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Recently, a closed-form approximated expression was derived by the same author for the achievable residual intersymbol
interference (ISI) case that depends on the step-size parameter, equalizer’s tap length, input signal statistics, signal to noise ratio
(SNR), and channel power and is valid for fractional Gaussian noise (fGn) input where the Hurst exponent is in the region of
0.5 ≤ 𝐻 < 1. But this expression was obtained for the blind adaptive case and cannot be applied to the nonblind adaptive version.
Up to now, the achievable residual ISI for the non-blind adaptive case could be obtained only via simulation. In this paper, we
derive a closed-form approximated expression (or an upper limit) for the residual ISI obtained by non-blind adaptive equalizers
valid for fractional Gaussian noise (fGn) input where the Hurst exponent is in the region of 0.5 ≤ 𝐻 < 1. This new obtained
expression depends on the step-size parameter, equalizer’s tap length, input signal statistics, SNR, channel power, and the Hurst
exponent parameter. Simulation results indicate that there is a high correlation between the calculated results (obtained from the
new obtained expression for the residual ISI) and those obtained from simulating the system.

1. Introduction

We consider a nonblind deconvolution problem in which we
observe the output of an unknown, possibly nonminimum
phase, linear system (single-input-single-output (SISO) FIR
system) from which we want to recover its input (source)
using an adjustable linear filter (equalizer) and training
symbols. During transmission, a source signal undergoes a
convolutive distortion between its symbols and the channel
impulse response. This distortion is referred to as ISI [1,
2]. It is well known that ISI is a limiting factor in many
communication environments where it causes an irreducible
degradation of the bit error rate thus imposing an upper limit
on the data symbol rate. In order to overcome the ISI problem,
an equalizer is implemented in those systems [1–12].

In this paper, we consider the nonblind adaptive equalizer
where training sequences are needed to generate the error
that is fed into the adaptive mechanism which updates the
equalizer’s taps [9–12].Thenonblind adaptive approach yields
in most cases a better equalization performance considering
convergence speed and equalization quality compared with
the blind adaptive version [6]. In addition, the blind adaptive

version has a higher computational cost compared with its
nonblind approach [6].

The equalization performance from the residual ISI point
of view depends on the channel characteristics, on the added
noise, on the step-size parameter used in the adaptation
process, on the equalizer’s tap length and on the input signal
statistics [13, 14]. Fast convergence speed and reaching a
residual ISI where the eye diagram is considered to be open
(for the communication case) are the main requirements
from a blind or nonblind equalizer. Fast convergence speed
may be obtained by increasing the step-size parameter. But,
increasing the step-size parameter may lead to a higher resid-
ual ISI which might not meet the system’s requirements any
more. Recently [2], a closed-form approximated expression
was derived for the achievable residual ISI case that depends
on the step-size parameter, equalizer’s tap length, input signal
statistics, SNR, Hurst exponent, and channel power. But this
expression is valid only for the blind adaptive case and cannot
be used for the nonblind version.

Up to now, the achievable residual ISI for the nonblind
adaptive case (for the noisy or noiseless case) could be
obtained only via simulation. Thus, the system designer had
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to spend a lot of time in simulating the whole system in
order to find the best values for the step-size parameter and
equalizer’s tap length that meet the system’s requirements
from the residual ISI point of view. In this paper, we derive
a closed-form approximated expression (or an upper limit)
for the residual ISI obtained by nonblind adaptive equalizers
that depends on the step-size parameter, equalizer’s tap
length, input signal statistics, SNR, channel power, and Hurst
exponent parameter. This expression is valid for fGn input
where the Hurst exponent is in the region of 0.5 ≤ 𝐻 < 1.
Please note,𝐻 = 1 is the limit case, which does not havemuch
practical sense [15–17]. It should be pointed out that a white
Gaussian process is a special case (𝐻 = 0.5) of the fractional
Gaussian noise (fGn) model [18]. FGn with 𝐻 ∈ (0.5, 1)

corresponds to the case of long-range dependency (LRD)
[18]. Thus, the new obtained expression for the achievable
residual ISI is not only valid for the special case of white
Gaussian process but also covers those cases that correspond
to the case of LRD.

The paper is organized as follows. After having described
the system under consideration in Section 2, the closed-form
approximated expression (or upper limit) for the residual ISI
is introduced in Section 3. In Section 4, simulation results are
presented, and the conclusion is given in Section 5.

2. System Description

The system under consideration is illustrated in Figure 1,
where we make the following assumptions.

(1) The input sequence 𝑥[𝑛] belongs to a two indepen-
dent quadrature carriers case constellation input with
variance 𝜎2

𝑥
, where 𝑥

𝑟
[𝑛] and 𝑥

𝑖
[𝑛] are the real and

imaginary parts of 𝑥[𝑛], respectively, and 𝜎2
𝑥
𝑟

is the
variance of 𝑥

𝑟
[𝑛].

(2) The unknown channel ℎ[𝑛] is a possibly nonmini-
mum phase linear time-invariant filter in which the
transfer function has no “deep zeros”; namely, the
zeros lie sufficiently far from the unit circle.

(3) The equalizer 𝑐[𝑛] is a tap-delay line.

(4) The noise 𝑤[𝑛] consists of 𝑤[𝑛] = 𝑤
𝑟
[𝑛] + 𝑗𝑤

𝑖
[𝑛],

where 𝑤
𝑟
[𝑛] and 𝑤

𝑖
[𝑛] are the real and imagi-

nary parts of 𝑤[𝑛], respectively, and 𝑤
𝑟
[𝑛] and 𝑤

𝑖
[𝑛]

are independent. Both 𝑤
𝑟
[𝑛] and 𝑤

𝑖
[𝑛] are frac-

tional Gaussian noises (fGn) with zero mean. Note
that 𝜎2

𝑤
𝑟

= 𝐸[𝑤
2

𝑟
[𝑛]], 𝜎2

𝑤
𝑖

= 𝐸[𝑤
2

𝑖
[𝑛]], for 𝑚 ̸= 𝑘 :

𝐸[𝑤
𝑟
[𝑛 − 𝑘]𝑤

𝑟
[𝑛 − 𝑚]] = (𝜎2

𝑤
𝑟

/2)[(|𝑚 − 𝑘| − 1)
2𝐻
−

2(|𝑚 − 𝑘|)
2𝐻
+(|𝑚 − 𝑘| + 1)

2𝐻
] and 𝐸[𝑤

𝑖
[𝑛−𝑘]𝑤

𝑖
[𝑛−

𝑚]] = (𝜎
2

𝑤
𝑖

/2)[(|𝑚 − 𝑘| − 1)
2𝐻

− 2(|𝑚 − 𝑘|)
2𝐻

+

(|𝑚 − 𝑘| + 1)
2𝐻
], where 𝐸[⋅] denotes the expectation

operator on (⋅) and𝐻 is the Hurst exponent.

(5) The variance of 𝑤[𝑛] is denoted as 𝐸[𝑤[𝑛]𝑤∗[𝑛]] =
𝜎
2

𝑤
, where 𝜎2

𝑤
= 2𝜎
2

𝑤
𝑖

= 2𝜎
2

𝑤
𝑟

and (⋅)∗ is the conjugate
operation on (⋅).

h[n] c[n]
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+

Adaptive equalizer

Figure 1: Block diagram of a baseband communication system.

The transmitted sequence 𝑥[𝑛] is sent through the chan-
nel ℎ[𝑛] and is corrupted with noise 𝑤[𝑛]. Therefore, the
equalizer’s input sequence 𝑦[𝑛]may be written as

𝑦 [𝑛] = 𝑥 [𝑛] ∗ ℎ [𝑛] + 𝑤 [𝑛] , (1)

where “∗” denotes the convolution operation. The equalized
output signal can be written as

𝑧 [𝑛] = 𝑥 [𝑛] + 𝑝 [𝑛] + 𝑤 [𝑛] , (2)

where 𝑝[𝑛] is the convolutional noise, namely, the residual
intersymbol interference (ISI) arising from the difference
between the ideal equalizer’s coefficients and those chosen in
the system and 𝑤[𝑛] = 𝑤[𝑛] ∗ 𝑐[𝑛]. The ISI is often used as
a measure of performance in equalizers’ applications, defined
by

ISI =
∑
�̃�

𝑠�̃�


2

− |𝑠|
2

max

|𝑠|
2

max
, (3)

where |𝑠|max is the component of 𝑠, given in (4), having the
maximal absolute value. Consider that

𝑠 [𝑛] = 𝑐 [𝑛] ∗ ℎ [𝑛] = 𝛿 [𝑛] + 𝜁 [𝑛] , (4)

where 𝛿 is the Kronecker delta function and 𝜁[𝑛] stands for
the difference (error) between the ideal and the actual value
used for 𝑐[𝑛].

Next, we turn to the adaptation mechanism of the
equalizer which is based on training symbols [9–12, 19]:

𝑐eq [𝑛 + 1] = 𝑐eq [𝑛] − 𝜇 (𝑧 [𝑛] − 𝑥 [𝑛]) 𝑦
∗
[𝑛] , (5)

where 𝜇 is the step-size parameter, 𝑐eq[𝑛] is the equalizer
vectorwhere the input vector is𝑦[𝑛] = [𝑦[𝑛] ⋅ ⋅ ⋅ 𝑦[𝑛−𝑁+1]]𝑇,
and𝑁 is the equalizer’s tap length. The operator ( )𝑇 denotes
for transpose of the function ( ). Please note that for the
nonblind adaptive case, during the training period, a known
data sequence is transmitted. A replica of this sequence is
made available at the receiver in proper synchronism with
the transmitter, thereby making it possible for adjustments to
be made to the equalizer coefficients in accordance with the
adaptive filtering algorithm employed in the equalizer design
[19].

3. Residual ISI for Fractional Gaussian
Noise Input

In this section, a closed-form approximated expression (or an
upper limit) is derived for the residual ISI valid for the fGn
input case.
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Theorem 1. Noted the following assumptions.

(1) The convolutional noise 𝑝[𝑛] is a zero mean, white
Gaussian process with variance 𝜎2

𝑝
= 𝐸[𝑝[𝑛]𝑝

∗
[𝑛]].

The real part of𝑝[𝑛] is denoted as𝑝
𝑟
[𝑛] and𝐸[𝑝2

𝑟
[𝑛]] =

𝑚
𝑝
.

(2) The source signal 𝑥[𝑛] is a rectangular Quadrature
Amplitude Modulation (QAM) signal (where the real
part of 𝑥[𝑛] is independent of the imaginary part of
𝑥[𝑛]) with known variance and higher moments.

(3) The convolutional noise 𝑝[𝑛] and the source signal are
independent.

(4) The gain between the source and equalized output
signal is equal to one.

(5) The convolutional noise 𝑝[𝑛] is independent of 𝑤[𝑛].
(6) The added noise is fGn with zero mean.
(7) The channel ℎ[𝑛] has real coefficients.
(8) The Hurst exponent is in the range of 0.5 ≤ 𝐻 < 1.

The residual ISI expressed in dB units may be defined as

ISI = 10 log
10
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𝑝
) − 10 log

10
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2

𝑥
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) , (6)
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ℎ
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𝑘
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(7)

and𝑅 is the channel length,𝜎2
𝑤
𝑟

is the variance of𝑤
𝑟
[𝑛] (𝑤

𝑟
[𝑛]

is the real part of𝑤[𝑛]), and SNR is given by SNR = 𝜎2
𝑥
𝑟

/𝜎
2

𝑤
𝑟

=

𝜎
2

𝑥
/𝜎
2

𝑤
.

Comments. It should be pointed out that assumptions (1)–(5)
from above are precisely the same assumptions made in [2,
14].

Proof. Let us first recall the expression for the adaptation
mechanism of the equalizer given in (5). Then, we substitute
(2) into (5) and obtain

𝑐eq [𝑛 + 1] = 𝑐eq [𝑛] − 𝜇 (𝑝 [𝑛] + 𝑤 [𝑛]) 𝑦
∗
[𝑛] . (8)

Next, we recall from [14] the expression for 𝐸[Δ(𝑝2
𝑟
)],

where 𝑝
𝑟
is the real part of 𝑝[𝑛] andΔ(𝑝2

𝑟
) = 𝑝
2

𝑟
[𝑛+1]−𝑝

2

𝑟
[𝑛]:

𝐸 [Δ (𝑝
2

𝑟
)]

≅ −2𝐸[𝑝
𝑟
(𝜇𝑃
𝑟
(𝑧)

𝑚=𝑁−1

∑

𝑚=0

𝑦 [𝑛 − 𝑚] 𝑦
∗
[𝑛 − 𝑚])]

+ 𝐸[

[

(−𝜇𝑃
𝑟
(𝑧)

𝑚=𝑁−1

∑

𝑚=0

𝑦 [𝑛 − 𝑚] 𝑦
∗
[𝑛 − 𝑚])

2

]

]

,

(9)

where 𝑃
𝑟
(𝑧) is the real part of 𝑃(𝑧) and is given in our case as

𝑃 (𝑧) =𝑧 [𝑛]− 𝑥 [𝑛] = 𝑝 [𝑛] + 𝑤 [𝑛] ⇒ 𝑃𝑟 (𝑧) = 𝑝𝑟 + 𝑤𝑟 [𝑛] .

(10)

According to [13, 14], when the equalizer has converged,
we may assume that 𝐸[Δ(𝑝2

𝑟
)] ≅ 0. Therefore, by setting

𝐸[Δ(𝑝
2

𝑟
)] = 0 into (9), we obtain

− 2𝜇𝑚
𝑝
𝐸[

𝑚=𝑁−1
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∗
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2
(𝑚
𝑝
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2
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)
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2

]

]
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⇓

𝑚
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2
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(𝜇𝐸[
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2

]

]

)

−1
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(11)

In [13], the expression 𝐸[(∑𝑚=𝑁−1
𝑚=0

𝑦[𝑛 − 𝑚]𝑦
∗
[𝑛 − 𝑚])

2

]

was approximated as (𝐸[∑𝑚=𝑁−1
𝑚=0

𝑦[𝑛 − 𝑚]𝑦
∗
[𝑛 − 𝑚]])

2.
It should be pointed out that this approximation fits the
MPSK case where QPSK is a special case of it. However,
satisfying results were obtained in [13] for the 16QAM and
64QAM cases in spite of the fact that the above mentioned
approximation was applied. Thus, it makes sense to use the
same approximation also here for our case. The expression
𝐸[∑
𝑚=𝑁−1

𝑚=0
𝑦[𝑛 − 𝑚]𝑦

∗
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ℎ
2

𝑘
[𝑛] +

𝑁𝜎
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SNR
.

(12)
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Figure 2: A comparison between the simulated and calculated
residual ISI for the 16QAM source input going through channel1 for
SNR = 10 [dB]. The averaged results were obtained in 100 Monte
Carlo trials. The equalizer’s tap length and step-size parameter were
set to 13 and 0.0006 respectively.

Next, we turn to find a closed-form approximated expression
for𝜎2
𝑤
𝑟

.The real part of𝑤[𝑛], namely,𝑤
𝑟
[𝑛], may be expressed

as

𝑤
𝑟 [𝑛] =

𝑘=𝑁−1

∑

𝑘=0

𝑐
𝑘 [𝑛] 𝑤𝑟 [𝑛 − 𝑘] . (13)

Thus, the variance of 𝑤
𝑟
[𝑛] is given by:

𝜎
2

𝑤
𝑟

= 𝐸[

𝑘=𝑁−1

∑

𝑘=0

𝑐
𝑘 [𝑛] 𝑤𝑟 [𝑛 − 𝑘]

𝑚=𝑁−1

∑

𝑚=0

𝑐
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=
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𝑚=𝑁−1
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𝑐
𝑘 [𝑛] 𝑐𝑚 [𝑛] 𝐸 [𝑤𝑟 [𝑛 − 𝑘]𝑤𝑟 [𝑛 − 𝑚]] ,

(14)

which can be also written as

𝜎
2

𝑤
𝑟

= 𝜎
2

𝑤
𝑟

𝑘=𝑁−1

∑

𝑘=0

𝑐
2

𝑘
[𝑛]

+

𝑘=𝑁−1

∑

𝑘=0,𝑘 ̸=𝑚
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𝑐
𝑘 [𝑛] 𝑐𝑚 [𝑛]𝐸[𝑤𝑟 [𝑛 − 𝑘]𝑤𝑟 [𝑛 − 𝑚]] .

(15)

According to [2], expression (15) can be approximately
written as

𝜎
2

𝑤
𝑟

≅

𝜎
2

𝑥
𝑟

SNR∑𝑘=𝑅−1
𝑘=0

ℎ
2

𝑘
[𝑛]

[1 + √𝑁 − 1𝐻 (2𝐻 − 1)] , (16)
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Figure 3: A comparison between the simulated and calculated
residual ISI for the 16QAM source input going through channel1 for
SNR = 8 [dB]. The averaged results were obtained in 100 Monte
Carlo trials. The equalizer’s tap length and step-size parameter were
set to 13 and 0.0006 respectively.

by using assumption (4) from the system description section,
assumptions (4) and (6)–(8) from this section, the Holder
inequality [20], and the following approximation [21]:

0.5 [(|𝑚 − 𝑘| − 1)
2𝐻
− 2(|𝑚 − 𝑘|)

2𝐻
+ (|𝑚 − 𝑘| + 1)

2𝐻
]

≃ 𝐻 (2𝐻 − 1) |𝑚 − 𝑘|
2𝐻−2

.

(17)

Now, by substituting (12) and (16) into (11) we obtain (7).This
completes our proof.

4. Simulation

In this section, we test our new proposed expression for the
residual ISI for the 16QAM case (a modulation using ±{1, 3}
levels for in-phase and quadrature components) with the
algorithm described in (5) for different SNR, step-size, and
equalizer’s tap length values and for two different channel
types.The following two channels were considered. Channel1
(initial ISI = 0.44): the channel parameters were determined
according to [22]

ℎ
𝑛
= (0 for 𝑛 < 0; −0.4 for 𝑛 = 0

× 0.84 ⋅ 0.4
𝑛−1 for 𝑛 > 0) .

(18)

Channel2 (initial ISI = 0.88) the channel parameters were
determined according to

ℎ
𝑛
= (0.4851, −0.72765, −0.4851) . (19)

The equalizer was initialized by setting the center tap equal to
one and all others to zero.



Mathematical Problems in Engineering 5

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Iteration number

IS
I (

dB
)

Simulated for H = 0.5

Calculated for H = 0.5

Simulated for H = 0.7

Calculated for H = 0.7

Simulated for H = 0.9

Calculated for H = 0.9

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

Figure 4: A comparison between the simulated and calculated residual ISI for the 16QAM source input going through channel1 for SNR = 10
[dB].The averaged results were obtained in 100Monte Carlo trials.The equalizer’s tap length and step-size parameter were set to 27 and 0.0006
respectively.
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Figure 5: A comparison between the simulated and calculated
residual ISI for the 16QAM source input going through channel2 for
SNR = 12 [dB]. The averaged results were obtained in 100 Monte
Carlo trials. The equalizer’s tap length and step-size parameter were
set to 13 and 0.0006 respectively.

In the following, we denote the residual ISI performance
according to (6) with (7) as “Calculated ISI.” Figure 2 to
Figure 8 show the ISI performance as a function of the
iteration number of our proposed expression (6) with (7)
for the achievable residual ISI compared with the simulated
results for two different channels and equalizer’s tap length
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Figure 6: A comparison between the simulated and calculated
residual ISI for the 16QAM source input going through channel2 for
SNR = 12 [dB]. The averaged results were obtained in 100 Monte
Carlo trials. The equalizer’s tap length and step-size parameter were
set to 27 and 0.0006 respectively.

and various values for 𝐻, SNR and step-size parameter.
According to Figures 2, 3, 5, 6, 7, and 8, a high correlation is
observed between the simulated and calculated results even
for 𝐻 = 0.9. According to Figure 4, the calculated ISI may
be considered as an upper limit for the simulated results for
𝐻 > 0.5.
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Figure 7: A comparison between the simulated and calculated
residual ISI for the 16QAM source input going through channel2 for
SNR = 12 [dB]. The averaged results were obtained in 100 Monte
Carlo trials. The equalizer’s tap length and step-size parameter were
set to 27 and 0.0004 respectively.
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Figure 8: A comparison between the simulated and calculated
residual ISI for the 16QAM source input going through channel2 for
SNR = 12 [dB]. The averaged results were obtained in 100 Monte
Carlo trials. The equalizer’s tap length and step-size parameter were
set to 27 and 0.0002 respectively.

5. Conclusion

In this paper, we proposed a closed-form approximated
expression (or an upper limit) for the residual ISI obtained
by nonblind adaptive equalizers valid for the fGn input case
where the Hurst exponent is in the region of 0.5 ≤ 𝐻 <

1. This new obtained expression depends on the step-size
parameter, equalizer’s tap length, input signal statistics, SNR,
channel power, and theHurst exponent parameter. According

to simulation results, a high correlation is obtained between
the calculated and simulated results for the residual ISI for
some cases, while for others the new obtained expression is a
relative tight upper limit for the averaged residual ISI results.
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