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Vision-aided inertial navigation is an important and practicalmode of integrated navigation for aerial vehicles. In this paper, a novel
fusion scheme is proposed and developed by using the information from inertial navigation system (INS) and vision matching
subsystem. This scheme is different from the conventional Kalman filter (CKF); CKF treats these two information sources equally
even though vision-aided navigation is linked to uncertainty and inaccuracy. Eventually, by concentrating on reliability of vision
matching, the fusion scheme of integrated navigation is upgraded. Not only matching positions are used, but also their reliable
extents are considered. Moreover, a fusion algorithm is designed and proved to be the optimal as it minimizes the variance in terms
of mean square error estimation. Simulations are carried out to validate the effectiveness of this novel navigation fusion scheme.
Results show the new fusion scheme outperforms CKF and adaptive Kalman filter (AKF) in vision/INS estimation under given
scenarios and specifications.

1. Introduction

Over the past decade, aerial vehicles have been widely devel-
oped and used in military and civilian cases, such as recon-
naissance, surveying, mapping, and geophysical exploration
[1]. Navigation focuses onmonitoring the movement of vehi-
cles and has been a key component in the application of aerial
vehicles. Therefore, it is of significance to develop reliable
navigation technologies to ensure that the vehicles know their
own positions and orientations during missions or tasks.

Inertial navigation system (INS) is the most applicable
mode since no external references are required to determine
its position, orientation, or velocity once it is initialized [2,
3]. However, as a dead reckoning process, it lacks accuracy
in long-term performance because of the noises and biases
contained in inertial measurements [4].

Several navigation frameworks aided by global position-
ing system (GPS) [1, 5], vision [1, 6–10], or terrain [11, 12] are
usually employed to restrict the growth of INS error. Along
with the development of visual sensors and matching algo-
rithms, the visionmatchingmethod is a quite potential mode
[13–16]. Moreover, infrared and radar imaging ensures that
the vision-aidednavigation is available regardless of darkness,

clouds, or rain (all-weather condition). Navigation accuracy
is also improved by these high-resolution measurements.
Vision-aided inertial navigation has received considerable
attention from scientists and engineers in the past few years
[1, 6–10]. In image registration (or matching), the sensed
images are geometrically overlaid on the reference images
prestored in the vehicles [17, 18]. That is, the position and
attitude of a vehicle can be produced by an onboard matcher
during flight. The vision-aided approach has advantages in
long-term navigation because the matched information is
independent of the INS and has no accumulation effect [8].

The well-known conventional Kalman filter (CKF) is
widely implemented in vision/INS integration systems. CKF
is a variance-minimizing estimator which fuses various infor-
mation sources [19–21], but CKF treats information sources
equally, regardless of their origins or principles.

In terms of vision-aided navigation, the matching per-
formance is related with the source reference images. For
instance, images from ocean or desert have fewer matchable
features, and therefore, the matching error may exceed
hundreds of meters. In that case, CKF is not directly suitable
for vision/INS integrated navigators because of the incorrect
measurement-noise model.
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A key step in the performance of the Kalman filter is
to determine the appropriate measurement-noise covariance
matrix𝑅 [22]. To solve this problem, several adaptive Kalman
filter (AKF) approaches have been proposed to estimate noise
covariance [23–25], and most of them estimate 𝑅 by using
the innovation or the residual sequence [26, 27]. That is, the
estimated covariance matrix of the innovations or residuals
should match its theoretical form [28]. AKF estimates 𝑅
by using the previous 𝑚 observations. But for vision-aided
navigation, because of the context of source image, matching
error may suddenly be transferred from the current epoch
to the next epoch. Therefore, AKF may not obtain the
appropriate 𝑅, which will slow the convergence of filtering
response and degrade filtering performance.

Different from AKF, a novel fusion scheme was proposed
and developed in this paper to automatically set higher
weights to reliable vision navigation data and vice versa.
The scheme fuses the vision and INS estimates by virtue of
reliability. The reliability of image matching data relates to
image context and can be calculated transcendentally. It is
the probability of successful matching, which is higher in
feature-rich areas and lower in feature-insufficient areas. The
matching error is divided into two parts: constant error and
reliability error. Constant error is decided by vision sensor
instrument, installation, and image registration (matching)
algorithm, while reliability error is caused by the matching
reliability.

The remainder of this paper is organized as follows.
The vision/INS navigation fusion problem is formulated in
Section 2, and then a novel fusion scheme is proposed and
developed for vision-aided inertial navigation in Section 3.
The proposed scheme is proved to be optimal to minimize
the variance of the mean square error (MSE) estimation.
In Section 4, simulations are carried out to validate the
effectiveness of the developed vision/INS fusion scheme in
comparison with CKF and AKF. Finally, concluding remarks
are made in Section 5.

2. Formulation on Vision/INS Data
Fusion Problem

In application of vision-aided navigation, CKF is able to
obtain the optimal weighted mean value by combining the
vision and INS data of its independent estimates [20]. The
fusion scheme of CKF is formulated in this section. Both
estimates are considered reliable by CKF. But because of
the uncertainly in image registration, the position matching
error can exceed hundreds of meters in some area with
less information content, sometimes even leading to filtering
divergence. Hence, this challenge of vision/INS fusion is
analyzed.

2.1. Conventional Fusion Scheme. CKF is a popular fusion
scheme for integrated navigation. Its scheme of one-
dimensional data fusion can be formulated as follows [20].
For one-dimensional discrete-time signal {𝑥(0)

𝑖
}, there are two

estimates {𝑥(1)
𝑖
} and {𝑥(2)

𝑖
} which can be expressed as follows:

𝑥
(1)

𝑖 = 𝑥
(0)

𝑖 + Δ𝑥
(1)

𝑖 , {Δ𝑥
(1)

𝑖 } ∼ 𝑁(0, 𝜎
2

1) , (1)

𝑥
(2)

𝑖 = 𝑥
(0)

𝑖 + Δ𝑥
(2)

𝑖 , {Δ𝑥
(2)

𝑖 } ∼ 𝑁(0, 𝜎
2

2) , (2)

where 𝑁 denotes a normal distribution; Δ𝑥(1)
𝑖
and Δ𝑥

(2)

𝑖

are both the error between the estimated signal and the
original signal. Data fusion according to minimum-variance
restriction is expressed as [20]:

𝑥
(1,2)

𝑖 =
𝜎
2
2𝑥
(1)

𝑖
+ 𝜎
2
1𝑥
(2)

𝑖

𝜎
2
1 + 𝜎
2
2

(3)

or

𝑥
(1,2)

𝑖 = (1 − 𝑤) 𝑥
(1)

𝑖 + 𝑤𝑥
(2)

𝑖 , 𝑤 =
𝜎
2
1

𝜎
2
1 + 𝜎
2
2

, (4)

where𝑤 is the optimal weight factor.When (4) is extended to
multidimension, the equations of CKF can be derived [20].

2.2. Challenges of Vision/INS Fusion. A vision-aided naviga-
tion sensor can obtain the position and attitude of a vehicle.
This paper only concerns the simple situation where position
is the only observation.

In vision-aided navigation, when an aerial vehicle passes
areas with less information content (e.g., ocean, desert,
and campagna), the position matching error can exceed
hundreds of meters, leading to a changed measurement-
noise covariance matrix. In this circumstance, CKF is not
the optimal fusion scheme, and thus the weight factor 𝑤
in (4) should be changed. Furthermore, not only the errors
between the estimated signals but also the reliability of
estimated signals should be considered, and the reliability
of image matching data relates to image context and can be
calculated transcendentally. It is the probability of successful
matching, which is higher in feature-rich areas and lower
in feature-insufficient areas. Thus, a reliability-based Kalman
filter (RKF) was proposed. Figure 1 explains the difference
between CKF (left) and RKF (right), and the INS signals of
both CKF and RKF were considered reliable (always equals
to 1). In contrast with CKF, the reliability of image matching
data was considered in RKF. Or, in other words, CKF is the
special case of RKF in which the reliability is always equals to
1.

One-dimensionalmatching results via a vision sensor can
be expressed as follows:

𝑥
(3)

𝑖 = 𝑥𝑢𝑖 + Δ𝑥
(3)

𝑖 , {Δ𝑥
(3)

𝑖 } ∼ 𝑁(0, 𝜎
2

3) . (5)

Matching error is divided into two parts: constant error
Δ𝑥
(3)

𝑖
and reliability error 𝑥𝑢𝑖. Δ𝑥

(3)

𝑖
is the white Gaus-

sian noise decided by the vision sensor, installation, and
image registration (matching) algorithm and is constant and
independent of the region of the image; 𝑥𝑢𝑖 represents the
miss-matching error due to unreliability. Without any prior
knowledge, uniform distribution is a suitable assumption
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Figure 1: Conventional Kalman filter (left) and reliability-based Kalman filter (right).

for miss-matching. Thus, at epoch 𝑖, the probability density
function of 𝑥𝑢𝑖 satisfies

𝜑𝑖 (𝑥𝑢) =

{{

{{

{

𝑝
(3)

𝑖
𝑥𝑢𝑖 = 𝑥

(0)

𝑖

1 − 𝑝
(3)

𝑖

𝑏 − 𝑎
𝑥𝑢𝑖 ̸= 𝑥

(0)

𝑖
,

(6)

where 𝑝(3)
𝑖

is the reliability of 𝑥(3)
𝑖
, (𝑎, 𝑏) is the range of {𝑥(3)

𝑖
},

and 𝑥(0)
𝑖

is the ideal position matching result at epoch 𝑖. In
other words, (6) shows that when the constant error is zero,
the reliability is the probability that the estimated signal is
equal to the original signal. When 𝑝(3)

𝑖
≡ 1, which means the

vision information is always reliable, (5) is equivalent to (2).
In vision-aided navigation, matching reliability can be

computed transcendentally by analyzing the reference image
before a flight mission off-line. For instance, a feature-rich
region has a higher reliability while a smooth region such
as campagna has a lower reliability. CKF is not the optimal
fusion scheme via the above assumptions. Therefore, a novel
vision-aided navigation fusion scheme considering reliability
is proposed in the next section, and it is proved to be the
optimal fusion scheme since it minimizes the variance in
terms of MSE estimation.

3. Novel Fusion Scheme for
Vision-Aided Navigation

In this section, a novel vision-aided navigation Kalman fil-
ter considering reliability (RKF) has been proposed in
Section 3.1. Then we introduced the reliability-based fusion
algorithm in Section 3.2, and it is proved to be optimal with
minimum variance restriction in theorem.

3.1. Scheme of RKF for Vision/INS Fusion. With the local level
frame of North-East-Down (NED) as the navigational frame,
the dynamics of INS can be expressed as

𝛿𝑥̇ = 𝐹𝛿𝑥 + 𝐺𝑢. (7)

In (7),

𝛿𝑥 = [𝛿𝛼 𝛿𝛽 𝛿𝛾 𝛿V𝑁 𝛿V𝐸 𝛿𝐿 𝛿𝑙]
𝑇
,

𝑢 = [𝛿𝜔𝑥 𝛿𝜔𝑦 𝛿𝜔𝑧 𝛿𝑓𝑥 𝛿𝑓𝑦 𝛿𝑓𝑧]
𝑇
,

(8)

where 𝛿V𝑁, 𝛿V𝐸 are the velocity errors in the north and east,
respectively; 𝛿𝛼, 𝛿𝛽, and 𝛿𝛾 are the attitude errors; 𝛿𝜔𝑥,
𝛿𝜔𝑦, and 𝛿𝜔𝑧 are the gyro’s biases; 𝛿𝑓𝑥, 𝛿𝑓𝑦, and 𝛿𝑓𝑧 are the
accelerometer’s biases:
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(9)

where 𝐿 is the geographic latitude; 𝑙 is the geographic
longitude; Ω is the skew matrix of the Earth’s rotation rate;
Re is the Earth’s transverse radius; 𝑓 is the accelerometer’s
measurement, and 𝑉 is the vehicle’s velocity; and

𝐺 =

[
[
[
[
[

[

−𝑐11 −𝑐12 −𝑐13 0 0

−𝑐21 −𝑐22 −𝑐23 0 0

−𝑐31 −𝑐32 −𝑐33 0 0

0 0 0 𝑐11 𝑐12

0 0 0 𝑐21 𝑐22

]
]
]
]
]

]

, (10)

where 𝑐𝑖𝑗 is the elements of the direction cosine matrix 𝐶𝑛𝑏 .
The measurement model is expressed as

𝑧 = 𝐻𝛿𝑥 + V, (11)

where V is the measurement noise. The observation is the
difference of positions between INS and vision:

𝑧 = [
𝛿𝐿

𝛿𝑙
] . (12)

The corresponding measurement matrix is:

𝐻 = [
0 0 0 0 0 1 0

0 0 0 0 0 0 1
] . (13)

The measurement noise matrix in CKF can be expressed
as

𝑅 = [
𝜎
2
𝑁 0

0 𝜎
2
𝐸

] . (14)

The steps in RKF are as follows.

Inputs. Range of reference image (Range𝑁,Range𝐸).
Position error between INS and image matching (𝐶𝑁,

𝐶𝐸).
Matching reliability of position for the vehicle at epoch

𝑝
(3)

𝑖
, let 𝑄 = 1 − 𝑝

(3)

𝑖
.

RKF Algorithm

Step 1. The possible range of 𝐶𝑁 and 𝐶𝐸 is (−Range𝑁,
Range𝑁) and (−Range𝐸,Range𝐸), respectively. Therefore, the
scale factors are

𝑠𝑁 =
1

2Range𝑁
,

𝑠𝐸 =
1

2Range𝐸
.

(15)

Step 2. Compute the mapped observation error according to
(15)

𝐶
󸀠

𝑁 = 𝑠𝑁 (𝐶𝑁 + Range𝑁) ,

𝐶
󸀠

𝐸 = 𝑠𝐸 (𝐶𝐸 + Range𝐸) .
(16)

Step 3. Let

𝐴𝑁 = 𝑠
2

𝑁𝑄[(−𝑐
󸀠2

𝑁 + 𝑐
󸀠

𝑁)𝑄
2
+ (−𝑐

󸀠2

𝑁 + 𝑐
󸀠

𝑁 −
1

4
)𝑄

+(𝑐
󸀠2

𝑁 − 𝑐
󸀠

𝑁 +
1

3
)] ,

𝐴𝐸 = 𝑠
2

𝐸𝑄[(−𝑐
󸀠2

𝐸 + 𝑐
󸀠

𝐸)𝑄
2
+ (−𝑐

󸀠2

𝐸 + 𝑐
󸀠

𝐸 −
1

4
)𝑄

+(𝑐
󸀠2

𝐸 − 𝑐
󸀠

𝐸 +
1

3
)] .

(17)

Step 4. Update the measurement noise matrix as follows:

𝑅new = [
𝜎
2
𝑁 + 𝐴𝑁 0

0 𝜎
2
𝐸 + 𝐴𝐸

] . (18)

Step 5. Execute the CKF with 𝑅new.
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3.2. Reliability-Based Fusion. In this section, the reliability-
based fusion scheme is proposed with minimum-variance
restriction.

Condition.The following assumptions hold.

(a) Rewrite (5) into

𝑥
(3)

𝑖 = 𝑥𝑢𝑖 + Δ𝑥
(3)

𝑖 , {Δ𝑥
(3)

𝑖 } ∼ 𝑁(0, 𝜎
2

3) , (19)

(b) where𝑥(3)
𝑖

denotes the positioning result via the vision
sensor. At epoch 𝑖, the probability density function of
𝑥𝑢𝑖 satisfies

𝜑𝑖 (𝑥𝑢) =

{{

{{

{

𝑝
(3)

𝑖
𝑥𝑢𝑖 = 𝑥

(0)

𝑖

1 − 𝑝
(3)

𝑖

𝑏 − 𝑎
𝑥𝑢𝑖 ̸= 𝑥

(0)

𝑖
,

(20)

where 𝑝(3)
𝑖

is the reliability of 𝑥(3)
𝑖

and (𝑎, 𝑏) is the
range of {𝑥(3)

𝑖
}.

Theorem 1. A reliability-based fusion is given as follows.
The fusion algorithm can be expressed as

𝑥
(1,3)

𝑖 = (1 − 𝑤) 𝑥
(1)

𝑖 + 𝑤𝑥
(3)

𝑖 .
(21)

Finding the optimal factor with minimum-variance restric-
tion is equivalent to

𝑤
∗
= argmin

𝑤
(𝐷 (𝑥

(1,3)

𝑖 )) . (22)

Let

𝑠 =
1

𝑏 − 𝑎
,

𝑐
󸀠
=
𝑥
(0)

𝑖
− 𝑎

𝑠
,

𝑄 = 1 − 𝑝
(3)

𝑖 .

(23)

Then the weight factor can be expressed as

𝑤
∗
= 𝜎
2

1 × (𝜎
2

1 + 𝜎
2

2 + 𝑠
2
𝑄

× [ (−𝑐
󸀠2
+ 𝑐
󸀠
)𝑄
2
+ (−𝑐

󸀠2
+ 𝑐
󸀠
−
1

4
)𝑄

+(𝑐
󸀠2
− 𝑐
󸀠
+
1

3
)])

−1

.

(24)

Theweight factor is consistent with (17) which is extended
to two dimensions.Thenwewill prove that (24) is the optimal
weight factor with minimum-variance restriction.

Proof. The weight factor in (24) is the optimal theoretically.
This is shown from (25) to (52).

On the right side of (19), the two terms with 𝑥
(3)

𝑖
are

independent of each other. According to the property of the
variance, then

𝐷(𝑥
(3)

𝑖 ) = 𝐷 (𝑥𝑢𝑖) + 𝐷 (Δ𝑥
(3)

𝑖 ) . (25)

Obviously,

𝐷(Δ𝑥
(3)

𝑖 ) = 𝜎
2

3 , (26)

and thus only𝐷(𝑥𝑢𝑖) is needed to obtain𝐷(𝑥(3)
𝑖
).

At epoch 𝑖, let 𝑥 = 𝑥𝑢𝑖, 𝑐 = 𝑥
(0)

𝑖
, and 𝑝 = 𝑝

(3)

𝑖
; then the

probability density function is expressed as

𝜑 (𝑥) =
{

{

{

𝛿 (𝑥 − 𝑐) ⋅ 𝑝 𝑥 = 𝑐

1 − 𝑝

𝑏 − 𝑎
𝑥 ̸= 𝑐, 𝑎 ≤ 𝑥 ≤ 𝑏,

(27)

where 𝛿 is the Kronecker delta function.The expectation can
be computed as

𝐸 (𝑥) = ∫

+∞

−∞

𝑥 ⋅ 𝜑 (𝑥) ⋅ 𝑑𝑥

= ∫

𝑐−0

𝑎

𝑥 ⋅ 𝜑 (𝑥) ⋅ 𝑑𝑥 + ∫
𝑐

𝑥 ⋅ 𝜑 (𝑥) ⋅ 𝑑𝑥

+ ∫

𝑎

𝑐+0

𝑥 ⋅ 𝜑 (𝑥) ⋅ 𝑑𝑥.

(28)

As 𝜑(𝑐) is the first type of discontinuity point, (28) can be
expressed as

𝐸 (𝑥) = ∫

𝑏

𝑎

𝑥 ⋅
1 − 𝑝

𝑏 − 𝑎
⋅ 𝑑𝑥 + ∫

𝑐

𝑥 ⋅ 𝛿 (𝑥 − 𝑐) ⋅ 𝑝 ⋅ 𝑑𝑥

=
(1 − 𝑝) (𝑎 + 𝑏)

2
+ ∫
𝑐

𝑥 ⋅ 𝛿 (𝑥 − 𝑐) ⋅ 𝑝 ⋅ 𝑑𝑥

=
(1 − 𝑝) (𝑎 + 𝑏)

2
+ 𝑐𝑝.

(29)

The variance can be expressed as

𝐷 (𝑥) = ∫

+∞

−∞

(𝑥 − 𝐸 (𝑥))
2
𝜑 (𝑥) 𝑑𝑥. (30)

Therefore,

𝐷 (𝑥) = ∫

+∞

−∞

(𝑥 −
(1 − 𝑝) (𝑎 + 𝑏)

2
− 𝑐𝑝)

2
1 − 𝑝

𝑏 − 𝑎
𝑑𝑥

+ ∫
𝑐

(𝑥 −
(1 − 𝑝) (𝑎 + 𝑏)

2
− 𝑐𝑝)

2

⋅ 𝛿 (𝑥 − 𝑐) ⋅ 𝑝 ⋅ 𝑑𝑥.

(31)

The two terms on the right side of (31) are defined as
𝐷1(𝑥) and𝐷2(𝑥); then

𝐷1 (𝑥) = ∫

+∞

−∞

(𝑥 −
(1 − 𝑝) (𝑎 + 𝑏)

2
− 𝑐𝑝)

2
1 − 𝑝

𝑏 − 𝑎
𝑑𝑥

= (1 − 𝑝){

(𝑎
2
+ 𝑎𝑏 + 𝑏

2
)

3
+
(𝑝 − 1) (𝑎 + 𝑏)

2

2

− 𝑐𝑝 (𝑎 + 𝑏) +
(1 − 𝑝)

2
(𝑎 + 𝑏)

2

4

+ 𝑐
2
𝑝
2
+ (1 − 𝑝) (𝑎 + 𝑏) 𝑐𝑝} .

(32)
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In Kronecker delta function 𝛿(𝑥),

∫

+∞

−∞

𝛿 (𝑥 − 𝑐) 𝑑𝑥 = ∫
𝑐

𝛿 (𝑥 − 𝑐) 𝑑𝑥 = 1,

∫

+∞

−∞

𝑓 (𝑥) 𝛿 (𝑥 − 𝑐) 𝑑𝑥 = 𝑓 (𝑐) .

(33)

Therefore,

𝐷2 (𝑥) = ∫
𝑐

(𝑥 −
(1 − 𝑝) (𝑎 + 𝑏)

2
− 𝑐𝑝)

2

⋅ 𝛿 (𝑥 − 𝑐) ⋅ 𝑝 ⋅ 𝑑𝑥

= 𝑝𝑐
2
+
𝑝(1 − 𝑝)

2
(𝑎 + 𝑏)

2

4
+ 𝑐
2
𝑝
3
− 𝑐𝑝 (1 − 𝑝) (𝑎 + 𝑏)

− 2𝑐
2
𝑝 + 𝑐𝑝

2
(1 − 𝑝) (𝑎 + 𝑏) .

(34)

To simplify the calculation, (𝑎, 𝑏) is mapped into (0, 1);
{𝑥
(1)

𝑖
} and {𝑥(3)

𝑖
} are mapped to {𝑥󸀠(1)

𝑖
} and {𝑥󸀠(2)

𝑖
}, respectively.

They can be expressed as

𝑥
󸀠(1)

𝑖 =
𝑥
(1)

𝑖
− 𝑎

𝑏 − 𝑎
,

𝑥
󸀠(3)

𝑖 =
𝑥
(3)

𝑖
− 𝑎

𝑏 − 𝑎
,

(35)

𝑐
󸀠
=
𝑐 − 𝑎

𝑏 − 𝑎
. (36)

𝑠 is defined as the scale factor

𝑠 =
1

𝑏 − 𝑎
. (37)

After mapping, let

𝐷
󸀠

1 (𝑥) =
𝐷1 (𝑥)

𝑠2
,

𝐷
󸀠

2 (𝑥) =
𝐷2 (𝑥)

𝑠2
.

(38)

Likewise,

𝜎
󸀠

1 =
𝜎1

𝑠
,

𝜎
󸀠

2 =
𝜎2

𝑠
.

(39)

Let 𝑄 = 1 − 𝑝; then

𝐷
󸀠

1 (𝑥) =
1

4
𝑄
3
+ (−2𝑐

󸀠2
+ 2𝑐
󸀠
−
1

2
)𝑄
2
+ (𝑐
󸀠2
− 𝑐
󸀠
+
1

3
)𝑄,

(40)

𝐷
󸀠

2 (𝑥) = (−𝑐
󸀠2
+ 𝑐
󸀠
−
1

4
)𝑄
3
+ (𝑐
󸀠2
− 𝑐
󸀠
+
1

4
)𝑄
2
. (41)

By adding (40) and (41),

𝐷
󸀠
(𝑥) = (−𝑐

󸀠2
+ 𝑐
󸀠
)𝑄
3
+ (−𝑐

󸀠2
+ 𝑐
󸀠
−
1

4
)𝑄
2

+ (𝑐
󸀠2
− 𝑐
󸀠
+
1

3
)𝑄.

(42)

According to (25), (26), and (42),

𝐷
󸀠
(𝑥
(3)

𝑖 ) = (−𝑐
󸀠2
+ 𝑐
󸀠
)𝑄
3
+ (−𝑐

󸀠2
+ 𝑐
󸀠
−
1

4
)𝑄
2

+ (𝑐
󸀠2
− 𝑐
󸀠
+
1

3
)𝑄 + 𝜎

󸀠2

2 .

(43)

Let

𝑥
󸀠(1,3)

𝑖 = 𝑤1𝑥
󸀠(1)

𝑖 + 𝑤2𝑥
󸀠(3)

𝑖 . (44)

Therefore,

𝐷(𝑥
󸀠(1,3)

𝑖 )

= 𝐸 {[𝑥
󸀠(1,3)

𝑖 − 𝐸 (𝑥
󸀠(1,3)

𝑖 )]
2
}

= 𝐸 {[𝑤1𝑥
󸀠(1)

𝑖 + 𝑤2𝑥
󸀠(2)

𝑖 − 𝑤1𝐸 (𝑥
󸀠(1)

𝑖 ) − 𝑤2𝐸 (𝑥
󸀠(2)

𝑖 )]
2
}

= 𝐸 {𝑤
2

1[𝑥
󸀠(1)

𝑖 − 𝐸 (𝑥
󸀠(1)

𝑖 )]
2
+ 𝑤
2

2[𝑥
󸀠(2)

𝑖 − 𝐸 (𝑥
󸀠(2)

𝑖 )]
2
}

= 𝑤
2

1𝐸 {[𝑥
󸀠(1)

𝑖 − 𝐸 (𝑥
󸀠(1)

𝑖 )]
2
} + 𝑤
2

2𝐸 {[𝑥
󸀠(2)

𝑖 − 𝐸 (𝑥
󸀠(2)

𝑖 )]
2
}

= 𝑤
2

1𝜎
󸀠2

1 + 𝑤
2

2𝜎
󸀠2

2 + 𝑤
2

2 ((−𝑐
󸀠2
+ 𝑐
󸀠
)𝑄
3
+ (−𝑐

󸀠2
+ 𝑐
󸀠
−
1

4
)𝑄
2

+ (𝑐
󸀠2
− 𝑐
󸀠
+
1

3
)𝑄) .

(45)

Let 𝑤2 = 𝑤
󸀠, 𝑤1 = 1 − 𝑤

󸀠; then

𝐷(𝑥
󸀠(1,3)

𝑖 ) = (1 − 𝑤
󸀠2
) 𝜎
󸀠2

1 + 𝑤
󸀠2
𝜎
󸀠2

2

+ 𝑤
󸀠2
((−𝑐
2
+ 𝑐)𝑄

3
+ (−𝑐

2
+ 𝑐 −

1

4
)𝑄
2

+(𝑐
2
− 𝑐 +

1

3
)𝑄) .

(46)

The value of 𝑤󸀠, which minimizes 𝐷(𝑥󸀠(1,3)
𝑖

), is obtained by
differentiating the above equation with respect to 𝑤󸀠. Hence,

𝑑 [𝐷 (𝑥
󸀠(1,3)

𝑖
)]

𝑑𝑤󸀠

= −2 (1 − 𝑤
󸀠
) 𝜎
󸀠2

1

+ 2𝑤
󸀠
(𝜎
󸀠2

2 + (−𝑐
󸀠2
+ 𝑐
󸀠
)𝑄
3

+(−𝑐
󸀠2
+ 𝑐
󸀠
−
1

4
)𝑄
2
+ (𝑐
󸀠2
− 𝑐
󸀠
+
1

3
)𝑄) = 0.

(47)

Therefore, the optimal weight factor according to minimum
variance restriction is

𝑤
󸀠
= 𝜎
󸀠2

1 × (𝜎
󸀠2

1 + 𝜎
󸀠2

2 + (−𝑐
󸀠2
+ 𝑐
󸀠
)𝑄
3

+(−𝑐
󸀠2
+ 𝑐
󸀠
−
1

4
)𝑄
2
+ (𝑐
󸀠2
− 𝑐
󸀠
+
1

3
)𝑄)

−1

.

(48)
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According to (35),

𝑤
󸀠
= 𝜎
2

1 × (𝜎
2

1 + 𝜎
2

2 + 𝑠
2
𝑄

× [ (−𝑐
󸀠2
+ 𝑐
󸀠
)𝑄
2
+ (−𝑐

󸀠2
+ 𝑐
󸀠
−
1

4
)𝑄

+(𝑐
󸀠2
− 𝑐
󸀠
+
1

3
)])

−1

.

(49)

From (21), (35), and (44),

𝑤 = 𝑤
󸀠
. (50)

The corresponding data fusion formula is

𝑥
(1,3)

𝑖 = (1 − 𝑤) 𝑥
(1)

𝑖 + 𝑤𝑥
(3)

𝑖 .
(51)

Hence, (24) was proved. But in real application, it is
usually unable to obtain the value of 𝑥(0)

𝑖
. Therefore, 𝑥(1)

𝑖
is

used instead:

𝑥
(1)

𝑖 ≈ 𝑐 = 𝑥
(0)

𝑖 .
(52)

Apparently, when 𝑝
(3)

𝑖
= 1, 𝑤 = 𝜎

2
1/(𝜎
2
1 + 𝜎

2
2), the fusion

formula is equivalent to the traditional form in (4). In other
words, the traditional fusion method is a special case of the
proposed data fusion method.

4. Simulation and Discussion

4.1. Scenarios and Specifications. A Matlab/Simulink plat-
form is constructed for simulation of vision-aided inertial
navigation. A 600 × 1600 of 4m resolution synthetic aperture
radar (SAR) image is used as the reference. The red lines
in Figures 2(a) and 2(b) show the flight trajectory in the
real world (55 s) and the reference image, respectively. At
each epoch during simulation (50Hz), the reference image
was cropped into a rectangular subimage of 150 × 150 at the
central point (𝑥, 𝑦), which denotes the vehicle’s position at
that epoch. Then the observed image is obtained by adding
white Gaussian noise. And the starting point is (250, 75) in
reference image.

4.2. Generation of Matching Reliability. Figure 3 illustrates
the generation of matching reliability. With a single refer-
ence image (Figure 2(b)), 10 fully-observed images were
obtained by adding different Gaussian white noises (vari-
ance = {1 × 0.25% 2 × 0.25% ⋅ ⋅ ⋅ 10 × 0.25%}). As shown in
Figure 3, at each point in the flight trajectory, the observed
images are obtained by cropping the fully-observed image at
that point, and thus 10 fully-observed images will generate
10 different matching results. The matching reliability can
be obtained by analyzing these matching results (elaborated
in the next paragraph), and the 10 image matching errors
were illustrated in Figure 4. Apparently, the matching error
increases because of the increased noise of the observed
image. The matching error finally converges because at the
beginning of the flight, the image is very smooth and can

Table 1: Initial conditions.

INS SAR
Longitude, latitude (deg) 120,30 120,30
Height (m) 10000 10000
Velocity (NED) (m/s) 0,100,0 0,100,0
Attitude (roll, pitch, and yaw) (deg) 0,0,0 0,0,0

Table 2: Specification of INS.

Gyro drift (deg/h) 1
Acceleration zero bias (g) 10

−3

easily cause large matching error; after 10–30 sec, the image’s
context becomes relatively rich, which allows more reliable
matching.

At each point in the flight trajectory, if the error is
less than 4m (1 pixel), the matching is regarded as correct;
otherwise, it is incorrect. Hence, 𝜎𝑁 and 𝜎𝐸 in (14) are set
as 4m, which is the constant error in (5). The matching
reliability of point is

𝑝 =
𝑁correct
𝑁total

, (53)

where 𝑁total = 10 denotes the total number of matches for a
single point in the flight trajectory; 𝑁correct is the number of
correct matches. Matching reliability is shown in Figure 5. It
illustrated the matching reliability of point at the position for
vehicle at epoch 𝑡.

Figure 5 clearly shows that the matching reliability grad-
ually increases with time. It is consistent with Figure 2(b) that
the features in the reference image increase during the flight
course.

4.3. Integrated Navigation Results and Discussion. Tables 1
and 2 show the initial conditions and the specifications of the
INS, respectively.

By using the scheme of integrated navigation reliability-
based Kalman filter (RKF) described in Section 3.1, we ran-
domly choose an image matching result for our experiment
(Figure 4(j) is used in the test).

Figures 6(a) and 6(b) show the CKF, RKF, and AKF posi-
tion errors of integrated navigation. Figure 6 also shows that
in this condition with miss-matching, the integral navigation
error from CKF is extremely large so CKF cannot fulfill the
integrated navigation requirement. Furthermore, the perfor-
mance of integrated navigation was improved significantly
by using matching reliability in the proposed method (RKF).
The position error converged to within 2.5m.

Furthermore, compared with innovation-based AKF [27]
(window size 𝑚 = 30), different window experiment results
have similar performance and AKF has a slower response
since it estimates the measurement noise covariance matrix
𝑅 by using the previous𝑚 observations, while RKF estimates
𝑅 via the matching reliability at each single point.
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5. Conclusions

A reliability-based fusion scheme was proposed and devel-
oped for the vision-aided inertial navigation systems. Dif-
ferent navigation sources are treated equally in the CKF
scheme. As for vision-aided navigation, miss-matching may

cause large position errors. It can lead to deficiency of the
vision/INS integrated navigation system if two information
sources are treated equally in the fusion method.Therefore, a
novel fusion scheme is presented, which regulates the fusion
weights in terms of reliable extents of the reference scenes.
Higher weights are set to thematched information overlaying
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Figure 6: Latitudinal error (a) and longitudinal error (b) of integral navigation; RKF was compared with AKF and CKF.

on the more reliable regions, and vice versa. Furthermore,
the proposed fusion scheme is also proved to minimize the
integrated estimated variance such that MSE is achieved.
Simulations are also used to validate the effectiveness. The
proposed scheme has improved the performance of the
integrated navigation, compared with CKF and AKF.
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