛
, for 𝑚 = 𝑛,

(24)

where

𝛿
𝑛
= ∫

1

𝑟

𝜉𝐶 (𝜉) 𝜙
2

𝑛
(𝜉) 𝑑𝜉. (25)

In terms of eigenfunctions, the transformed variable
](𝜉, 𝜏) can be expressed as

] (𝜉, 𝜏) =
∞

∑

𝑛=1

𝜙
𝑛
(𝜉) 𝐵
𝑛
(𝜏) . (26)

Substituting (26) into (12), multiplying it by 𝜉𝜙
𝑚
, and inte-

grating from 𝑟 to 1, we obtain

𝑑𝐵
𝑛
(𝜏)

𝑑𝜏
+ 𝜆
2

𝑛
𝐵
𝑛
(𝜏) = −𝛾

𝑛
(𝜏) , (27)

where

𝛾
𝑛
(𝜏) =

1

𝛿
𝑛

∫

1

𝑟

𝜉𝜙
𝑛
(𝜉) 𝐹 (𝜉, 𝜏) 𝑑𝜉. (28)

The general solution of (27) is

𝐵
𝑛
(𝜏) = 𝑒

−𝜆
2

𝑛
𝜏
[𝛼
𝑛
− ∫

𝜏

0

𝑒
𝜆
2

𝑛
𝜒
𝛾
𝑛
(𝜒) 𝑑𝜒] , (29)

𝛼
𝑛
is determined from the initial condition (15), and

𝛼
𝑛
= 𝐵
𝑛
(0) =

1

𝛿
𝑛

∫

1

𝑟

𝜉𝐶 (𝜉) 𝜙
𝑛
(𝜉) ]
0
(𝜉) 𝑑𝜉. (30)

After substituting the solution of the transformed variable
(26) and the shifting functions (11) back to (6), the exact
solution for the general system is obtained.

4. Verification and Examples

To illustrate the previous analysis, the following examples and
limiting cases are given.

Example 1. Consider the heat conduction in an uniform
circular hollow cylinder with time-dependent boundary con-
ditions. The boundary value problem of the heat conduction
in dimension-less form is

1

𝜉

1

𝜕𝜉
[𝜉
𝜕𝜃 (𝜉, 𝜏)

𝜕𝜉
] =

𝜕𝜃 (𝜉, 𝜏)

𝜕𝜏
, 𝑟 < 𝜉 < 1, 𝜏 > 0,

𝜃 (𝑟, 𝜏) =
𝜓
1
(𝜏)

𝑇
𝑟

,

𝜃 (1, 𝜏) =
𝜓
2
(𝜏)

𝑇
𝑟

,

𝜃 (𝜉, 0) =
𝜃
0
(𝜉)

𝑇
𝑟

.

(31)

In this case, 𝐾(𝜉) = 1, 𝐶(𝜉) = 1. The two shifting func-
tions are

𝑔
1
(𝜉) =

1

1 − 𝑟
(1 − 𝜉) ,

𝑔
2
(𝜉) =

1

1 − 𝑟
(𝜉 − 𝑟) .

(32)

The two linearly independent fundamental solutions are

𝑋
1
(𝜆
𝑛
, 𝜉) = 𝐽

0
(𝜆
𝑛
𝜉) ,

𝑋
2
(𝜆
𝑛
, 𝜉) = 𝑌

0
(𝜆
𝑛
𝜉) .

(33)

This leads to

𝐹 (𝜉, 𝜏) =
1

(1 − 𝑟) 𝑇
𝑟

[ (1 − 𝜉) 𝜓


1
(𝜏) + (−𝑟 + 𝜉) 𝜓



2
(𝜏)

+
𝜓
1
(𝜏)

𝜉
−
𝜓
2
(𝜏)

𝜉
] ,

(34)

where the characteristic equation is

𝑋
1
(1)𝑋
2
(𝑟) − 𝑋

1
(𝑟)𝑋
2
(1) = 0. (35)

The associated 𝑛th eigenfunction 𝜙
𝑛
(𝜉) is determined as

𝜙
𝑛
(𝜉) =

𝐽
0
(𝜆
𝑛
𝜉)

𝐽
0
(𝜆
𝑛
)
−
𝑌
0
(𝜆
𝑛
𝜉)

𝑌
0
(𝜆
𝑛
)
. (36)

The eigenvalues 𝜆
𝑛
and the associated eigenfunctions 𝜙

𝑛
(𝜉)

are obtained from (35) and (36). The two coefficients in (28)-
(29) are derived as

𝛾
𝑛
(𝜏) =

1

𝛿
𝑛

1

(1 − 𝑟) 𝑇
𝑟

× ∫

1

𝑟

{𝜙
𝑛
(𝜉) [ (𝜉 − 𝜉

2
) 𝜓


1
(𝜏) + (−𝑟𝜉 + 𝜉

2
) 𝜓


2
(𝜏)

+ 𝜓
1
(𝜏) − 𝜓

2
(𝜏) ] } 𝑑𝜉

𝐵
𝑛
(𝜏) = 𝑒

−𝜆
2

𝑛
𝜏
[𝛼
𝑛
− ∫

𝜏

0

𝑒
𝜆
2

𝑛
𝜒
𝛾
𝑛
(𝜒) 𝑑𝜒] ,

(37)
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where

𝛿
𝑛
= [∫

1

𝑟

𝜉 𝜙
2

𝑛
(𝜉) 𝑑𝜉] ,

𝛼
𝑛
=

1

𝛿
𝑛
𝑇
𝑟

∫

1

𝑟

𝜉𝜙
𝑛
(𝜉) 𝜃
0
(𝜉) 𝑑𝜉.

(38)

As a result, the analytic closed solution of the system in
dimensionless form is

𝜃 (𝜉, 𝜏) =

∞

∑

𝑛=1

[𝜙
𝑛
(𝜉) 𝐵
𝑛
(𝜏)]

+ (
1 − 𝜉

1 − 𝑟
)
𝜓
1
(𝜏)

𝑇
𝑟

+ (
−𝑟 + 𝜉

1 − 𝑟
)
𝜓
2
(𝜏)

𝑇
𝑟

,

(39)

when

𝜓
1
(𝜏) = 𝜓

2
(𝜏) = 0. (40)

The analytic closed solution, in dimensionless form, is re-
duced to

𝜃 (𝜉, 𝜏) =

∞

∑

𝑛=1

[𝑒
−𝜆
2

𝑛
𝜏
𝜙
𝑛
(𝜉) 𝛼
𝑛
] . (41)

The solution is exactly the same as the one given by Őzisik [1].

Example 2. Consider the heat conduction in an FG circular
hollow cylinder with time-dependent boundary conditions.
The coefficients of thermal conductivity and the specific
heat are 𝐾(𝜉) = 𝑘

𝑚
𝜉
𝛽
1 and 𝐶(𝜉) = 𝑐

𝑚
𝜉
𝛽
2 , respectively.

The boundary value problem of the heat conduction in
dimensionless form is

1

𝜉

𝜕

𝜕𝜉
[𝜉𝐾 (𝜉)

𝜕𝜃 (𝜉, 𝜏)

𝜕𝜉
] − 𝐶 (𝜉)

𝜕𝜃 (𝜉, 𝜏)

𝜕𝜏
= 0,

𝑟 < 𝜉 < 1, 𝜏 > 0,

(42)

𝜃 (𝑟, 𝜏) = 0, (43)

𝜃 (1, 𝜏) = (1 − 𝑒
−𝐶
0
𝜏
) 𝜃
2
, (44)

𝜃 (𝜉, 0) = 0. (45)

In this case, two shifting functions are

𝑔
1
(𝜉) =

1

1 − 𝑟
(1 − 𝜉) ,

𝑔
2
(𝜉) =

1

1 − 𝑟
(𝜉 − 𝑟) .

(46)

The route to two independent fundamental solutions of of
(42) lies in the use of the Frobenius method which can be
represented in terms of the Bessel functions:

𝑋
1
(𝜆
𝑛
, 𝜉) = 𝜉

−𝛽
1
/2
𝐽] (𝜂𝑛𝜉

(2+𝛽
2
−𝛽
1
)/2
) ,

𝑋
2
(𝜆
𝑛
, 𝜉) = 𝜉

−𝛽
1
/2
𝑌] (𝜂𝑛𝜉

(2+𝛽
2
−𝛽
1
)/2
) ,

(47)

where

𝜂
𝑛
= √

𝑐
𝑚

𝑘
𝑚

(
2𝜆
𝑛

𝛽
1
− 𝛽
2
− 2
) ,

] =
𝛽
1

𝛽
1
− 𝛽
2
− 2
.

(48)

Now,

𝐹 (𝜉, 𝜏)

= 𝑒
−𝐶
0
𝜏
𝜃
2
[𝑐
𝑚
𝜉
𝛽
2
𝐶
0
(𝑎
∗
+ 𝑏
∗
𝜉) + 𝑏

∗
(𝛽
1
+ 1) 𝑘

𝑚
𝜉
𝛽
1
−1
]

− 𝑏
∗
[𝜃
2
(𝛽
1
+ 1) 𝑘

𝑚
𝜉
𝛽
1
−1
] ,

(49)

where

𝑎
∗
=
−𝑟

1 − 𝑟
,

𝑏
∗
=

1

1 − 𝑟
.

(50)

The characteristic equation is

𝑋
1
(1)𝑋
2
(𝑟) − 𝑋

1
(𝑟)𝑋
2
(1) = 0. (51)

The associated 𝑛th eigenfunction 𝜙
𝑛
(𝜉) is determined as

𝜙
𝑛
(𝜉) = 𝑋

2
(1)𝑋
𝑛,1
(𝜉) − 𝑋

1
(1)𝑋
𝑛,2
(𝜉) . (52)

The eigenvalues 𝜆
𝑛
and the associated eigenfunctions 𝜙

𝑛
(𝜉)

are obtained from (51) and (52) by numerical analysis. Two
coefficients in (28)–(30) are derived as

𝛾
𝑛
(𝜏) = 𝛾

𝑛1
(𝜉) 𝑒
−𝐶
0
𝜏
+ 𝛾
𝑛2
(𝜉) ,

𝐵
𝑛
(𝜏) = [𝛼

𝑛
+
𝛾
𝑛1
(𝜉)

𝜆
2

𝑛
− 𝐶
0

+
𝛾
𝑛2
(𝜉)

𝜆
2

𝑛

] 𝑒
−𝜆
2

𝑛
𝜏

−
𝛾
𝑛1
(𝜉)

𝜆
2

𝑛
− 𝐶
0

𝑒
−𝐶
0
𝜏
−
𝛾
𝑛2
(𝜉)

𝜆
2

𝑛

,

(53)

where

𝛿
𝑛
= [∫

1

𝑟

𝑐
𝑚
𝜉
𝛽
2
+1
𝜙
2

𝑛
(𝜉) 𝑑𝜉] ,

𝛾
𝑛1
(𝜉) =

𝜃
2

𝛿
𝑛

{∫

1

𝑟

𝜙
𝑛
(𝜉) [𝑐
𝑚
𝜉
𝛽
2
𝐶
0
(𝑎
∗
+ 𝑏
∗
𝜉)

+𝑏
∗
(𝛽
1
+ 1) 𝑘

𝑚
𝜉
𝛽
1
−1
] 𝑑𝜉} ,

𝛾
𝑛2
(𝜉) =

−𝑏
∗
𝜃
2

𝛿
𝑛

[∫

1

𝑟

𝜙
𝑛
(𝜉) (𝛽

1
+ 1) 𝑘

𝑚
𝜉
𝛽
1
−1
𝑑𝜉] ,

𝛼
𝑛
= 0.

(54)
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Table 1: Temperature distribution of FG circular hollow cylinders with constant value of 𝛽
2
and various parameters of 𝛽

1
and 𝐶

0
at 𝜏 = 0.5,

[𝑘
𝑚
= 1, 𝑐
𝑚
= 1, 𝜃(1, 𝜏) = (𝐶

0
sin𝜔𝜏)𝜃

2
: 𝜃
2
= 4 and 𝜔 = 2.5].

𝐶
0

𝛽
1

𝛽
2

𝜉

0.5 0.6 0.7 0.8 0.9 1.0

0.1
0.75

1
0 4.595 2.259 1.845 1.632 0.380

1 0 4.592 2.285 1.990 1.820 0.380

1.25 0 4.486 2.279 2.133 1.975 0.380

1
0.75

1
0 45.952 22.589 18.453 16.320 3.796

1 0 45.920 22.848 19.895 18.202 3.796

1.25 0 44.865 22.788 21.329 19.752 3.796

10
0.75

1
0 459.520 225.888 184.526 163.201 37.959

1 0 459.196 228.480 198.950 182.017 37.959

1.25 0 448.647 227.881 213.290 197.520 37.959

3.0

2.5

2.0

1.5

1.0

0.5

0.0

𝜃

𝜏
C0 = 10

𝛽1 = 1, 𝛽2 = 5
𝛽1 = 1, 𝛽2 = 0.5

𝛽1 = 1, 𝛽2 = 5
𝛽1 = 1, 𝛽2 = 0.5

C0 = 1

0.01 0.1 1 10

Figure 2: Temperature variation of FG circular hollow cylinders
with constant value of 𝛽

1
and various values of 𝛽

2
and𝐶

0
at 𝜉 = 0.75,

[𝑘
𝑚
= 1, 𝑐
𝑚
= 1, 𝜃(1, 𝜏) = (1 − 𝑒−𝐶0𝜏)𝜃

2
: 𝜃
2
= 4].

Consequently, the analytic closed solution for the system
can be derived as

𝜃 (𝜉, 𝜏)

=

(1 − 𝑒
−𝐶
0
𝜏
) 𝜃
2

1 − 𝑟
(𝜉 − 𝑟)

+

∞

∑

𝑛=1

{𝑋
2
(1)𝑋
𝑛,1
(𝜉) − 𝑋

1
(1)𝑋
𝑛,2
(𝜉)}

×

{{{{{

{{{{{

{

[
𝛾
𝑛1
(𝜉)

𝜆
2

𝑛
− 𝐶
0

+
𝛾
𝑛2
(𝜉)

𝜆
2

𝑛

] 𝑒
−𝜆
2

𝑛
𝜏

−
𝛾
𝑛1
(𝜉)

𝜆
2

𝑛
− 𝐶
0

𝑒
−𝑐
0
𝜏
−
𝛾
𝑛2
(𝜉)

𝜆
2

𝑛

}}}}}

}}}}}

}

.

(55)
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𝜃
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𝜉

C0 = ∞

C0 = 10
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𝛽1 = 1, 𝛽2 = 1

Figure 3: Temperature distribution of FG circular hollow cylinders
with constant value of 𝛽

1
and various values of 𝛽

2
and 𝐶

0
at 𝜏 = 0.2,

[𝑘
𝑚
= 1, 𝑐
𝑚
= 1, 𝜃(1, 𝜏) = (1 − 𝑒−𝐶0𝜏)𝜃

2
: 𝜃
2
= 4].

In Figure 2, the temperature variation of FG circular
hollow cylinders with various parameters of 𝛽

1
, 𝛽
2
, and 𝐶

0

at 𝜉 = 0.75 is shown. It can be found that when 𝐶
0
is a

positive constant, the temperature parameter of the mediums
at 𝜉 = 0.75 increases then reaches the associated constant
temperatures over time. The temperature increase rate for
the system with a higher value of 𝐶

0
is greater than that

of one with a lower value of 𝐶
0
. Figures 3 and 4 show the

temperature distribution of FG circular hollow cylinders with
various parameters of 𝛽

1
, 𝛽
2
, and 𝐶

0
at 𝜏 = 0.2. From these

figures, it can be observed that with constant parameter 𝛽
1
,

the temperature of the mediums increases as parameter 𝛽
2
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Figure 4: Temperature distribution of FG circular hollow cylinders
with constant value of 𝛽

2
and various values of 𝛽

1
and 𝐶

0
at 𝜏 = 0.2,

[𝑘
𝑚
= 1, 𝑐
𝑚
= 1, 𝜃(1, 𝜏) = (1 − 𝑒−𝐶0𝜏)𝜃

2
: 𝜃
2
= 4].
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Figure 5: Temperature variation of FG circular hollow cylinders
with constant value of 𝛽

1
and various values of 𝛽

2
at 𝜉 = 0.75,

[𝑘
𝑚
= 1, 𝑐

𝑚
= 1, 𝜃(1, 𝜏) = (𝐶

0
sin𝜔𝜏)𝜃

2
: 𝜃
2
= 4, 𝐶

0
= 10 and

𝜔 = 2.5].

is increased. With constant parameter 𝛽
2
, the temperature of

the mediums increases as parameter 𝛽
1
is increased.

Example 3. Consider the same physical system as discussed
in Example 2. In this case, the time dependent boundary
condition at 𝜉 = 1, (44), is changed to the form

𝜃 (1, 𝜏) = (𝐶
0
sin𝜔𝜏) 𝜃

2
. (56)

In this case, the eigenvalues and eigenfunctions are the same
as those given in Example 2.

Now,

𝐹 (𝜉, 𝜏) =
−𝜃
2
𝐶
0

1 − 𝑟
[(𝛽
1
+ 1) 𝑘

𝑚
𝜉
𝛽
1 sin𝜔𝜏

− (𝜉 − 𝑟) 𝜔𝑐
𝑚
𝜉
𝛽
2 cos𝜔𝜏] .

(57)

Following the same solution procedures as shown, the
exact solution for the general system can be derived as

𝜃 (𝜉, 𝜏) =
𝐶
0
sin𝜔𝜏
1 − 𝑟

𝜃
2
(𝜉 − 𝑟)

+

∞

∑

𝑛=1

[𝑋
2
(1)𝑋
𝑛,1
(𝜉) − 𝑋

1
(1)𝑋
𝑛,2
(𝜉)] 𝐵

𝑛
(𝜏) ,

(58)

where

𝐵
𝑛
(𝜏) =

1

𝜔 [(𝜆
2

𝑛
/𝜔)
2

+ 1]

×

{{{{

{{{{

{

(
𝜆
2

𝑛

𝜔
cos𝜔𝜏 + sin𝜔𝜏 −

𝜆
2

𝑛

𝜔
𝑒
−𝜆
2

𝑛
𝜏
)𝛾
𝑛1
(𝜉)

−(
𝜆
2

𝑛

𝜔
sin𝜔𝜏 − cos𝜔𝜏 − 𝑒−𝜆

2

𝑛
𝜏
)𝛾
𝑛2
(𝜉)

}}}}

}}}}

}

,

𝛿
𝑛
= [∫

1

𝑟

𝑐
𝑚
𝜉
𝛽
2
+1
𝜙
2

𝑛
(𝜉) 𝑑𝜉] ,

𝛾
𝑛1
(𝜉) =

−𝜃
2
𝐶
0

(1 − 𝑟) 𝛿
𝑛

[∫

1

0

𝜙
𝑛
(𝜉) (𝜉 − 𝑟) 𝜔𝑐

𝑚
𝜉
𝛽
2
+1
𝑑𝜉] ,

𝛾
𝑛2
(𝜉) =

−𝜃
2
𝐶
0

(1 − 𝑟) 𝛿
𝑛

[∫

1

0

𝜙
𝑛
(𝜉) (𝛽

1
+ 1) 𝑘

𝑚
𝜉
𝛽
1
+1
𝑑𝜉] ,

𝛼
𝑛
= 0.

(59)

Figure 5 shows the harmonic temperature variation of FG
circular hollow cylinders with constant value of 𝛽

1
, various

parameters of 𝛽
2
at 𝜉 = 0.75, 𝐶

0
= 10, and 𝜔 = 2.5. It can

be observed that with constant value of 𝛽
1
, the amplitude of

temperature oscillation for the system with a higher value of
𝛽
2
will be more than that of one with a lower value of 𝛽

2
.

In Table 1, the temperature variations of FG circular
hollow cylinders with constant value of 𝛽

2
and various values

of 𝛽
1
and 𝐶

0
at 𝜏 = 0.5 are given. It can be observed that with

constant parameter 𝛽
2
, the temperature of the mediums will

decrease as parameter 𝛽
1
is decreased.

5. Conclusions

Theproblemof heat conductionwith general time-dependent
boundary conditions cannot be solved directly by themethod
of separation of variables. In most of the analyses, an integral
transform was used to remove the time-dependent term.
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In this paper, a new analytic solution method is developed
to find the analytic closed solutions for the transient heat
conduction in FG circular hollow cylinders with general
time-dependent boundary conditions. The developed solu-
tion method is free of any kind of integral transformation.

By introducing suitable shifting functions, the governing
second-order regular singular differential equation with vari-
able coefficients and time-dependent boundary conditions is
transformed into a differential equation with homogenous
boundary conditions.The analytic solution of the systemwith
thermal conductivity and specific heat in power functions
with different orders is developed. Finally, limiting studies
and numerical analyses are given to illustrate the efficiency
and the accuracy of the analysis. The proposed solution
method can also be extended to the problems with various
kinds of FG materials and time-dependent boundary condi-
tions.
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