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We introduce Chebyshev wavelet analysis method to solve the nonlinear Troesch and Bratu problems. Chebyshev wavelets
expansions together with operational matrix of derivative are employed to reduce the computation of nonlinear problems to a
system of algebraic equations. Several examples are given to validate the efficiency and accuracy of the proposed technique. We
compare the results with those ones reported in the literature in order to demonstrate that the method converges rapidly and
approximates the exact solution very accurately by using only a small number of Chebyshev wavelet basis functions. Convergence
analysis is also included.

1. Introduction

Nonlinear equations occurring in a wide variety of problems
in engineering and science have received a great deal of atten-
tion in the recent decades. Consider the Troesch nonlinear
two-point boundary value problem [1–3] in the following
form:

𝑢
󸀠󸀠

(𝑡) + 𝜆 sinh (𝜆𝑢 (𝑡)) = 0, 𝑡 ∈ [0, 1] ,

𝑢 (0) = 0, 𝑢 (1) = 1,

(1)

where 𝜆 is a positive constant. Troesch’s problem comes
from the investigation of the confinement of a plasma
column under radiation pressure. Many authors have paid
considerable attention to solving Troesch’s problem. Weibel
was the first to explain and solve the problem [4]. Roberts
and Shipman [3] obtained the closed form solution of the
problem in terms of the Jacobi elliptic function. Troesch
obtained numerical solution of this problem by the shooting
method [5]. Deeba et al. [6] proposed a numerical method
based on the decomposition technique. A numerical scheme
based on the modified homotopy perturbation method is
deduced by Feng et al. [7]. Variational iteration method was
proposed by Momani et al. [8]. Khuri solved this problem
numerically based on Laplace transform and a modified

decomposition technique [9] and also proposed B-spline
collocation approach for solving Troesch’s problem [10].
The Sinc-Galerkin method was introduced by Zarebnia and
Sajjadian [11]. S.-H. Chang and I.-L. Chang [12] proposed
a new technique based on differential transform for solving
Troesch’s problem. A new algorithm based on the variational
method and variable transformation was proposed by Chang
[13]. More detailed information and references to other
discussions on Troesch’s problem may be found in [14–18].

The closed form solution of Troesch’s problem is given in
[3], where 𝑢󸀠(0) is the derivative at 0 given by

𝑢
󸀠

(0) = 2(1 − 𝑚)
1/2
. (2)

The constant𝑚 satisfies the transcendental equation

sinh (𝜆/2)
(1 − 𝑚)

1/2
= sc (𝜆𝑚) , (3)

where sc(𝜆 | 𝑚) is the Jacobi function defined by sc(𝜆 | 𝑚) =
sin𝜙/ cos𝜙, where 𝜙, 𝜆, and𝑚 satisfy the following integral:

𝜆 = ∫

𝜙

0

1

√1 − 𝑚 sin2𝜃
𝑑𝜃. (4)



2 Mathematical Problems in Engineering

It has been indicated in [3, 5] that 𝑢(𝑡) has a singularity
located approximately at

𝑡
𝑠
=

1

2𝜆

ln( 16

1 − 𝑚

) =

1

𝜆

ln( 8

𝑢
󸀠
(0)

) , (5)

which implies that the singularity lies within the integration
range if 𝑢󸀠(0) > 8𝑒𝜆. This characteristic of Troesch’s problem
makes it impossible to be solved by some methods when 𝜆 >
1 [6, 7, 9, 19].

Another well-known problem is the Bratu nonlinear two-
point boundary value problem given in the following form:

𝑢
󸀠󸀠

(𝑡) + 𝜆𝑒
𝑢(𝑡)
= 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 0, 𝑢 (1) = 0,

(6)

where 𝜆 is a physical parameter and the prime denotes the
differentiation with respect to 𝑡. The Bratu problem is indeed
a special case of the following well-known classical Gelfand
problem by assuming𝑁 = 1:

𝑢
󸀠󸀠

(𝑡) +

𝑁 − 1

𝑟

𝑢
󸀠

(𝑡) + 𝜆𝑒
𝑢(𝑡)
= 0,

𝑟 ∈ (0, 1] , 𝑁 = 1, 2, 3, . . . ,

(7)

𝑢 (0) = 0, 𝑢 (1) = 0, (8)

where𝑁 = 1, 2, and 3 correspond to the infinite slab, infinite
circular cylinder, and sphere, respectively. The numerical
solutions for all 𝑁 = 1, 2, 3, . . . were obtained by Joseph and
Lundgren [20] for the domain of a unit ball.

The Bratu problem has an analytical solution given in the
following form:

𝑢 (𝑡) = −2 ln [cosh ((𝑡 − (1/2)) (𝜃/2))
cosh (𝜃/4)

] , (9)

where 𝜃 is the solution of 𝜃 = √2𝜆 cosh(𝜃/4).
The Bratu problem has zero, one, or two solutions when

𝜆 > 𝜆
𝑐
, 𝜆 = 𝜆

𝑐
, and 𝜆 < 𝜆

𝑐
, respectively, where the critical

value 𝜆
𝑐
satisfies the equation 1 = (1/4)√2𝜆

𝑐
sinh(𝜃

𝑐
/4) and

it was obtained in [21, 22] that the critical value 𝜆
𝑐
is given by

𝜆
𝑐
= 3.513830719.
TheBratu problem is used in a different variety of applica-

tions such as the fuel ignition of the thermal combustion the-
ory, the model thermal reaction process, the Chandrasekhar
model of the expansion of the universe, chemical reaction
theory, radiative heat transfer, and nanotechnology [23–29].

Solving the Bratu Problem by analytical and numeri-
cal methods has gained considerable attention from many
authors. Aregbesola applied weighted residual method [22]
and Wazwaz has employed the Adomian decomposition
method to get exact solutions [23]. Homotopy analysis
method was developed by Liao and Tan [29] and Laplace
transform decomposition method was used in [30]. Non-
polynomial spline method has been applied by Jalilian to

obtain smooth approximate solution of the one-dimensional
Bratu problem [31]. Caglar et al. [32] developed the B-
splinemethod. Variationalmethod and differential transform
method were used in [33, 34]. Also Abbasbandy et al. [35]
tried to solve the problem using the Lie-group shooting
method.

In the recent years, wavelets have received considerable
attention by researchers in different fields of science and
engineering. One advantage of wavelet analysis is the ability
to perform local analysis [36]. Wavelet analysis is able to
reveal signal aspects that other analysismethodsmiss, such as
trends, breakdownpoints, anddiscontinuities. In comparison
with other orthogonal functions, multiresolution analysis
aspect of wavelets permits the accurate representation of a
variety of functions and operators. In other words, we can
change𝑀 and 𝑘 simultaneously to getmore accurate solution.
In addition, the coefficient matrix of algebric equations
obtained after dicretization is sparse. So it is computationally
efficient to use wavelet methods for solving equations. In
addition, the solution is convergent.

We organize our paper as follows. In Section 2, we intro-
duce the Chebyshev wavelets, and the operational matrix of
derivative for Chebyshev wavelets is defined. In Section 3,
convergence analysis is included. In Section 4, we introduce
the method of solving Troesch’s and Bratu’s problems by
wavelet analysis method. Several numerical examples are
included in Section 5 to confirm that our method is efficient
and accurate. Some conclusions are drawn in Section 6.

2. Chebyshev Wavelets and Their Properties

2.1. Wavelets and Chebyshev Wavelets. Wavelets have been
very successfully used in many scientific and engineering
fields. They constitute a family of functions constructed
from dilation and transformation of a single function called
the mother wavelet 𝜓(𝑡); we have the following family of
continuous wavelets:

𝜓
𝑎,𝑏
(𝑡) = |𝑎|

−1/2
𝜓(

𝑡 − 𝑏

𝑎

) , 𝑎, 𝑏 ∈ 𝑅, 𝑎 ̸= 0. (10)

Chebyshev wavelets, 𝜓
𝑛,𝑚

= 𝜓(𝑘, 𝑛,𝑚, 𝑡), have four argu-
ments, 𝑛 = 0, 1, . . . , 2𝑘 − 1, where 𝑘 can assume any positive
integer,𝑚 is the degree of Chebyshev polynomials of the first
kind, and 𝑡 denotes the time.

Consider

𝜓
𝑛,𝑚
(𝑡) =

{
{

{
{

{

2
(𝑘+1)/2 ̃

𝑇
𝑚
(2
𝑘+1
𝑡 − 2𝑛 − 1) ,

𝑛

2
𝑘
≤ 𝑡 <

𝑛 + 1

2
𝑘
,

0, otherwise,
(11)

where

̃
𝑇
𝑚
(𝑡) =

{
{
{

{
{
{

{

1

√𝜋

, 𝑚 = 0,

√
2

𝜋

𝑇
𝑚
(𝑡) , 𝑚 ≥ 1,

(12)
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and 𝑚 = 0, 1, . . . ,𝑀, and 𝑛 = 0, 1, . . . , 2
𝑘
− 1. In (10)

the coefficients are used for orthonormality. Here 𝑇
𝑚
(𝑡) are

Chebyshev polynomials of the first kind of degree 𝑚 which
are orthogonal with respect to the weight function, 𝑤(𝑡) =
1/√1 − 𝑡

2, and satisfy the following recursive formula:

𝑇
0
(𝑡) = 1, 𝑇

1
(𝑡) = 𝑡,

𝑇
𝑚+1
(𝑡) = 2𝑡𝑇

𝑚
(𝑡) − 𝑇

𝑚−1
(𝑡) , 𝑚 = 1, 2, . . . .

(13)

Note that, in dealing with Chebyshev wavelets, the weight
function 𝑤(𝑡) has to be dilated and translated as follows:

𝑤
𝑛,𝑘
(𝑡) = 𝑤 (2

𝑘+1
𝑡 − 2𝑛 − 1) (14)

in order to get orthogonal wavelets.

2.2. Function Approximation. A function 𝑢(𝑡) ∈ 𝐿
2

𝑤
[0, 1]

(where 𝑤(𝑡) = 𝑤(2𝑡 − 1)) may be expanded as

𝑢 (𝑡) =

∞

∑

𝑛=0

∞

∑

𝑚=0

𝑐
𝑛,𝑚
𝜓
𝑛,𝑚
(𝑡) , (15)

where 𝑐
𝑛,𝑚

= (𝑢(𝑡), 𝜓
𝑛,𝑚
(𝑡))
𝑤
𝑛,𝑘

, in which (⋅, ⋅) denotes the
inner product in 𝐿2

𝑤
[0, 1]. If we consider truncated series in

(15), we obtain

𝑢 (𝑡) =

2
𝑘

−1

∑

𝑛=0

𝑀

∑

𝑚=0

𝑐
𝑛,𝑚
𝜓
𝑛,𝑚
(𝑡) = 𝐶

𝑇
Ψ (𝑡) , (16)

where 𝐶 and Ψ(𝑡) are 2𝑘(𝑀 + 1) × 1matrices given by

𝐶 = [𝑐
0,0
, 𝑐
0,1
, . . . , 𝑐

0,𝑀
, 𝑐
1,0
, 𝑐
1,1
, . . . , 𝑐

1,𝑀
, . . . ,

𝑐
2
𝑘
−1,0
, 𝑐
2
𝑘
−1,1
, . . . , 𝑐

2
𝑘
−1,𝑀

]
𝑇

,

Ψ (𝑡) = [𝜓
0,0
, 𝜓
0,1
, . . . , 𝜓

0,𝑀
, 𝜓
1,0
, 𝜓
1,1
, . . . , 𝜓

1,𝑀
, . . . ,

𝜓
2
𝑘
−1,0
, 𝜓
2
𝑘
−1,1
, . . . , 𝜓

2
𝑘
−1,𝑀

]
𝑇

.

(17)

2.3. Operational Matrix of Derivative (OMD). The derivative
of the vector Ψ(𝑡), which is defined in (17), can be expressed
by

𝑑

𝑑𝑡

𝜓 (𝑡) = 𝐷𝜓 (𝑡) , (18)

where 𝐷 is 2𝑘(𝑀 + 1) × 2
𝑘
(𝑀 + 1) operational matrix of

derivative defined as follows:

𝐷 =

[

[

[

[

[

𝐸 0 ⋅ ⋅ ⋅ 0

0 𝐸 ⋅ ⋅ ⋅ 0

...
... d

...
0 0 0 𝐸

]

]

]

]

]

, (19)

in which 𝐸 is (𝑀+1)× (𝑀+1)matrix and its (𝑖, 𝑗)th element
is defined as follows:

𝐸
𝑖,𝑗

=

{
{

{
{

{

2
𝑘+2
𝑚

√

𝛾
𝑖−1

𝛾
𝑗−1

,

𝑖 = 2, . . . , (𝑀 + 1) , 𝑗 = 1, . . . , 𝑗 − 1;

(𝑖 + 𝑗) is odd,
0, otherwise,

(20)

where

𝛾
𝑛
= {

2, 𝑛 = 0,

1, 𝑛 ≥ 1.

(21)

The method of calculation of𝐷 is illustrated in [37].

Corollary 1. The operational matrix for nth derivative can be
obtained using (18) as

𝑑
𝑛
Ψ (𝑡)

𝑑𝑥
𝑛
= 𝐷
𝑛
Ψ (𝑡) , (22)

where𝐷𝑛 is the 𝑛th power of matrix 𝐷.

3. Convergence Analysis

Lemma 2. If the Chebyshev wavelet expansion of a continuous
function 𝑢(𝑡) converges uniformly, then the Chebyshev wavelet
expansion converges to the function 𝑢(𝑡).

Proof. Suppose the Chebyshev wavelet expansion of the
continuous function 𝑢(𝑡) converges to function V(𝑡)

V (𝑡) =
2
𝑘−1

∑

𝑛=1

𝑀

∑

𝑚=0

𝑐
𝑛𝑚
𝜓
𝑛𝑚
(𝑡) , (23)

where 𝑐
𝑛,𝑚

= (𝑢(𝑡), 𝜓
𝑛,𝑚
(𝑡))
𝑤
𝑛,𝑘

. Multiply both sides of (23)
by 𝜓
𝑟,𝑠
(𝑡)𝑤
𝑟,𝑘
(𝑡), where 𝑟 and 𝑠 are fixed. Due to the uniform

convergence, we can then integrate termwise on interval [0, 1]

∫

1

0

V (𝑡) 𝜓
𝑟,𝑠
(𝑡) 𝑤
𝑟,𝑘
𝑑𝑡

=

2
𝑘−1

∑

𝑛=1

𝑀

∑

𝑚=0

∫

1

0

𝑐
𝑛𝑚
𝜓
𝑛𝑚
(𝑡) 𝜓
𝑟,𝑠
(𝑡) 𝑤
𝑟,𝑘
𝑑𝑡.

(24)

By the orthonormality of wavelet basis functions, we have

∫

1

0

V (𝑡) 𝜓
𝑟,𝑠
(𝑡) 𝑤
𝑟,𝑘
𝑑𝑡 = 𝑐

𝑟,𝑠
. (25)

Thus (V(𝑡), 𝜓
𝑛,𝑚
(𝑡))
𝑤
𝑛,𝑘

= 𝑐
𝑛,𝑚

for 𝑛 = 1, 2, . . . , 2𝑘−1 and 𝑚 =
0, 1, . . . ,𝑀; consequently, 𝑢(𝑡) and V(𝑡) have the same Fourier
expansions with Chebyshev wavelet basis; therefore, 𝑢(𝑡) =
V(𝑡), for 𝑡 ∈ [0, 1] [38].

Theorem 3. A function 𝑢(𝑡) ∈ 𝐿2
𝑤
𝑛,𝑘

([0, 1]), with bounded
second derivative, say |𝑢󸀠󸀠(𝑡)| ≤ 𝐵, can be expanded as
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Table 1: Obtained absolute errors of Troesch’s problem for 𝜆 = 0.5.

𝑡

Chebyshev wavelet Laplace HPM HAM Spline VIM
𝑀 = 4, 𝑘 = 1 [9] [7] [18] [10] [7]

0.1 7.6 × 10
−4

7.7 × 10
−4

8.2 × 10
−4

7.7 × 10
−4

7.7 × 10
−4

4.9 × 10
−3

0.2 1.5 × 10
−3

1.5 × 10
−3

1.6 × 10
−3

1.5 × 10
−3

1.5 × 10
−3

9.7 × 10
−3

0.3 2.1 × 10
−3

2.1 × 10
−3

2.3 × 10
−3

2.1 × 10
−3

2.1 × 10
−3

1.4 × 10
−2

0.4 2.7 × 10
−3

2.7 × 10
−3

2.9 × 10
−3

2.7 × 10
−3

2.7 × 10
−3

1.9 × 10
−2

0.5 3.0 × 10
−3

3.0 × 10
−3

3.2 × 10
−3

3.0 × 10
−3

3.0 × 10
−3

2.3 × 10
−2

0.6 3.1 × 10
−3

3.1 × 10
−3

3.4 × 10
−3

3.1 × 10
−3

3.1 × 10
−3

2.8 × 10
−2

0.7 3.0 × 10
−3

3.0 × 10
−3

3.2 × 10
−3

3.0 × 10
−3

3.0 × 10
−3

3.2 × 10
−2

0.8 2.4 × 10
−3

2.4 × 10
−3

2.7 × 10
−3

2.4 × 10
−3

2.4 × 10
−3

3.6 × 10
−2

0.9 1.5 × 10
−3

1.5 × 10
−3

1.6 × 10
−3

1.5 × 10
−3

1.5 × 10
−3

4.0 × 10
−2

Table 2: Obtained absolute errors of Troesch’s problem for 𝜆 = 1.0.

𝑡

Chebyshev wavelet Laplace HPM HAM Spline VIM
𝑀 = 4, 𝑘 = 1 [9] [7] [18] [10] [7]

0.1 2.8 × 10
−3

2.9 × 10
−3

3.6 × 10
−3

2.9 × 10
−3

2.8 × 10
−3

1.8 × 10
−2

0.2 5.6 × 10
−3

5.9 × 10
−3

7.1 × 10
−2

5.7 × 10
−3

5.6 × 10
−3

3.6 × 10
−2

0.3 8.2 × 10
−3

8.2 × 10
−3

1.0 × 10
−2

8.3 × 10
−3

8.2 × 10
−3

5.5 × 10
−2

0.4 1.0 × 10
−2

1.0 × 10
−2

1.3 × 10
−2

1.0 × 10
−2

1.0 × 10
−2

7.4 × 10
−2

0.5 1.2 × 10
−2

1.2 × 10
−2

1.6 × 10
−2

1.2 × 10
−2

1.2 × 10
−2

9.3 × 10
−2

0.6 1.3 × 10
−2

1.3 × 10
−2

1.7 × 10
−2

1.3 × 10
−2

1.3 × 10
−2

1.1 × 10
−1

0.7 1.3 × 10
−2

1.3 × 10
−2

1.7 × 10
−2

1.2 × 10
−2

1.3 × 10
−2

1.3 × 10
−1

0.8 1.1 × 10
−2

1.1 × 10
−2

1.5 × 10
−2

1.2 × 10
−2

1.1 × 10
−2

1.5 × 10
−1

0.9 7.4 × 10
−3

7.4 × 10
−3

9.7 × 10
−3

7.4 × 10
−3

7.4 × 10
−3

1.7 × 10
−1

an infinite sum of Chebyshev wavelets, and the series converges
uniformly to 𝑢(𝑡); that is,

𝑢 (𝑡) =

∞

∑

𝑛=1

∞

∑

𝑚=0

𝑐
𝑛𝑚
𝜓
𝑛𝑚
(𝑡) . (26)

Proof. We have

𝑐
𝑛,𝑚
= (𝑢 (𝑡) , 𝜓

𝑛,𝑚
(𝑡))
𝑤
𝑛,𝑘

= ∫

1

0

𝑢 (𝑡) 𝜓
𝑛𝑚
(𝑡) 𝑤
𝑛,𝑘
(𝑡) 𝑑𝑡

= ∫

𝑛/2
𝑘−1

𝑛−1/2
𝑘−1

2
𝑘/2
𝑝
𝑚
𝑢 (𝑡) 𝑇

𝑚
(2
𝑘
𝑡 − 2𝑛 + 1)

× 𝑤 (2
𝑘
𝑡 − 2𝑛 + 1) 𝑑𝑡.

(27)

For𝑚 > 1, by substituting 2𝑘𝑡 − 2𝑛 + 1 = cos𝛼, it yields

𝑐
𝑛𝑚
=

1

2
𝑘/2
∫

𝜋

0

𝑢 (

cos𝛼 + 2𝑛 − 1
2
𝑘

)√
2

𝜋

cos𝑚𝛼𝑑𝛼. (28)

Using integration by parts, we get

𝑐
𝑛𝑚
=

√2

2
𝑘/2
√𝜋

𝑢(

cos𝛼 + 2𝑛 − 1
2
𝑘

) (

sin𝑚𝛼
𝑚

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜋

0

+

√2

2
3𝑘/2
𝑚√𝜋

∫

𝜋

0

𝑢
󸀠
(

cos𝛼 + 2𝑛 − 1
2
𝑘

) sin𝑚𝛼 sin𝛼𝑑𝛼.

(29)

The first part is zero; therefore,

𝑐
𝑛𝑚
=

√2

2
3𝑘/2
𝑚√𝜋

∫

𝜋

0

𝑢
󸀠
(

cos𝛼 + 2𝑛 − 1
2
𝑘

) sin𝑚𝛼 sin𝛼𝑑𝛼.

(30)

Using integration by parts again, it yields

𝑐
𝑛𝑚
=

1

2
3𝑘/2
𝑚√2𝜋

×𝑢
󸀠
(

cos𝛼+2𝑛−1
2
𝑘

) (

sin (𝑚−1) 𝛼
𝑚−1

−

sin (𝑚+1) 𝛼
𝑚+1

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜋

0

+

1

2
5𝑘/2
𝑚√2𝜋

∫

𝜋

0

𝑢
󸀠󸀠
((

cos𝛼 + 2𝑛 − 1
2
𝑘

) 𝑟
𝑚
(𝛼)) 𝑑𝛼,

(31)

where

𝑟
𝑚
(𝛼) = sin𝛼( sin (𝑚 − 1) 𝛼

𝑚 − 1

−

sin (𝑚 + 1) 𝛼
𝑚 + 1

) . (32)
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Table 3: Numerical solution of Troesch’s problem for 𝜆 = 5.

𝑡 Fortran code B-spline
|Error| Chebyshev wavelet

|Error|
[10] 𝑀 = 9, 𝑘 = 3

0.0 0.00000000 0.00000000 0.0 0.00000000 0.0

0.2 0.01075342 0.01002027 7.3 × 10
−3

0.01075412 7.0 × 10
−7

0.4 0.03320051 0.03099793 2.2 × 10
−3

0.03320271 2.2 × 10
−6

0.8 0.25821664 0.24170496 1.4 × 10
−2

0.25823492 1.8 × 10
−5

0.9 0.45506034 0.42461830 3.0 × 10
−2

0.45508401 2.4 × 10
−5

1.0 1.00000000 1.00000000 0.0 1.00000000 0.0

Thus, we get

󵄨
󵄨
󵄨
󵄨
𝑐
𝑛𝑚

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

2
5𝑘/2
𝑚√2𝜋

∫

𝜋

0

𝑢
󸀠󸀠
(

cos𝛼 + 2𝑛 − 1
2
𝑘

) 𝑟
𝑚
(𝛼) 𝑑𝛼

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ (

1

2
5𝑘/2
𝑚√2𝜋

)∫

𝜋

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑢
󸀠󸀠
(

cos𝛼 + 2𝑛 − 1
2
𝑘

) 𝑟
𝑚
(𝛼)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝛼

≤

𝐵

2
5𝑘/2
𝑚√2𝜋

∫

𝜋

0

󵄨
󵄨
󵄨
󵄨
𝑟
𝑚
(𝛼)
󵄨
󵄨
󵄨
󵄨
𝑑𝛼.

(33)

However

∫

𝜋

0

󵄨
󵄨
󵄨
󵄨
𝑟
𝑚
(𝛼)
󵄨
󵄨
󵄨
󵄨
𝑑𝛼

= ∫

𝜋

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin𝛼( sin (𝑚 − 1) 𝛼
𝑚 − 1

−

sin (𝑚 + 1) 𝛼
𝑚 + 1

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝛼

≤ ∫

𝜋

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin𝛼 sin (𝑚 − 1) 𝛼
𝑚 − 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin𝛼 sin (𝑚 + 1) 𝛼
𝑚 + 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝛼

≤

2𝑚𝜋

𝑚
2
− 1

.

(34)

Since 𝑛 ≤ 2𝑘−1, we obtain

󵄨
󵄨
󵄨
󵄨
𝑐
𝑛𝑚

󵄨
󵄨
󵄨
󵄨
≤

√2𝜋𝐵

(2𝑛)
5/2
(𝑚
2
− 1)

. (35)

Now, if𝑚 = 1, by using (30), we have

󵄨
󵄨
󵄨
󵄨
𝑐
𝑛1

󵄨
󵄨
󵄨
󵄨
<

√2𝜋

(2𝑛)
3/2

max
0≤𝑡≤1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
. (36)

It is mentioned in [39] that {𝜓
𝑛0
}
∞

𝑛=1
form an orthogonal

system constructed by Haar scaling function with respect to
the weight function𝑤(𝑡), and so∑∞

𝑛=1
𝑐
𝑛0
𝜓
𝑛0
(𝑡) is convergent.

Hence, we will have
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∞

∑

𝑛=1

∞

∑

𝑚=0

𝑐
𝑛𝑚
𝜓
𝑛𝑚
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∞

∑

𝑛=1

𝑐
𝑛0
𝜓
𝑛0
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

∞

∑

𝑛=1

∞

∑

𝑚=1

󵄨
󵄨
󵄨
󵄨
𝑐
𝑛𝑚

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝜓
𝑛𝑚
(𝑡)
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∞

∑

𝑛=1

𝑐
𝑛0
𝜓
𝑛0
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

∞

∑

𝑛=1

∞

∑

𝑚=1

󵄨
󵄨
󵄨
󵄨
𝑐
𝑛𝑚

󵄨
󵄨
󵄨
󵄨
< ∞.

(37)

Therefore, in view of Lemma 2, the series
∑
∞

𝑛=1
∑
∞

𝑚=1
𝑐
𝑛𝑚
𝜓
𝑛𝑚
(𝑡) converges to 𝑢(𝑡) uniformly.

4. The Chebyshev Wavelet Analysis Method

4.1. Troesch’s Problem. Troesch’s problems (1) can be consid-
ered as follows:

𝑢
󸀠
= 𝑤,

𝑤
󸀠
= 𝜆 sinh (𝜆𝑢) ,

𝑢 (0) = 0, 𝑢 (1) = 1.

(38)

Then the Jacobian matrix of system (38) is given by

𝐽 (𝑢, 𝑤) = [

0 1

𝜆
2 cosh (𝜆𝑢) 0] . (39)

Therefore, the eigenvalues of the Jacobian matrix at the end
points of the interval [0, 1] are

𝜆
󸀠

(0) = ±𝜆, 𝜆
󸀠

(1) = ±𝜆√cosh (𝜆). (40)

If we choose large 𝜆, we will have large eigenvalues; for
example, if 𝜆 = 10, then the eigenvalue becomes 𝜆󸀠 = ±1049.
On the other hand, the Jacobianmatrix 𝐽 is normal if and only
if 𝜆2 cosh(𝜆𝑢) = 1. This equality is satisfied only for relatively
small values of 𝜆. This clarifies why conventional methods,
such as finite differences, are not convenient for large values of
𝜆 [10]. To solve Troesch’s problems where there exist, a strong
nonlinear term sinh(𝜆𝑢) and boundary layer only at the right
endpoint (𝜆 > 1) [10], we proposeChebyshevwavelet analysis
method especially to handle larger eigenvalues.

Consider the Troesch nonlinear boundary value problem

𝑢
󸀠󸀠

(𝑡) + 𝜆 sinh (𝜆𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) , (41)

with the boundary conditions

𝑢 (0) = 0, 𝑢 (1) = 1. (42)

In order to solve the problem, we first approximate all
functions 𝑢(𝑡) and 𝑢󸀠󸀠(𝑡) using basis functions Ψ(𝑡) as

𝑢 (𝑡) = 𝐶
𝑇
Ψ (𝑡) , 𝑢

󸀠󸀠

(𝑡) = 𝐶
𝑇
𝐷
2
Ψ (𝑡) . (43)

Substituting (43) in (41), we obtain

𝐶
𝑇
𝐷
2
Ψ (𝑡) − 𝜆 sinh (𝜆𝐶𝑇Ψ (𝑡)) = 0. (44)
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Table 4: Numerical solution of Troesch’s problem for 𝜆 = 10.

𝑡 Present method B-spline,𝑁 = 790 𝑦
1750
(𝑥) 𝑦

1
(𝑥) =

4

𝜇

tanh−1(𝜇
1
(𝑥)) 𝑦

2
(𝑥) =

4

𝜇

tanh−1(𝜇
2
(𝑥))

𝑀 = 20, 𝑘 = 5 [10] [12] [13] [13]
0.00 0 0 0 0 0
0.100 4.2110 × 10

−5
4.2097 × 10

−5
4.2113 × 10

−5
4.2112 × 10

−5
4.2112 × 10

−5

0.200 1.2996 × 10
−4

1.2992 × 10
−4

1.2997 × 10
−4

1.2996 × 10
−4

1.2996 × 10
−4

0.300 3.5896 × 10
−4

3.5886 × 10
−4

3.5899 × 10
−4

3.5898 × 10
−4

3.5898 × 10
−4

0.400 9.7785 × 10
−4

9.7762 × 10
−4

9.7792 × 10
−4

9.7790 × 10
−4

9.7790 × 10
−4

0.500 2.6589 × 10
−3

2.6583 × 10
−3

2.6591 × 10
−3

2.6590 × 10
−3

2.6590 × 10
−3

0.600 7.2286 × 10
−3

7.2272 × 10
−3

7.2291 × 10
−3

7.2289 × 10
−3

7.2289 × 10
−3

0.700 1.9663 × 10
−2

1.9660 × 10
−2

1.9664 × 10
−2

1.9664 × 10
−2

1.9664 × 10
−2

0.800 5.3728 × 10
−2

5.3720 × 10
−2

5.3732 × 10
−2

5.3730 × 10
−2

5.3730 × 10
−2

0.900 1.5210 × 10
−1

1.5209 × 10
−1

1.5212 × 10
−1

1.5211 × 10
−1

1.5211 × 10
−1

0.925 2.0199 × 10
−1

2.0199 × 10
−1

2.0201 × 10
−1

2.0201 × 10
−1

2.0201 × 10
−1

0.950 2.7625 × 10
−1

2.7623 × 10
−1

2.7628 × 10
−1

2.7627 × 10
−1

2.7627 × 10
−1

0.970 3.7224 × 10
−1

3.7223 × 10
−1

3.7229 × 10
−1

3.7226 × 10
−1

3.7226 × 10
−1

0.980 4.4822 × 10
−1

4.4820 × 10
−1

4.4825 × 10
−1

4.4823 × 10
−1

4.4823 × 10
−1

0.990 5.7407 × 10
−1

5.7405 × 10
−1

5.7411 × 10
−1

5.7408 × 10
−1

5.7408 × 10
−1

0.995 6.9011 × 10
−1

6.9010 × 10
−1

6.9018 × 10
−1

6.9011 × 10
−1

6.9011 × 10
−1

0.997 7.6577 × 10
−1

7.6576 × 10
−1

7.6587 × 10
−1

7.6577 × 10
−1

7.6577 × 10
−1

0.998 8.1802 × 10
−1

8.1802 × 10
−1

8.1816 × 10
−1

8.1803 × 10
−1

8.1803 × 10
−1

0.999 8.8899 × 10
−1

8.8899 × 10
−1

8.8917 × 10
−1

8.8899 × 10
−1

8.8899 × 10
−1

1.000 1.0000 1.0000 1.0000 9.9999 9.9999

Now,we have 2𝑘(𝑀+1)−2 nonlinear equations by collocating
(41) at 2𝑘(𝑀 + 1) − 2 suitable collocation, points. From
boundary conditions we also get two equations. So we have
a nonlinear system of 2𝑘(𝑀 + 1) equations with the same
number of unknowns which can be solved by Newton’s
iterative method to obtain the vector 𝐶 and consequently the
approximated solution 𝑢(𝑡).

4.2. Bratu’s Problem. Consider the Bratu nonlinear boundary
value problem

𝑢
󸀠󸀠

(𝑡) + 𝜆𝑒
𝑢(𝑡)
= 0, 𝑡 ∈ (0, 1) , (45)

with the boundary conditions

𝑢 (0) = 0, 𝑢 (1) = 0, (46)

or initial conditions

𝑢 (0) = 0, 𝑢
󸀠

(0) = 0. (47)

In order to solve the problem, we first approximate all
functions 𝑢(𝑡), 𝑢󸀠(𝑡), and 𝑢󸀠󸀠(𝑡) using basis functions Ψ(𝑡) as

𝑢 (𝑡) = 𝐶
𝑇
Ψ (𝑡) ,

𝑢
󸀠

(𝑡) = 𝐶
𝑇
𝐷Ψ (𝑡) , 𝑢

󸀠󸀠

(𝑡) = 𝐶
𝑇
𝐷
2
Ψ (𝑡) .

(48)

Substituting (48) in (45), we obtain

𝐶
𝑇
𝐷
2
Ψ (𝑡) + 𝜆𝑒

𝐶
𝑇

Ψ(𝑡)
= 0. (49)

Now,we have 2𝑘(𝑀+1)−2 nonlinear equations by collocating
(49) at 2𝑘(𝑀 + 1) − 2 suitable collocation points. From
boundary conditions, or initial conditions, we also get two
equations. So we have a nonlinear system of 2𝑘(𝑀 + 1)

equations with the same number of unknowns which can be
solved by Newton’s iterative method to obtain the vector 𝐶
and consequently the approximated solution 𝑢(𝑡).

5. Numerical Examples

In this section, we solve Troesch’s and Bratu’s problems for
different values of the parameter𝜆using the computer algebra
system Maple and make a comparison between our results
and those ones reported in the literature to confirm the
efficiency and accuracy of our method.

Example 1. Troesch’s problem for 𝜆 = 0.5, 1, and 10.
In Tables 1 and 2, the absolute errors in solutions obtained

by the introducedmethod for 𝜆 = 0.5 and 𝜆 = 1, respectively,
are compared with those ones reported by other existing
methods. We observe that the wavelet analysis method with
only a few number of basis functions is comparable to
Laplace, HAM, and spline methods but is slightly better
than perturbation method and much better than variational
method in terms of accuracy.

Due to the nonlinear term sinh(𝜆𝑢(𝑡)), which is not
analytic, some methods like Laplace, variational iteration
method, and homotopy are not able to solve the Troesch
problem when 𝜆 ≥ 5. In Table 3, the numerical solution for
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Table 5: Obtained absolute errors for 𝜆 = 1.

𝑡

Present method NPSM LGSM Decomposition Laplace B-spline
𝑀 = 10, 𝑘 = 3 [31] [35] [6] [30] [32]

0.1 1.23 × 10
−19

5.77 × 10
−10

7.51 × 10
−7

2.68 × 10
−3

1.98 × 10
−6

2.98 × 10
−6

0.2 3.13 × 10
−19

2.47 × 10
−10

1.02 × 10
−6

2.02 × 10
−3

3.94 × 10
−6

5.46 × 10
−6

0.3 6.20 × 10
−19

4.56 × 10
−11

9.05 × 10
−7

1.52 × 10
−4

5.85 × 10
−6

7.33 × 10
−6

0.4 7.80 × 10
−19

9.64 × 10
−11

5.24 × 10
−7

2.20 × 10
−3

7.70 × 10
−6

8.50 × 10
−6

0.5 7.70 × 10
−19

1.46 × 10
−10

5.07 × 10
−9

3.01 × 10
−3

9.47 × 10
−6

8.89 × 10
−6

0.6 7.80 × 10
−19

9.64 × 10
−11

5.14 × 10
−7

2.20 × 10
−3

1.11 × 10
−5

8.50 × 10
−6

0.7 6.20 × 10
−19

4.56 × 10
−11

8.95 × 10
−7

1.52 × 10
−4

1.26 × 10
−5

7.33 × 10
−6

0.8 3.13 × 10
−19

2.47 × 10
−10

1.01 × 10
−6

2.02 × 10
−3

1.35 × 10
−5

5.46 × 10
−6

0.9 1.22 × 10
−19

5.77 × 10
−10

7.42 × 10
−7

2.68 × 10
−3

1.20 × 10
−5

2.98 × 10
−6

𝜆 = 5 obtained by the current method is compared with the
numerical approximation of the exact solutions given by a
Fortran code called TWPBVP and B-spline method [10]. It
can be seen that our obtained results are muchmore accurate
than those obtained by B-spline method.

In Table 4, the numerical solution obtained by the current
method using𝑀 = 20 and 𝑘 = 5 (672-term approximant),
for 𝜆 = 10, is compared with the results obtained by B-
spline method over a nonuniform mesh using 𝑛 = 790

mesh points [10], with those in [12] computed using 1750-
term approximant, and with those obtained by [13] using
a method based on the variational iteration method and
variable transformation. It can be seen that the results
obtained by the present method with much lesser number of
terms to approximate the solution are compatible and in well
agreement with those ones obtained by Chang [13].

Example 2. Consider the Bratu problem for 𝜆 = 1.
We solve the problem by applying the technique

described in Section 4 with𝑀 = 10 and 𝑘 = 3. The absolute
errors in solutions are tabulated in Table 5. As can be seen
in Table 5, only a small number of Chebyshev wavelet basis
functions are needed to get the approximate solution which is
in full agreement with the exact solution up to 18 digits while,
using other methods, we can find a numerical approximation
to the exact solution which is the same at most in 10 digits.
We display the exact and obtained solutions in Figure 1.
Absolute errors in solutions are plotted in Figure 2.

Example 3. Consider the Bratu problem for 𝜆 = 2.
We solve the problem with 𝑀 = 10 and 𝑘 = 3.

The absolute errors in solutions are tabulated in Table 6.
We display the exact and obtained solutions in Figure 3.
The plot of absolute errors in solutions in Figure 4 confirms
the priority of our method over other methods in terms of
efficiency and accuracy.

Example 4. Consider the Bratu problem for 𝜆 = 3.51.
In this example, we set𝑀 = 10 and 𝑘 = 3. The absolute

errors in solutions are tabulated in Table 7. As can be seen
in Table 7, when 𝜆 is close to the critical value 𝜆

𝑐
, some of

the mentioned methods are not able to handle the problem

t

0 0.2 0.4 0.6 0.8 1

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

Figure 1: Plot of exact and approximated solutions for 𝜆 = 1.

very well. However, using wavelet analysis method, we get the
approximate solutionwhich ismuchmore accurate than non-
polynomial spline method and Lie-group shooting method.
We display the exact and obtained solutions in Figure 5.
Absolute errors in solutions are illustrated in Figure 6.

The maximum absolute errors in solutions for different
values of𝑀, 𝑘, and 𝜆 are tabulated in Table 8. According to
Table 8, we can conclude that more accurate results can be
obtained by increasing the values of𝑀 and 𝑘 properly.

6. Conclusion

The well-known nonlinear Troesch and Bratu problems arise
in a different variety of applications, and many researchers
have drawn attention to solve them. The difficulty in this
type of problems, due to existing strong nonlinear terms,
is overcome here. The main characteristic of the proposed
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Table 6: Obtained absolute errors for 𝜆 = 2.

𝑡

Present method NPSM LGSM Decomposition Laplace B-spline
𝑀 = 10, 𝑘 = 3 [31] [35] [6] [30] [32]

0.1 2.03 × 10
−18

9.71 × 10
−9

4.03 × 10
−6

1.52 × 10
−2

2.13 × 10
−3

1.72 × 10
−5

0.2 9.58 × 10
−18

1.41 × 10
−8

5.70 × 10
−6

1.47 × 10
−2

4.21 × 10
−3

3.26 × 10
−5

0.3 2.86 × 10
−17

1.98 × 10
−8

5.22 × 10
−6

5.89 × 10
−3

6.19 × 10
−3

4.49 × 10
−5

0.4 5.44 × 10
−17

2.42 × 10
−8

3.07 × 10
−6

3.25 × 10
−3

8.00 × 10
−3

5.28 × 10
−5

0.5 6.87 × 10
−17

2.60 × 10
−8

1.46 × 10
−8

6.98 × 10
−3

9.60 × 10
−3

5.56 × 10
−5

0.6 5.44 × 10
−17

2.42 × 10
−8

3.05 × 10
−6

3.25 × 10
−3

1.09 × 10
−3

5.28 × 10
−5

0.7 2.86 × 10
−17

1.98 × 10
−8

5.19 × 10
−6

5.89 × 10
−3

1.19 × 10
−2

4.49 × 10
−5

0.8 9.58 × 10
−18

1.41 × 10
−8

5.68 × 10
−6

1.47 × 10
−2

1.24 × 10
−2

3.26 × 10
−5

0.9 2.03 × 10
−18

9.71 × 10
−9

4.01 × 10
−6

1.52 × 10
−2

1.09 × 10
−2

1.72 × 10
−5

Table 7: Obtained absolute errors for 𝜆 = 3.51.

𝑡

Present method NPSM LGSM B-spline
𝑀 = 10, 𝑘 = 3 [31] [35] [32]

0.1 2.34 × 10
−10

6.61 × 10
−6

4.45 × 10
−5

3.84 × 10
−2

0.2 3.20 × 10
−10

5.83 × 10
−6

7.12 × 10
−5

7.48 × 10
−2

0.3 7.88 × 10
−10

6.19 × 10
−6

7.30 × 10
−5

1.06 × 10
−1

0.4 1.11 × 10
−9

6.89 × 10
−6

4.47 × 10
−5

1.27 × 10
−1

0.5 1.22 × 10
−9

7.31 × 10
−6

6.76 × 10
−7

1.35 × 10
−1

0.6 1.11 × 10
−9

6.89 × 10
−6

4.56 × 10
−5

1.27 × 10
−1

0.7 7.88 × 10
−10

6.19 × 10
−6

7.20 × 10
−5

1.06 × 10
−1

0.8 3.20 × 10
−10

5.83 × 10
−6

7.05 × 10
−5

7.48 × 10
−2

0.9 2.34 × 10
−10

6.61 × 10
−6

4.41 × 10
−5

3.84 × 10
−2

t

0 0.2 0.4 0.6 0.8 1

8 × 10
−19

7 × 10
−19

6 × 10
−19

5 × 10
−19

4 × 10
−19

3 × 10
−19

2 × 10
−19

1 × 10
−19

0

Figure 2: Plot of absolute errors for 𝜆 = 1.

method is reducing the given problems to those of solving
a system of algebraic equations, thus greatly simplifying the
problems. Sparseness of the coefficients matrix of algebraic
equations makes it computationally efficient to solve these
problems using the current method. It is also seen that

t

0
0

0.2 0.4 0.6

0.2

0.1

0.3

0.8 1

Figure 3: Plot of exact and approximated solutions for 𝜆 = 2.

increasing the number of subintervals or the number of
collocation points in subintervals results in improving the
accuracy. Numerical results confirm that ourmethod ismuch
better than other reported ones in the literature in the sense
of accuracy and efficiency. According to Tables 1–4, our
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Table 8: Obtained maximum absolute errors.

𝑀 = 8, 𝑘 = 1 𝑀 = 8, 𝑘 = 2 𝑀 = 8, 𝑘 = 3 𝑀 = 10, 𝑘 = 1 𝑀 = 10, 𝑘 = 2 𝑀 = 10, 𝑘 = 3

𝜆 = 1 2.5 × 10
−10

5.0 × 10
−12

3.0 × 10
−15

1.2 × 10
−12

8.0 × 10
−16

8.0 × 10
−19

𝜆 = 2 1.8 × 10
−8

1.5 × 10
−10

1.6 × 10
−13

1.5 × 10
−10

7.0 × 10
−14

6.9 × 10
−17

𝜆 = 3.51 3.0 × 10
−5

1.8 × 10
−8

1.0 × 10
−9

4.0 × 10
−7

2.0 × 10
−9

1.2 × 10
−9

t

0 0.2 0.4 0.6 0.8 1

6 × 10
−17

5 × 10
−17

4 × 10
−17

3 × 10
−17

2 × 10
−17

1 × 10
−17

0

Figure 4: Plot of absolute errors for 𝜆 = 2.

t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 5: Plot of exact and approximated solutions for 𝜆 = 3.51.

approach is applicable to solve Troesch’s problem especially
when 𝜆 is large while some other methods fail to do so. As
shown in Tables 5–8, we can obtain the results for Bratu’s
problem only by using a small number of Chebyshev wavelet
basis functions. When 𝜆 is close to the critical value 𝜆

𝑐
,

t

0 0.2 0.4 0.6 0.8 1

1.2 × 10
−9

1 × 10
−9

8 × 10
−10

6 × 10
−10

4 × 10
−10

2 × 10
−10

Figure 6: Plot of absolute errors for 𝜆 = 3.51.

the wavelet analysis method was also accurate to the ninth
order, whereas other methods especially the B-spline method
yielded poorer results.
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