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Based upon the framework of the structural support vector machines, this paper proposes two approaches to the depth restoration
towards different scenes, that is, margin rescaling and the slack rescaling. The results show that both approaches achieve high
convergence, while the slack approach yields better performance in prediction accuracy. However, due to its nondecomposability
nature, the application of the slack approach is limited. This paper therefore introduces a novel approximation slack method to
solve this problem, in which we propose a modified way of defining the loss functions to ensure the decomposability of the object
function. During the training process, a bundle method is used to improve the computing efficiency. The results on Middlebury
datasets show that proposed depth inference method solves the nondecomposability of slack scaling method and achieves relative
acceptable accuracy. Our approximation approach can be an alternative for the slack scaling method to ensure efficient computation.

1. Introduction

Learning for stereo vision has been a challenging subject
for a long time. Owing to the increment of ground truth
datasets, considerable progress has been achieved, that is,
using the scene structure of input images to learn a prob-
ability distribution model for matching [1-4] and adopting
an expectation maximization algorithm to estimate disparity
and then relearn the model parameters based on the esti-
mation [5]. Although these methods have shown exciting
results, the shortcoming is obvious, that is, the parameters
must be preset or initialized manually on the basis of their
prior knowledge. In [6], a new supervised machine learning
method was proposed to handle such problem based on
conditional random fields (CRFs), and the results had shown
a promising future.

As mentioned above, supervised image labeling has
been a long-lasting problem in computer vision. In recent
years, CRFs have become a popular alternative to address
this problem [7, 8], where the spatial correlations among
neighboring pixels are incorporated by defining proper unary
and pairwise potential functions on the related pixels. In

addition, support vector machines have been widely used in
image labeling [9], but they are less successful as noisy label
results occurred for the absence of consideration of the spatial
correlations.

Recently, structured prediction has caused widespread
attention, and many new approaches have been proposed.
Structured learning approaches solve the above-mentioned
problems. In its computation process, both inputs and out-
puts are well structured, and strong internal correlations are
revealed. It is formulated as the learning of complex func-
tional dependencies between multivariate input and output
representations. Structured learning has significant impact
on addressing important computer vision tasks including
image denoising [10], stereo [1l], segmentation [12, 13],
object localization [14, 15], and human pose estimation
(16, 17]. A common way is to generalize the max-margin
binary/multiclass classification to incorporate with struc-
tured information [14, 18-20]. It has been utilized in many
respects, such as sequence labeling, image segmentation,
grammar parsing, dependency parsing, bipartite matching,
and text segmentation [21]. Furthermore, with the develop-
ment of SVMs, structured information is introduced which



generated two new support vector machines named max-
margin-based and slack-based SSVMs, respectively.

Max-margin method, with its decomposability of the
error function, is possible to find the most violating constraint
using the maximum a posteriori (MAP) inference algorithm
for prediction [21]. But the shortcomings of the max-margin
method are also obvious: it requires the error function being
linearly comparable with the features, and it is sensitive to
the most violating label. A label with large error would
greatly decrease the separability of any other labels. An
alternative choice is the slack scaling method. It has a fixed
margin of 1 and reduces the violations in proportion to their
errors which provide excellent accuracy. However, due to the
nondecomposability of its error function, the slack method
is not used widely. Therefore, we proposed an approximation
method which modifies the slack method while reserving its
normal properties. Depending on different given tasks, the
proposed approximation method is effective to design most
suitable loss functions and generate the corresponding solver.

This paper is organized as follows. In Section 2, we
briefly discuss the principles of the SSVM. Our approach
is proposed in Section 3 including steps to conduct the
structural support vector machine, the typical max-margin
method, and the expression of the improved slack method.
Section 4 elaborates an approximation of the slack method.
Section 5 provides the feature vectors which are utilized
in our algorithm. As for Section 6, relative conditions and
strategies for the training will be discussed and improved
to make the training more efficient. Finally, we apply both
methods for the depth restoration and make a detailed
comparison between them.

2. Structural Support Vector Machine

Derived from statistical machine learning, the discriminative
models focus on the posterior probability p(y | x,w) and
have been viewed as the most successful techniques for
structural prediction. Here x is the input sample in the input
space y and y is the associated output in the output space y.
Given a feasible training set, for the training sample x; and
their associated truth output y,, firstly a model for p(y |
x,w) will be learnt that the correct labels y, have a higher
probability than the wrong labels y, that is, p(y, | x,w) >
p(y | x,w),and secondly, it can perform prediction by MAP
estimation for a new sample x:

y* = arg ;naxp (v xw). 4]

Under the framework of CRFs, p(y | x) is modeled by a log
linear model, which is often assumed as follows:

logp(y]xw@)=(0,®(xy)-A,(x), ()

where ®(x, y) is a certain relationship between the input and
its output; the second term, A (), is the normalization factor
to make p(y | x,w) a valid probability distribution.

By adopting the framework of max-margin method, the
structural support vector machine tries to learn the weight
vector, denoting the w-parameterized model, to predict the
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correct output labels. And then, the optimization problem
that results from the learning can be written as

1. . L
min—[lw||” + C ) §; 3
nips lel” + Q.8 3)

subject to

(0, @ (x5, ) = (@0, @ (x5, ) 2 Ay, ) =& (4)

here, i from 1 to n denotes different samples, y is the label that
is not equal to the true label y, and A(y, y;) denotes the loss
between the two labels, &; is the slack variables. Thus, the most
violated constrains can be found by solving

y* = arg max Ay y) +F(x,9), (5)

where F(x, y) = (w, D(x, )) is the discriminative function.
Therefore, y* is reformulated as the minimization problem of
energy, that is, argmax, F(x, y) = argmin ,E(x, ).

3. Our Approach

3.1. Problem Formulation. In stereo matching tasks, stereo
images are two (or more) images of the same object taken
from different views, named the left image (reference image)
and right image, respectively. Assume that the right view
image is just a horizontal shift of the left view, and the two
images are the same size R x C. Denoting I(r, ¢) is the pixel
on the cross of rth row and cth column in reference image,
and I'(r, ¢) the pixel on the same position in right image. The
matching is aimed at finding the pixel-wise disparity which
minimizes the energy

Y" =arg minE(I,I',Y)
Y

= arg min (Z"I () =1 (rc = 2, ) + Eqmootn (Y)> ,
,C
(6)

where y, . denotes the local disparity and E ., (Y) is the
smooth term which usually takes the form of Pot’s Model

0 yi=y;
E Y _ i ] 7
smooth (¥) { p otherwiese, 7

where i and j are the index of neighboring pixels, y; and y;
represent the neighboring disparity label, and p is a constant
for penalty.

Normally the features of I and I' represent certain
categories of visual information, for example, color, texture,
or gradient. However, each category suits different situations.
Texture features work well in boundary regions which usually
are rich-textured but not applicative in weakly textured
regions. Gradient-based features have opposite characters
in comparison with texture features. In addition, different
categories of features are not easy to be combined for learning.
Simply expanding the dimension of feature vectors to involve
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more features from different categories is dangerous due
to sampling effect and scale. The highly weighted features
will greatly influence the final results, also suppressing other
features. Therefore, the data term should be constructed in
the form of (w,,0(I, I 'Y)), where w, is the unary weight
parameter which can balance the components in the combi-
nation feature vector against the sampling effect and different
scales. These parameters W can be learnt from training
examples.

By expanding the squared difference in data term, we
will get three terms; that is, (r,c), I'*(r,c - Yro)» and
=2I(r,o)I'(r,c — Vo) We use oY) - Q(I,I',Yt) as
the constraints in training phase, where Y, is the ground
truth, the term I*(r,c) would be canceled out by the
subtraction because of its independency of label Y. We
use ||I(r,c)—I'(r,c—yr)c)H2 to take the place of I*(r, c).
Parameters working on these terms can balance the differ-
ence between I(r,c) and I'(r,c — y,.), which is caused by
sampling effect and camera settings. Overall, the data term

is built as 0(LI,Y) = [|I(r,c) = I'(r,c — y, )I*, I*(ryc -
Vo) =21(r, ) (r,c = y, 1"

3.2. Max-Margin Formulation for Stereo Learning. Assuming
a learnt pairwise weight w, = p, then the parameter W can
be denoted as W = (w,,w,)”, and the energy is written as
E(II,Y) = (W,®(I,I',Y)). Here ®(I,I',Y) is the vector
including data term (I, I ' Y) and also the smooth term. The
energy on ground truth Y, should be minimized, that is, for all
possible Y we have E(I,I',Y) > E(I,I',Y,). By adopting the
margin scaling and adding the slack variables &, to account
for violations, the optimization problem reads, for # > 0,

m1n 1 Z&t,

(W,q> (LI,Y)) = (W@ (LI.Y,)) 2 A(Y,,Y) - §,

vt,Y,& > 0.
(8)

3.3. Slack Scaling Formulation. The margin rescaling method
requires the label loss A(Y;, Y) to be linearly comparable with
the feature values ®(I, I',Y). However, this is normally hard
to be satisfied in structured learning, since A(Y,,Y) counts
the loss over each pixel in the image, and thus the aggregate
value is much larger than feature values. Especially in stereo
matching tasks, the pixel-wise loss may reach up to hundreds,
which makes the overall loss even larger. Thus, we would like
to adopt slack scaling, as it is invariant to the label loss scale.
Nevertheless, the slack rescaling formulation is difficult to be
solved, because no efficient approximation algorithm for Y~
exists. We follow the method introduced in [21] to solve this
problem.

The slack rescaling optimization formulation is as follow:

W ||W|| N Zip

W,
§
(W, (LI,Y)) - (W, 0 (1,I,Y,)) > 1 - A(Y:’Y)
vt,Y, & > 0.

€

4. The Approximation for Slack Scaling

For the slack scaling optimization formulation, the inference
engine problem is to find

¢
L(y))’ 1

where y € {s(y) — s(y;) < 1 — &/L(y)} is the set of
the most violating label, & is the slack variable, and s(y) =
W, 0(1,1,Y)), L(y) = A(Y,, Y).

As it is seen in the formulation, because L(y) must be
considered entirely, the second part of the formula cannot be
decomposed easily. Thus, an approximation y* is used to take
the place of y° and make it possible to be decomposed into the
local parts.

It should be noted that s(y) + &/L(y) is concave, and
it has been proved approximated in the form of a linear
function with respect to L(y) [22]. The linearization and to
be approximation procedure will be shown in the following
parts.

ys = arg min (s(y) +
y

4.1. Linearization and Approximation. According to [22], a
concave function can be expressed in a linear form. Therefore,
(10) is expressed as

s(y) +

>max< (y)—AL(y)+2\/E\/\>. 1)

L (y) A20

The aim of the inference problem is to find the optimal label
y which minimizes the left side of (11). Therefore, we have

o)

=min (+0) - mip (11 0) - 2481}

(12)
—m}}nralax( (y)-AL(y)+2 f)»)
—n}};i(})(mm( (y)-AL(y)+2 EA)
Here, let F'(yA;A) =s(y) —AL(y) + 2\/5_/\, thus
F) =minF' (y51), (13)



which leads to the simplified formulation as

i L): inE (v )
m;ﬂ(S(y)+ Iy~ axmin (72:4) »

T E .

For a fixed A, firstly the most optimal label y, can be
computed through minimization

y = arg min (s (y) = AL (7)) . (15)

Then, y, can be substituted into the formula F(1). We can
find a A that enables F(A) to catch its maximum, because F(A)
is a function which is convex with respect to A. F(A) can be
seen as the max of a set of convex functions; therefore, F(A)
is convex as well.

With the help of linear search algorithm such as Golden
Search, the maximum of F(A) can be acquired in an efficient
way. During the search procedure, it will encounter many
different As. By evaluating the F(A) for each A, we can get
different labels. The goal is to find the optimal label to get a
minimum of s(y) + £/L(y) , which is denoted as yA.

4.2. The Determination of Interval for A. Since a simple
constrain has been given out, A > 0, it is obvious that A = 0
can be the lower bound of A as A;. However, if A = 0, it will
be hard to distinguish the F'(y,; 1) between different labels
in the early iterations, due to the neglect for the different loss
L(y). Let A; = ¢/L,, > where L is the possible maximal
label loss and « is the tolerance of the difference between two
continuous iterations for this algorithm. In this way, a proper
correct A; is obtained.

Then we come to determine the upper bound of A. It is
sufficient to find an upper bound A as A, such that it returns
F(A) = F(A,) forany A > A,,. And it also satisfies

y' = arg ;nin s(y)=AL(y), (16)

which leads to the following formula

s(y')—/\uL(y/)s min

- AL .
(i) O A0

Here, let y; = argmin s(y) and L, be the minimal
difference between L(y) and L(y'), such as L, = 1 for
Hamming loss. Then the right side of the function becomes
s()yl) - Au(L(y') —L,). That requires A, > s(y') -s(y) (L, =
1).

Since s(y') <s(y)+1- E/L(y') <s(y)+1-=&/L, .0 50
A, canbesetas A, =s(y;) +1—=&/L .. —s(y).

5. Construction of Feature Vector

Image features are the terms used to describe images, as well
as the clues for distinguishing the differences of images. Some
image features may be the basic visual features, while others
are defined for specific applications. Three types of features
are used in this paper, that is, color, texture, and edge features.
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5.1. Color Features. Color features are the basic visual
description of images. Generally, color features are based on
the characteristics of pixels, and each pixel in the image or
the image region makes its own contribution to the color
features. However, as a global feature, it is not sensitive to
the changes of the size of the image or image region and also
the directions in image. In other words, color features cannot
capture the local characteristics of the image. And due to its
nonuniqueness, pixels in different objects may share the same
color features. Two basic color descriptions are RGB color
space and YCbCr color space. While RGB concentrates on
the gray levels of the pixels, the YCbCr pays close attention
to the intensity, chromaticity, and the color difference. In
YCbCr color space, the channel Y represents the intensity of
the color, while channels Cb and Cr denote the chromaticity
for blue and red, respectively. YCbCr color space can be easily
obtained just by a linear transformation from RGB color
space. Both the RGB and YCbCr color features are shown in
Figure 1. In this paper, we use both RGB and YCbCr as the
color features in the training process.

5.2. Texture Features. Similar to color features, texture fea-
tures are also global features. The major difference is that
texture features describe the statistical characteristics of the
pixels in the image region. And the texture features have the
properties of rotational invariance and noise immunity, but
they are sensitive to the revolution of images, if the revolution
changes, different features may be generated. On top of that,
the light and the reflection on the surface of the objects may
make it hard for computing the texture features.

In [23], Laws developed a method for computing texture
features. According to this method, different convolution
kernels, which were named Laws’ masks, will be applied to
our images. And the results will give some characteristics of
the images. Here, the 2D Laws” masks can be generated from
the following small kernels both with the length 3 and 5:
Ly=[121],E;=[10 -1], S =1[1 -2 1], L; =
(14641, Es=[-1 -—2021],8=[-1020 -
1, W=[-120 -2 1, Ry=[1 -4 6 -4 1].

Here, L denotes the average gray levels, E denotes the
edge features, S stands for extracting the spots in the image,
W stands for extracting the wave feature, and R stands for
extracting the ripples in the image.

In order to generate the 2-D Laws’ masks, we adopted
matrix multiplication by a vertical 1D kernel and a horizontal
1-D kernel, such as LsE; = L x Es. Take the masks scaled
3 x 3, for example, all the possible masks were listed in
Table 1. After the convolve operation with these masks on an
image sized M x N, the gray-scale texture feature image sized
(N-masks_size + 1) x (M-masks_size + 1) will be generated.
Figure 2 demonstrates the texture feature results generated by
the 3 x 3 Laws” masks.

5.3. Edge Features. The object edge is the visual features of the
discontinuity in the local image region which has a significant
change in intensity. Generally, in images, the pixels along the
edge have a smooth change in gray levels; however, on the
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FIGURE 1: The color features of the image: RGB color features (first row) and YCbCr color features (second row). From left to right, first row:
the original image in RGB color space, R channel, G channel, and B channel; second row: the original image in YCbCr color space, Y channel,

Cb channel, and Cr channel.

TaBLE 1: The possible Laws masks scaled 3 x 3.

Masks ~ Method Description
, The gray level intensity within 3
L;L, LiL, neighboring pixels in both vertical and
horizontal directions
L.E ITE In horizontal direction edge diction and
33 343 . . . . . .
in vertical direction gray level intensity
In horizontal direction spots detection
L;S, L€S3 and in vertical direction gray level
intensity
E.L ETL In horizontal direction gray level intensity
33 33 . . . . . s
and in vertical direction edge diction
Edge detection in both vertical and
EsE EYE 8
M 3 horizontal directions
E.S ETS In horizontal direction spots detection
393 393 . . N L
and in vertical direction edge diction
S.L STL In horizontal direction gray level intensity
33 33 . . . . .
and in vertical direction spots detection
S T In horizontal direction edge diction and
sEs S; Es . . — .
in vertical direction spots detection
5,5, sTs, Spots detection in both vertical and

horizontal directions

direction which is vertical to the edge, the intensity of pixels
change sharply.

The former denoted features are the local visual features.
From the description, they are the surface features of the
objects. On the other hand, the edge features are the mea-
surement of the local compatibility. In this paper, 4 different
Prewitt edge detectors which were directed in 0°, 45°, 90" and
135° were adopted in order to extract the edge features. The
detectors in different directions and corresponding results are
shown in Figure 3. By applying the 4 detectors, almost all the
edges in the images can be captured.

6. Parameter Learning and Inference Problem

6.1. Bundle Method for Parameter Learning. For parameter
learning, this paper utilizes the bundle method. Due to the
formulation, such as

W
min—-— + — ,
VV,I{t 2 T;Et

st. (W0 (L1,Y)) - (W0 (LI,Y,)) 2 A(Y,Y) - &

Vt,Y, & > 0.
(18)

In order to obtain the optimal parameter, the constraints can
be rearranged in the following form:

(W, (LI,Y,)) 2 (W, ®(LI,Y)) - A(Y,,Y) +&. (19)

This formula means that it is lower bounded by
(W,®(1,I',Y,)). Then it generates the objective function to
find the most violated constraints

Y" = argmin ((W,o(LI,Y))-A(Y,Y)).  (20)

Thus, this forms an inference problem. And the bundle
method can guarantee the optimal solution in a small
number of iterations, so the problem can be solved efficiently.
Algorithms 1and 2 provide the parameter learning algorithm
for both margin and slack method.

Both the margin and slack method refer to the optimal
inference problems, so the best solution for them can be
obtained via a standard graph-cuts algorithm (see reference
[8] for detail). The frameworks seem to be the same, but in
Algorithm 2, the inference engine is not similar to that in
Algorithm 1. In this case, it needs to be approximated into a
linear form, so that it searches for the best A in the interval by
the golden search algorithm.
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FIGURE 2: The outputs after the convolution of all the Laws’ masks scaled 3 x 3.

1 1 1 1 0 -1 1 1 0 0 1 1
0 0 0 1 0 -1 1 0 -1 -1 0 1
-1 -1 -1 1 0 -1 0 -1 -1 -1 -1 0

FIGURE 3: The results achieved by different edge detectors in 4 directions.

6.2. Golden Searching. In this paper, we adopted the golden
searching algorithm during searching for the best approxima-
tion of the optimal label.

Firstly, suppose that there exists a continuous concave
function f over the interval [a, b], meanwhile it has only one
minimum or maximum in the interval. Taking the minimum
case for example, the binary searching algorithm is not the
optimal algorithm for minimum searching, shown as follows:

Take the middle point as

m= (21)

then two different points x, and x, are determined by

(22)

such that f(x,) # f(x,). If f(x;) < f(x,), the interval will be
updated by [a, x, ], otherwise [x,, b] will be the new interval.
Obviously, each iteration step should call the binary searching
for two times, which is not optimal.

In order to optimize the iteration process, there should
be a factor which is capable of reducing the interval, named
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FIGURE 4: Inference depth maps by Max-margin method for different scene. From row 1 to 3: images, ground truth, and the obtained depth
map. From column 1 to 4 are four scenes: 1st art, 2nd book, 3rd laundry, and 4th reindeer.
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FIGURE 5: The inference accuracy of different features combination.

c. For x; and x, in the interval [a, b], there are two different
cases.

(1) If f(x;) < f(x,), then the interval becomes [a, x,],
and the interval size is compressed by c as follows:

X, —a
= > 2
b_a € (23)
as a result,
x, =(l-c)a+cb. (24)

(2) If f(x;) > f(x,), similarly the interval is compressed
by ¢ and the new interval is [x,, b], then

b-x,

b-a © (25)

x, is obtained by
x;,=(l-¢)b+ca. (26)

Obviously, if the factor ¢ is determined, it is easy to locate
the points x; and x, in the interval. There are two rules for
Cases (1) and (2), respectively, while Algorithm 3 shows the
algorithm for golden searching.

Rule I. If f(x;) < f(x,), set x, = x,, then compute another
new Xx;.

Rule 2. 1f f(x;) > f(x,), set x; = x,, then compute another
new x,.

7. Experiments and Results

We test the proposed methods on the Middlebury stereo
datasets. The dataset contains many different scenes, that is,
art, books, dolls, laundry, moebius, and reindeer, and each
scene is consisted of 2 ground-truth images, related to view 1
and view 5 in each scene, and several different images which
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Influence of RGB features
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FIGURE 6: (a) the effect of the edge features. 1 to 7 means 1000, 0100, 0010, 1100, 1010, 0110, 1110. It shows that the edge features can boost the
accuracy. (b) the effect of the RGB features. 1 to 7 means 0100, 0010, 0001, 0110, 0101, 0011, 0111. It shows that the RGB features can reduce the
accuracy and the color feature with the texture features that can boost the inference accuracy. (c) the effect of the YCbCr features. 1 to 7 means
1000, 0010, 0001, 1010, 1001, 0011, 1011. It is easy to find that the YCbCr features have a similar effect on the accuracy with the RGB features.
(d) the effect of the Laws’ masks scaled 3 x 3.1 to 7 means 1000, 0100, 0001, 1100, 1001, 0101, 1101. It is easy to find that the texture features can

boost the accuracy in most of the situations.

were caught from different views. The ground-truth images
are used as the label images of each scene, and its labels were
compressed from 0-255 to 0-22 for the computing efficiency,
and two neighbor view images are adopted to extract the
different features.

Two groups of features are introduced in our experiments.
The first group is local visual features, such as colors and
textures, including the 3 dimensions of RGB color channels,
the 3 dimensions YCbCr color channels, the 9 dimensions
texture features, the outputs of Laws’ masks scaled 3 x 3, and
the 4 dimensions edge features, the outputs of the different
Prewitt edge detectors. The second group is the graph edge
features, which are the absolute difference between labels
of neighboring pixels and one-dimensional bias constant.
Practically, the method for conducting features may construct
a large amount of dimensions, which can supply a rich set for
choosing the suitable features to learn the parameters of the
wanted model. By adopting the features and the Max-margin
method, it may be easy for us to get the reasonable depth for
different scenes, as shown in Figure 4.

7.1. Comparison on Inference Accuracy with Different Feature
Combination. Suppose that the ground truth is denoted as y,

and the output results as y,. Defining C,, as the number of the
matched pixels in y, and y, and C, as the number of different
pixels in y, from y,, the inference accuracy can be denoted as

CJ’
= —, 2
T CC @7

y n
which stands for the ratio of the correct output.

In order to study the effects of different features, we
have tested different combinations of image features. For the
convenience of the expression, 1 denotes the state of the
feature which was chosen, and 0 otherwise. Figure 5 shows
the inference accuracy of different feature combinations for
the 2nd scene book. Note, the order of the features arranged
from left to right is RGB, YCbCr, laws’ masks scaled 3 x 3,
and the edge features. For example, 1000 denoted that only
the RGB feature was chosen.

The combination of features does not always boost the
accuracy of the results. In a word, some features have a
negative effect on the results while others have a positive
effect. In order to test it, a comparison between the set with
a certain feature and another without it has been carried
out. The results show that an offset effect does exist between
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() ®

FIGURE 7: Depth inference results of different images by Max-margin and proposed slack method. From column 1 to 4: images, ground truth,
the result of margin method, and the result of proposed slack method. And from row 1 to 3 are three scenes in Middlebury datasets: art, book,

and laundry.

06 More results comparison

Accuracy

Test number

@ Margin
W Slack

FIGURE 8: Different inference accuracy shows that the proposed
slack method performs better than the margin method through the
comparison of the inference accuracy.

features, such as between color and edge feature, and also
some features do boost the result, such as the textures in most
situations (see Figures 6(a), 6(b), 6(c), and 6(d)).

7.2. Comparison between Margin and Slack Methods. To
overcome the above-mentioned shortcomings of the Max-
margin method, this paper adopts the slack scaling method
to improve the results. In order to solve the nondecompos-
ability problem, we introduce an approximated algorithm as
described in Section 4 to make the slack method feasible.

Input: data X, label Y,, size T, tolerance ¢
Initialize parameter W — 0, constraint set R — 0

Repeat
fort=1to T
Y* = argminy[s(y) - A(y,, »)]
end for

increase constraint set R < RU {Y™}
(W, &) « solve the QP using all the existing Y~
Until Y, [A(y,, ¥) +s(y,) —s(y)] <& +e

ALGORITHM I: The parameter learning for margin method.

Both methods are tested on the Middlebury database, see
Figure 7. As in Figure 8, the comparison results of inference
accuracy for scene art show that the slack method performs
better than the margin method.

7.3. Comparison on the Convergent Properties. To take a
step further, the convergent property between margin and
slack methods is compared. In the training procedure, the
convergence of both margin and slack methods requires
the use of the bundle method and one-slack trick. Take the
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Input: data X, label Y,, size T, tolerance ¢
Initialize parameter W — 0, constraint set R — 0

Repeat
fort=1to T
Y =argminy [s(y) + §/A(y;, y)]
end for

increase constraint set R «— RU {Y"}
(W, &) « solve the QP using all the existing Y~
Until Y, [§/A(y,, y) + s(y,) —s(»)] <& +¢

ALGORITHM 2: The parameter learning for slack method.

Input: interval [a, b], reduction factor c, tolerance &
Initialize x, — x; = (1 -¢)b+ca,
x, = x,=(l-c)a+ch,
Repeat
If (f(x,) < f(x,)
b=x,x,=x
£e) = f(x)
x;, > x;=(1-¢)b+ca
Else
a=x,x =X,
F) = fx,)
x, &> x,=(1-c)a+cb
end If
Until abs (x; — x,) < ¢

ALGoriTHM 3: The algorithm for golden searching.

margin method for example, the bundle method is used by
rearranging the terms, then the constraints will be

ExA(yy)+s(y)—s(y). (28)

This means that the constraints are up bounded by &.
Given the current parameter, the objective function can be
optimized using the bundle method, where the most violation
constraint is

y' = argymin (s(¥)=A(sy)- (29)

While the bundle method has the ability to achieve the
optimal solution, the one-slack trick makes the procedure
convergent in a small number of iterations. The computing
process of the margin and the slack methods is examined
to observe the convergence speed of the iteration. The error
between two continuous iterations in the objective function
is denoted as itaeps. Figure 9 shows the convergent property,
indicating that both methods could converge in several
iterations, while the slack method produces better accuracy
without too much loss in convergence.

8. Conclusion

This paper presented two methods for the depth restoration
of different scenes using structural vector machine. The
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The comparison of convergent property

itaeps
—
T

051 b

R e e

0 5 10 15 20 25 30 35 40
Iterations margin

()

itaeps
>
T

el e e e e e

0 5 10 15 20 25 30 35 40

Tterations slack

(b)

FIGURE 9: The comparison of the convergent property between
margin and slack. Both the two methods converge in a small number
of iterations. With the increasing accuracy, the slack method has
a pronounced advantage in convergence compared to the margin
method.

proposed methods, including both margin and slack, have
their own advantages and disadvantages, respectively. While
the form of margin rescaling method can be decomposed
into local parts easily, it is hard for the slack rescaling
method to perform such operation. In contrast, the slack one
outperforms the margin rescaling method in accuracy out-
standingly. Besides the advantageous promotion in accuracy,
there is no need for the slack rescaling method to abandon
too many convergences while computing the parameters.
The proposed approximation aiming at the slack rescaling
approach manages to solve the decomposability problem
successfully and make it computable in an efficient way.
The pity is that the approximation method requires the
formulation being concave which may be an over strong
constraint. Our future works focus on these optimization
algorithms, including improving the computing speed and
enhancing the accuracy of the results.
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