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A tracking problem, time-delay, uncertainty and stability analysis of a predictive control system are considered. The predictive
control design is based on the input and output of neural plant model (NPM), and a recursive fuzzy predictive tracker has
scaling factors which limit the value zone of measured data and cause the tuned parameters to converge to obtain a robust
control performance. To improve the further control performance, the proposed random-local-optimization design (RLO) for
a model/controller uses offline initialization to obtain a near global optimal model/controller. Other issues are the considerations
of modeling error, input-delay, sampling distortion, cost, greater flexibility, and highly reliable digital products of the model-based
controller for the continuous-time (CT) nonlinear system. They are solved by a recommended two-stage control design with the
first-stage (offline) RLO and second-stage (online) adaptive steps. A theorizingmethod is then put forward to replace the sensitivity
calculation, which reduces the calculation of Jacobin matrices of the back-propagation (BP) method. Finally, the feedforward input
of reference signals helps the digital fuzzy controller improve the control performance, and the technique works to control the CT
systems precisely.

1. Introduction

During the past decade, many fuzzy theories [1–7] and delay
analysis [8–13] have attracted great attention from both the
academic and industrial communities, and there have been
many successful applications. Despite this success, it has
become evident that many basic and important issues remain
to be further addressed. These stability analysis and system-
atic designs are among the most important issues for robust
control systems [1], and there has been significant research
on these issues (see [2, 14–16]). However, the problems of
modeling error and prediction are still worth to be solved
further.Therefore, the two-stage controlmethod in this paper
is proposed to suppress the modeling error to guarantee the
stability of predictive control system in the presence of this
modeling error.

In addition, neural-network- (NN-) based modeling
has become an active research field because of its unique
merits in solving complex nonlinear system identification

and control problems (see [15]). Neural networks (NNs)
or NARMAX/NARX neural networks [17] are composed of
simple elements operating in parallel, inspired by biological
nervous systems. A neural network can be trained to repre-
sent a particular function by adjusting the weights between
elements. Due to discrete-time (DT) controllers (microcon-
trollers) being cheaper and more flexible than continuous-
time (CT) controllers, the DT control problem for CT plant is
worth studying. In modern control engineering, controllers
are commonly implemented directly by the hardware or
software of digital computers. However, one important issue
has to be faced; that is, the proposed design (DT-CT design)
in this paper effects a new type of application.

The study of CT control of CT time-delay systems has
received considerable attention in recent years since delay
is a major cause of poor performance in many important
engineering systems [18, 19]. As is known, the delay control
problem is an important and complex factor in the stability
performance of CT nonlinear systems. In general, a delay
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signal happens in a signal’s long-distance or heat translations.
However, the amount of delay has different impacts on the
various approaches [1, 3]. In this study, the direction of
CT time-delay control systems needs to involve the DT
control problem. Moreover, the recommended adaptive NN-
model-based design method has not yet been developed
to adjust the parameters of a discrete-time (DT) adaptive
fuzzy controller such that the original continuous-time (CT)
system, with time delays and uncertainties, is uniformly
ultimately bounded (UUB) stable in Section 2.

Based on the timer of the micro-controller, the effect of
delay in neural system identification can be approximated
by many tape-delay terms. This reduces the difficulty of
delay identification. The DT NARMAX model is generally
sufficient to approximate an unknown, nonlinear, dynamical,
and delayed CT system by selecting an appropriate sampling
time. Moreover, the measured modeling error between the
model and the physical system is considered in the theorems
by Lyapunov functions. In Remark 1, this kind of modeling
error is used to estimate the proposed corner of sampling
period (CSP) which decides this kind of sampling time to
support the intersample method.

The feedforward term in [20] is derived indirectly by
assuming some constraints. Due to the overfitting problem
and the local optimal problem of NN, the method [20] is not
suitable for real applications because of the need for lengthy
convergence time.These neural techniques [20, 21] have usu-
ally been demonstrated under nonlinear control due to their
powerful nonlinearmodeling capability [22] and adaptability.
However, they must exhibit the optimal problems of falling
into the local minimum easily by using the back-propagation
(BP) [23] method. To alleviate the requirements for accurate
modeling of the plant, the proposed NARMAX plant and
control models are trained by initially using novel offline
methods with the RLO algorithm to improve this drawback.
It not only guarantees the gradient decent method against the
local optimal solution but also speeds up the convergence of
the PSO [24].

Conventional optimization methods assume that all
parameters and goals of a model are precisely known [25,
26]. However, in many practical problems incomplete and
unreliable information exists [27]. Therefore, the two-stage
scheme is proposed to treat this unknown system as reliability
problem.

Inspired by the DT neural controller of [20] only for a
DT system, a digital fuzzy control design for a CT system
is proposed and an approximate inverse of the delayed plant
dynamics is used to act as theNARMAX fuzzy controller.The
adaptive controller and NARMAX models are easier to con-
verge than [20, 21] by the recommended two-stage scheme.
Moreover, this paper concludes with a simulation example
and experimental data to demonstrate these techniques.

The remainder of this paper is organized as follows. In
Section 2, the systemdescription and its problem formulation
are provided. In Section 3, robustness controllers and stability
analysis in the presence of modeling errors for a series
of control design algorithms are introduced. In Section 4,
the effectiveness of the proposed approach is illustrated

by a numerical example with three cases. Finally, the conclu-
sions are drawn in Section 5.

2. System Description and
Problem Formulation

First, the conventional PWM buck converter by using AM-
OTS-DS [28] methodology is modeling to the following
equivalent circuit plant:

[ ̇𝑖
𝐿 (𝑡)
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(1a)

In this paper, the robustness of the above control system is
emphasized, so uncertainty Δ and delay 𝜏 are added to the
original control system (1a)
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(1b)

where 𝑅 = 𝑅 + Δ; 𝑅 = 6; 𝑉in = 30 is a DC voltage source;
𝐶 = 202.5 × 10−6;Δ = 0.52 sin(2𝜋⋅𝑡/3); 𝜁 = 0.1; 𝜏 = 10−2(1+
sin(10𝑡)); 𝐿 = 98.58 × 10−6; 𝑅

𝐿
= 48.5 × 10−3, and 𝑅

𝐶
=

162 × 10−3 are the parasitic resistances of the inductor and
capacitor, respectively. The element 𝑅

𝑀
= 0.27 is the static

drain to source resistance of the power MOSFET, and 𝑉
𝐷
=

0.82 is the forward voltage of the power diode. 𝑢(𝑡) is duty
ratio of conventional PWM buck converter. The state 𝑥(𝑡) =
𝑥 = [𝑖

𝐿
(𝑡), V
𝐶
(𝑡)]𝑇 and the output 𝑦(𝑡) = V

𝑜
(𝑡) of this power

system are defined.
The nonlinear, uncertain, hotter circuit’s components,

time-delay, and digital control problems of PWM buck
converter CT system renders a tracking control problem
difficult to analyze. A simulation system in (1a) and (1b) is
built with uncertainty. In this study, it is assumed that the
parameters of the circuit’s components are not ideal, and the
capacity of the digital controller is limited by using a lower-
cost chip. Here, the sampling period 𝑇

𝑠
= 10−4 is designed
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Figure 1: UBSP of (1a) and (1b) is decided based on CSP.

for this power system (1a) and (1b). Hence, the delay 𝜏 is very
large for this system.

Then, consider a general nonlinear system with delays
described as follows:

𝑃 : 𝑥̇ (𝑡) = 𝑓 (𝑥, 𝑢, 𝑡, 𝜏, Δ) , 𝑦 (𝑡) = 𝑔 (𝑥) , (2)

where the bounded uncertainties Δ(𝑡) create the dynamic
quality of the system parameters which refer to electrical
elements of the power system; the zero-order-hold control
input 𝑢(𝑡) = 𝑢(𝑘 ⋅ 𝑇

𝑠
) = 𝑢(𝑘) = 𝑢

𝑘
, 𝑡 = 𝑘 ⋅ 𝑇

𝑠
, 𝑇
𝑠
is the

appropriate sample time of DT-CT design, 𝑘 is the index of
the discrete result 𝑢

𝑘
of 𝑢(𝑡) referring to the NNmodel of (1a)

and (1b); 𝜏 is the time delay; 𝑔(⋅) is the relational function of
the state 𝑥(𝑡) and system output 𝑦(𝑡).
Remark 1. With the understanding that normal physical
systems are low-pass filter and smooth nonlinearity, the
upper bound, UBSP (shown in Figure 1), of the test sampling
period 𝑇

𝑠
is decided based on a test intersample method with

the plot of logarithm 𝑥-axis for 𝑇
𝑠
and logarithm 𝑦-axis for

∑
𝑘
|𝑒 mod (𝑘)|, where 𝑒 mod (𝑘) = 𝑦

𝑘
− 𝑦
𝑘
. In Figure 1, we can

find an obvious corner of sampling period (CSP) easily to
support the intersample method.

3. Stability Analysis for Two-Stage
Control Scheme

3.1. Stability Analysis withNeural-FuzzyDesign. In this paper,
an adaptive prediction control structure is proposed, as
shown in Figure 2, where the FRP controller 𝐶

𝐹
is designed

as follows:

𝑢 (𝑧 (𝑘 ⋅ 𝑇)) = 𝑢𝑘 = 𝐶𝐹 (𝑧𝑘, (𝑊𝐶)𝑘, 𝑇𝑠) + 𝑠 ⋅ 𝐶𝑋 (𝑒𝑘)
= 𝑢
𝐹
+ 𝑠 ⋅ 𝑢

𝑋
, (3)

where the switch index

𝑠 = {0, 𝑒
𝑘+1
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1, 𝑒
𝑘+1
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𝑢
𝑘 (𝑧̂) = 𝐶𝐹 (𝑧̂𝑘, (𝑊𝐶)𝑘, 𝑇𝑠) ,

(4)

where 𝑢
𝑃
= 𝑢
𝐹
+𝑢
𝑋
, 𝑦
(𝑘+1)1
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𝑃
(𝑘+1)), 𝑦
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𝐹
(𝑘+
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, as shown in Figure 2. The feedforward terms
are reference signals [𝑟

𝑘
, 𝑟
𝑘−1
, . . . , 𝑟

𝑘−𝑝
], and recursive terms

are control signals [𝑢
𝑘−1
, 𝑢
𝑘−2
, . . . , 𝑢

𝑘−𝑞
].

The offline training input of controller is

𝑧̂ (𝑘) = 𝑧̂𝑘 = [𝑦𝑘, 𝑦𝑘−1, . . . , 𝑦𝑘−𝑝, 𝑢𝑘−1, 𝑢𝑘−2, . . . , 𝑢𝑘−𝑞] ,
𝑧 (𝑘) = 𝑧𝑘 = [𝑟𝑘, 𝑟𝑘−1, . . . , 𝑟𝑘−𝑝, 𝑢𝑘−1, 𝑢𝑘−2, . . . , 𝑢𝑘−𝑞] ,

(5)

𝑦
𝑘
= 𝑦(𝑘), 𝑟

𝑘
= 𝑟(𝑘). The controller has two working phases:

𝑧(𝑘) is the data vector of the testing phase, and 𝑧̂(𝑘) is the data
vector of the training phase.The fuzzy controller is as follows:

𝑢
𝐹 (𝑧 (𝑘 ⋅ 𝑇)) = 𝑢𝐹 (𝑘)

= ∑𝑀
𝑙=1
ℎ
𝑙
[∏𝑛
𝑖=1
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𝑖
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𝑖𝑙
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𝑖
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𝐹
(𝑟
𝑘
, 𝑟
𝑘−1
, . . . , 𝑢

𝑘−1
, 𝑢
𝑘−2
, . . . , (𝑊

𝐶
)
𝑘
, 𝑇
𝑠
) ,
(6a)

𝑢
𝐹 (𝑧̂ (𝑘)) = 𝐶𝐹 (𝑦𝑘, 𝑦𝑘−1, . . . , 𝑢𝑘−1, 𝑢𝑘−2, . . . , (𝑊𝐶)𝑘, 𝑇𝑠) ,

(6b)

where feedforward terms are reference signals [𝑟
𝑘
, 𝑟
𝑘−1
, . . . ,

𝑟
𝑘−𝑝

], and recursive terms are control signals [𝑢
𝑘−1
, 𝑢
𝑘−2
, . . . ,

𝑢
𝑘−𝑞

]. Assume that𝑌=[𝑦
𝑘
, 𝑦
𝑘−1
, . . . , 𝑦

𝑘−𝑝
]𝑇,𝑈=[𝑢

𝑘
, 𝑢
𝑘−1
, . . . ,

𝑢
𝑘−𝑞

] are measured to train model/controller.𝑀 is fixed;

𝑧
𝑖
= 𝑐
𝑖0
𝑦
𝑘
+ 𝑐
𝑖1
𝑦
𝑘−1

+ ⋅ ⋅ ⋅ + 𝑐
𝑖𝑝
𝑦
𝑘−𝑝

+ 𝑐
𝑖1
𝑢
𝑘−1

+ 𝑐
𝑖2
𝑢
𝑘−2

+ ⋅ ⋅ ⋅ + 𝑐
𝑖𝑞
𝑢
𝑘−𝑞

. (7)

The tuned parameter vector of controller is as follows:

(𝑊
𝐶
)
𝑘
= [ (𝑧

11
, 𝑧
12
, . . . , 𝑧

𝑖𝑙
, . . . , 𝑧

𝑛𝑀
) ,

(𝜎
11
, 𝜎
12
, . . . , 𝜎

𝑖𝑙
, . . . , 𝜎

𝑛𝑀
) ,

(ℎ
1
, ℎ
2
, . . . , ℎ

𝑙
, . . . , ℎ

𝑀
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𝑖0
, 𝑐
𝑖1
, . . . , 𝑐
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) ,
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𝑖1
, 𝑐
𝑖2
, . . . , 𝑐

𝑖𝑞
)] .

(8)

The proposed digital fuzzy controller 𝑢
𝑘
has feedforward

terms and recursive structure. It can use a NARMAX neural
model or inverse of the plant dynamics to aid control preci-
sion in the face of a delayed plant. Owing to the adaptive fuzzy
controller, the uncertainty of the plant can be suppressed.
Although the structure of the fuzzy controller is chosen, the
parameter vector (𝑊

𝐶
)
𝑘
is not specified; therefore, the fuzzy
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Figure 2: Two-stage adaptive prediction structure of DT-CT control system. (a) Two-stage block diagram and (b) online adaptive prediction
block diagram.

controller has not been designed. 𝛾 ⋅ 𝑇
𝑠
is the tape-delay

time, 𝛾 is a positive integer. The idea of the inverse-model-
based fuzzy controller is proposed by the following simplified
relation:

If 𝑦
𝑘
= 𝑃̂ (𝑢

𝑘
) , 𝑢

𝑘
= 𝑃̂−1 (𝑟

𝑘
) = 𝐶
𝐹
(𝑟
𝑘
) , then 𝑦

𝑘
=𝑟
𝑘
,
(9)

where 𝑃̂(⋅) is the adaptive NARMAX neural model of plant;
𝐶
𝐹
(⋅) is the adaptive NARMAX fuzzy controller; 𝑟

𝑘
is the

desired output. According to the idea of (9), the recursive
structure 𝑃̂(⋅) can be designed with tape delays as follows:

𝑦
𝑘
≈ 𝑦
𝑘

= 𝑃̂ (𝑦
𝑘−1
, 𝑦
𝑘−2
, . . . , 𝑦

𝑘−𝑛
, 𝑢
𝑘
, 𝑢
𝑘−1
, . . . , 𝑢

𝑘−𝑝
, (𝑊
𝑃
)
𝑘
, 𝑇
𝑠
) ,
(10)

but the weights and biases (𝑊
𝑃
)
𝑘
of this model are trained by

the way of the feedforward structure neural network (NN) as
follows:

𝑦
𝑘
≈ 𝑦
𝑘

= 𝑃̂ (𝑦
𝑘−1
, 𝑦
𝑘−2
, . . . , 𝑦

𝑘−𝑛
, 𝑢
𝑘
, 𝑢
𝑘−1
, . . . , 𝑢

𝑘−𝑝
, (𝑊
𝑃
)
𝑘
, 𝑇
𝑠
) .
(11)

Due to the parameters of the recursive structure of the plant
model, convergence may be much stricter, where 𝑛, 𝑝 + 1
are the amount of tape delays of 𝑦, 𝑢, respectively. The plant
output is compared with the desired output to create a system
error signal 𝑒

𝑘
= 𝑟
𝑘
− 𝑦
𝑘
. The errors 𝑒

𝑘
= 𝑟
𝑘
− 𝑦
𝑘
and 𝑒
𝑘
are

used by the adaptation algorithm to update the parameters
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of 𝑃̂ and 𝐶
𝐹
. Next, the performance index is designed, as

follows:

𝐽
𝑘
= 1
2𝑒
𝑇

𝑘
𝑒
𝑘
= 1
2(𝑟𝑘 − 𝑦𝑘)

𝑇 (𝑟
𝑘
− 𝑦
𝑘
)

= 1
2(𝑦𝑘 − 𝑟𝑘)

𝑇 (𝑦
𝑘
− 𝑟
𝑘
) ,

(12)

is a cost function to beminimized by the proposed algorithm.
Then, the BP algorithm adapts the control parameters (𝑊

𝐶
)
𝑘
.

That is, the change in control parameters (Δ𝑊
𝐶
)
𝑘
is calculated

as

(Δ𝑊
𝐶
)𝑇
𝑘
= −𝜂
𝐶 (𝑘) 𝑑𝐽

𝑘

𝑑(𝑊
𝐶
)
𝑘

= −𝜂
𝐶 (𝑘) 𝑑(𝑦𝑘 − 𝑟𝑘)

𝑇 (𝑦
𝑘
− 𝑟
𝑘
)

2 ⋅ 𝑑(𝑊
𝐶
)
𝑘

= −𝜂
𝐶 (𝑘) (𝑦𝑘 − 𝑟𝑘) 𝑑𝑦

𝑘

𝑑(𝑊
𝐶
)
𝑘

= −𝜂
𝐶 (𝑘) (𝑦𝑘 − 𝑟𝑘) 𝑑𝑦𝑘𝑑𝑢

𝑘

𝑑𝑢
𝑘

𝑑(𝑊
𝐶
)
𝑘

,

(13)

where the small positive 𝜂
𝐶
(𝑘) can be selected as a stable

learning rate via the following theorems.

Theorem 2. If the amount of neurons of the neural model is
sufficient and the appropriate sampling time 𝑇

𝑠
is selected to let

‖𝑦
𝑘
− 𝑦
𝑘
‖ ≤ 𝜀 and the following condition

0 < 𝜂
𝑃 (𝑘) < 2󵄩󵄩󵄩󵄩𝑑𝑦𝑘/𝑑(𝑊𝑃)𝑘󵄩󵄩󵄩󵄩2

≤ 𝜂
𝑃 (14)

be satisfied, where𝑦
𝑘
is an output of the optimalmodel, then the

trajectories 𝑦
𝑘
of converging to plant output 𝑦

𝑘
is a uniformly

ultimately bounded (UUB) approximation on the bounded
error 𝑦

𝑘
− 𝑦
𝑘
.

Proof of Theorems. First, consider the following ideal Lya-
punov candidate [29] of the model part,

𝑉
1𝑘
= 1
2(𝑦𝑘 − 𝑦𝑘)

𝑇 (𝑦
𝑘
− 𝑦
𝑘
)

= 1
2
󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑦𝑘 + 𝑦𝑘 − 𝑦𝑘󵄩󵄩󵄩󵄩2

= 1
2
󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑦𝑘󵄩󵄩󵄩󵄩2 + 𝜀𝑘 = 𝑉2𝑘 + 𝜀𝑘,

(15)

where𝑉
2𝑘
= (1/2)‖𝑦

𝑘
− 𝑦
𝑘
‖2 is an actual Lyapunov candidate

of reachable and assumptive trajectory 𝑦
𝑘
; the bounded

approximation error

𝜀
𝑘
= 1
2
󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑦𝑘󵄩󵄩󵄩󵄩2 + (𝑦𝑘 − 𝑦𝑘)𝑇 (𝑦𝑘 − 𝑦𝑘) (16)

and the number of neurons of the neural model are suffi-
cient, and the appropriate sampling time 𝑇

𝑠
is selected to

let 𝑦
𝑘
≈ 𝑦
𝑘
. The next task is to train the model such that 𝑉

2𝑘

is minimized,

(Δ𝑊
𝑃
)
𝑘

𝜂
𝑃 (𝑘) = − 𝑑𝑉

2𝑘

𝑑(𝑊
𝑃
)
𝑘

= − (𝑦
𝑘
− 𝑦
𝑘
) 𝑑 (𝑦𝑘 − 𝑦𝑘)𝑑(𝑊

𝑃
)
𝑘

= − (𝑦
𝑘
− 𝑦
𝑘
) 𝑑𝑦

𝑘

𝑑(𝑊
𝑃
)
𝑘

,

(17)

where (Δ𝑊
𝑃
)
𝑘
= 𝑊
𝑃
(𝑘 + 1) − 𝑊

𝑃
(𝑘);𝑊

𝑃
(𝑘) = (𝑊

𝑃
)
𝑘
.

Then, the following Lyapunov candidate of the controller
part is designed:

𝑉
3 (𝑘) = 𝑉3𝑘 = 1

2(𝑦𝑘 − 𝑟𝑘)
𝑇 (𝑦
𝑘
− 𝑟
𝑘
) = 1

2
󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑟𝑘󵄩󵄩󵄩󵄩2, (18)

Thus, the change in the Lyapunov function is obtained by

𝑉
3 (𝑘 + 1) − 𝑉3 (𝑘)

= 1
2 (

󵄩󵄩󵄩󵄩𝑦 (𝑘 + 1) − 𝑟 (𝑘 + 1)󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑦 (𝑘) − 𝑟 (𝑘)󵄩󵄩󵄩󵄩2) .
(19)

Finally, the update law of the control parameters of the
controller is obtained as follows:

(Δ𝑊
𝐶
)𝑇
𝑘

𝜂
𝐶 (𝑘) ≈ − 𝑑𝑉3 (𝑘)𝑑(𝑊

𝐶
)
𝑘

= − (𝑦
𝑘
− 𝑟
𝑘
) 𝑑𝑦

𝑘

𝑑(𝑊
𝐶
)
𝑘

. (20)

This study develops some convergence theorems to select
appropriate stable learning rates. First, the difference of
modeling error 𝑒

𝑃
(𝑘) = 𝑦

𝑘
− 𝑦
𝑘
can be represented by

𝑒
𝑃 (𝑘 + 1) = 𝑒𝑃 (𝑘) − [ 𝑑𝑒𝑃 (𝑘)𝑑(𝑊

𝑃
)
𝑘

]
𝑇

[𝜂
𝑃 (𝑘) 𝑒𝑃 (𝑘) 𝑑𝑒𝑃 (𝑘)𝑑(𝑊

𝑃
)
𝑘

]

= 𝑒
𝑃 (𝑘)(1 − [ 𝑑𝑒𝑃 (𝑘)𝑑(𝑊

𝑃
)
𝑘

]
𝑇

𝜂
𝑃 (𝑘) 𝑑𝑒𝑃 (𝑘)𝑑(𝑊

𝑃
)
𝑘

)

= 𝑒
𝑃 (𝑘)(1 − [ 𝑑𝑦

𝑘

𝑑(𝑊
𝑃
)
𝑘

]
𝑇

𝜂
𝑃 (𝑘) 𝑑𝑦

𝑘

𝑑(𝑊
𝑃
)
𝑘

) ;
(21)

thus, the change in the Lyapunov function is obtained by

𝑉
2 (𝑘 + 1) − 𝑉2 (𝑘)
= 1
2 (

󵄩󵄩󵄩󵄩𝑒𝑃 (𝑘 + 1)󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑒𝑃 (𝑘)󵄩󵄩󵄩󵄩2)



6 Mathematical Problems in Engineering

= 1
2 (

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝑃 (𝑘)(1 − [ 𝑑𝑦

𝑘

𝑑(𝑊
𝑃
)
𝑘

]
𝑇

𝜂
𝑃 (𝑘) 𝑑𝑦

𝑘

𝑑(𝑊
𝑃
)
𝑘

)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

−󵄩󵄩󵄩󵄩𝑒𝑃 (𝑘)󵄩󵄩󵄩󵄩2)

= 1
2
󵄩󵄩󵄩󵄩𝑒𝑃 (𝑘)󵄩󵄩󵄩󵄩2 [

[
(1 − [ 𝑑𝑦

𝑘

𝑑(𝑊
𝑃
)
𝑘

]
𝑇

𝜂
𝑃 (𝑘) 𝑑𝑦

𝑘

𝑑(𝑊
𝑃
)
𝑘

)
2

− 1]
]
.

(22)

Hence, if −1 < (1 − [𝑑𝑦
𝑘
/𝑑(𝑊
𝑃
)
𝑘
]𝑇𝜂
𝑃
(𝑘)(𝑑𝑦

𝑘
/𝑑(𝑊
𝑃
)
𝑘
)) < 1

and ‖𝑦
𝑘
− 𝑦
𝑘
‖ ≤ 𝜀, then 𝑉

2
(𝑘 + 1) < 𝑉

2
(𝑘), that is, 𝑉

2
(𝑘) → 0

or 𝑦
𝑘
→ 𝑦
𝑘
makes the UUB approximation of this model on

the bounded 𝑦
𝑘
− 𝑦
𝑘
. The proof is thereby completed.

Furthermore, the following theorem for the convergence
of the controller is obtained by the same procedure as the
above proof.

Theorem 3. If Theorem 2 in (14) is satisfied, the function
𝑑𝑦
𝑘
/𝑑(𝑊
𝐶
)
𝑘
in (20) is computed to let the following condition

0 < 𝜂
𝐶 (𝑘) < 2󵄩󵄩󵄩󵄩𝑑𝑦𝑘/𝑑(𝑊𝐶)𝑘󵄩󵄩󵄩󵄩2

≤ 𝜂
𝐶
, (23)

be satisfied.Then, the nonlinear systems (1a) and (1b) are UUB
stable, and the tracking errors 𝑒(𝑘) = 𝑟

𝑘
− 𝑦
𝑘
are bounded via

the controller.

Hence, the dynamic response of the system 𝑃 can be
controlled using 𝐶

𝐹
, as shown in Figure 2. This 𝐶

𝐹
needs

the plant model 𝑃̂ to adjust control parameters via sensitivity
function 𝜕𝑦

𝑘
/𝜕𝑢
𝑘−𝑖

.
The digital feedback controller includes a delay block 𝐷,

as shown in Figure 2. Here, the error 𝑒
𝑘+1

is used to estimate
𝑢
𝑋
, and the proposed predictor of the delayed system can let

us cancel some complex computations, such as 𝜕𝑦
𝑘
/𝜕𝑢
𝑘
≈

(𝑦
𝑘
− 𝑦
𝑘−1
)/Δ𝑢
𝑘
= Δ𝑦

𝑘
/Δ𝑢
𝑘
= Δ𝑦

𝑘
/𝑢
𝑋
(𝑘), of sensitivity

function 𝜕𝑦
𝑘
/𝜕𝑢
𝑘−𝑖

in the BP algorithm. Hence, the following
theorem is proposed to update the control parameters of
FRP under the assumption of providing a model which
applies a lower prediction error and a more correct 𝑢

𝑋
. The

prediction error 𝑒
𝑘+1

= 𝑟
𝑘+1

− 𝑦
𝑘+1

, being bounded due to
the previous 𝑒

𝑘
= 𝑟
𝑘
− 𝑦
𝑘
, is bounded at any time. Hence,

the prediction error 𝑒
𝑘+1

will be bounded by usingTheorems
2 and 3. Furthermore, the following theorem is obtained for
the convergence of the adaptive prediction controller by the
same procedure as Theorem 2.

Theorem 4. If Theorem 2 in (14) is satisfied, the predictive
function 𝑑𝑢

𝑘+1
/𝑑(𝑊
𝐶
)
𝑘+1

is computed to let the following
condition

0 < 𝜂
𝑋 (𝑘 + 1) < 2󵄩󵄩󵄩󵄩𝑑𝑢𝑘+1/𝑑(𝑊𝐶)𝑘+1󵄩󵄩󵄩󵄩2

≤ 𝜂
𝑋 (24)

be satisfied, then the nonlinear systems (1a) and (1b) are UUB
stable, and the tracking errors 𝑒

𝑘
= 𝑟
𝑘
−𝑦
𝑘
are bounded via the

predictive controller 𝑢
𝑘+1

= 𝑢
𝐹
(𝑘 + 1) + 𝑠 ⋅ 𝑢

𝑋
(𝑘 + 1).

The tracking error is 𝑒
𝑘
= 𝑟
𝑘
− 𝑦
𝑘
and 𝑒

𝑘
= [𝑒
1𝑘
, 𝑒
2𝑘
,

𝑒
3𝑘
, . . . ]𝑇, but the parameters of adaptive control 𝐶

𝐹
are

updated by using the predictive offset

Δ𝑢
𝑘+1

= 𝑢
𝑋 (𝑘 + 1) = 𝐶𝑋 (𝑒𝑘)

= [𝐾
1
(𝑒
1𝑘
) , 𝐾
2
(𝑒
2𝑘
) , 𝐾
3
(𝑒
3𝑘
) , . . .]𝑇,

(25)

so its previous term is

Δ𝑢
𝑘
= 𝑢
𝑋 (𝑘) = 𝐶𝑋 (𝑒𝑘−1)

= [𝐾
1
(𝑒
1(𝑘−1)

) , 𝐾
2
(𝑒
2(𝑘−1)

) , 𝐾
3
(𝑒
3(𝑘−1)

) , . . .]𝑇, (26)

of control input 𝑢
𝑘
, where 𝐾

1
(⋅), 𝐾
2
(⋅), 𝐾
3
(⋅), . . . are defined

by the user, and the predictive controller is 𝑢
𝑘+1

= 𝑢
𝐹
(𝑘+1)+

𝑠 ⋅ 𝑢
𝑋
(𝑘 + 1), so its previous term is 𝑢

𝑘
= 𝑢
𝐹
(𝑘) + 𝑠 ⋅ 𝑢

𝑋
(𝑘).

3.2. Two-Stage Scheme in the Presence of Stability. Figure 2
shows a block-diagram of an adaptive recursive control
system. The system to be controlled is labeled as the plant 𝑃,
which is subject tomodeling errors, uncertainties, and delays.
Due to gradient-descent-based training algorithms, let the
model/controller converge to some local minimums which
destroy the control system stability by enlarging themodeling
error. Hence, we proposed the two-stage training algorithm
to reduce this modeling error as follows.

In the first stage, the measured data is used to train the
global optimal NARMAX plant and the fuzzy controller by
the training-data-shuffle method. This method shuffles the
training data to avoid most of the local optimal solutions
obtained by the offline training procedure in the next section.
The measured data is divided into a training data and other
testing data.This testing data is not used for training the NN.
However, the final performance of the NN is decided by the
testing data and the training data.

In the second stage, the global optimal NARMAX plant
model and fuzzy controller is adapted. The two stages are
divided into the following five steps.

Step 1. First, the reference signal 𝑟(𝑘) = 𝑟
𝑘
is designed. By

the white noise of input 𝑢(𝑘) = 𝑢
𝑘
for plant, output data

𝑦(𝑘) = 𝑦
𝑘
is collected, and a training-data-shuffle method

is used to shuffle the input/output pairs’ data. These shuffled
data are ready to train the NARMAXmodel/controller. Here,
the following reasonable conditions need to be taken into
account:

max
𝑘

(𝑟
𝑘
) ≈ max
𝑘

(𝑦
𝑘
) , min

𝑘

(𝑟
𝑘
) ≈ min
𝑘

(𝑦
𝑘
) ,

max
𝑘

(𝑢
𝑘
) ≤ 𝑢
𝑈
, min

𝑘

(𝑢
𝑘
) ≥ 𝑢
𝐿

(27)

need be satisfied, where 𝑢
𝑈
is the upper bound of 𝑢

𝑘
, and

𝑢
𝐿
is the lower bound of 𝑢

𝑘
. According to (27), much of the

excessive control effort 𝑢
𝑘
can be avoided. If (27) is satisfied,

then go to Step 2.
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Step 2. The feedforward structure model 𝑃̂ is trained/tested
offline

𝑦 (𝑘) = 𝑃̂ (𝑆
𝑢
𝑢
𝑘
, 𝑆
𝑢
𝑢
𝑘−1
, . . . , 𝑆

𝑢
𝑢 (𝑘 − 𝑝

𝑢
) , 𝑆
𝑦
𝑦
𝑘−1
,

𝑆
𝑦
𝑦
𝑘−2
, . . . , 𝑆

𝑦
𝑦 (𝑘 − 𝑝

𝑦
) , (𝑊
𝑃
)
𝑘
, 𝑇
𝑠
)( 1

𝑆
𝑦

) ,
(28)

via the shuffled input/output pairs’ data. After system identifi-
cation, 𝑃̂ is performed, and the digital fuzzy controller𝐶

𝐹
for

the CT system can be built by using this inverse NARMAX
plant model 𝑃̂−1 in the next step.

Step 3. In practice, according to the exchanged output/input
pairs’ data from Step 2, the offline stage to train/test the fuzzy
controller can be passed through

𝑢
𝑘
= 𝐶
𝐹
(𝑆
𝑢
𝑢
𝑘−1
, 𝑆
𝑢
𝑢
𝑘−2
, . . . , 𝑆

𝑢
𝑢 (𝑘 − 𝑐

𝑢
) , 𝑆
𝑦
𝑦
𝑘
,

𝑆
𝑦
𝑦
𝑘−1
, . . . , 𝑆

𝑦
𝑦 (𝑘 − 𝑐

𝑦
) , (𝑊
𝐶
)
𝑘
, 𝑇
𝑠
) ( 1

𝑆
𝑢

) .
(29)

If (28) and (29) work, go to Step 4.

Step 4. Update the online weights and biases 𝑊
𝑃
of the

recursive structure model 𝑃̂:
𝑦 (𝑘) = 𝑃̂ (𝑆

𝑢
𝑢
𝑘
, 𝑆
𝑢
𝑢
𝑘−1
, . . . , 𝑆

𝑢
𝑢 (𝑘 − 𝑝

𝑢
) , 𝑆
𝑦
𝑦
𝑘−1
,

𝑆
𝑦
𝑦
𝑘−2
, . . . , 𝑆

𝑦
𝑦 (𝑘 − 𝑝

𝑦
) , (𝑊
𝑃
)
𝑘
, 𝑇
𝑠
)( 1

𝑆
𝑦

) ,
(30)

to approximate the CT nonlinear system by usingTheorem 2.
Due to the adaption laws for (28) and (30), an exchange for
both of them can be designed to switch into the system, as
a switching in Figure 2, when (30)’s absolute approximation
error is too big. If (28) and (30) work, go to Step 5.

Step 5. Adapt the digital fuzzy controller for the modeling
error and tracking error by using Theorems 2 and 3. Finally,
update the online parameters of the fuzzy controller 𝐶

𝐹

𝑢
𝑘
= 𝐶
𝐹
(𝑆
𝑢
𝑢
𝑘−1
, 𝑆
𝑢
𝑢
𝑘−2
, . . . , 𝑆

𝑢
𝑢 (𝑘 − 𝑐

𝑢
) ,

𝑆
𝑦
𝑟
𝑘
, 𝑆
𝑦
𝑟
𝑘−1
, . . . , 𝑆

𝑦
𝑟 (𝑘 − 𝑐

𝑦
) , (𝑊
𝐶
)
𝑘
, 𝑇
𝑠
) ( 1

𝑆
𝑢

) ,
(31)

to minimize the tracking error, and finish the above two
stages: the offline stage and online stage.

To make sure of the robustness of the control system,
the convergence to the global optimal solution of parameters
of the model/controller has to be guaranteed. Hence, some
random initial weights and biases of the model are designed

by particle swarm optimization (PSO) [24] with the parame-
ters of the controller first. The PSO algorithm consists of the
velocity

V
𝑖
(𝑗 + 1) = V

𝑖
(𝑗) + 𝛾

1𝑖
⋅ (𝑝
𝑖
− 𝑥
𝑖
(𝑗)) + 𝛾

2𝑖
⋅ (𝐺 − 𝑥

𝑖
(𝑗)) ,

(32)

and position

𝑥
𝑖
(𝑗 + 1) = 𝑥

𝑖
(𝑗) + V

𝑖
(𝑗 + 1) , (33)

where 𝑖 = 1, 2, . . . , 𝐻 is the particle index; 𝑗 = 1, 2, . . . , 𝑁
is the iteration index; V

𝑖
is the velocity of 𝑖th particle; 𝑥

𝑖
is

the position of 𝑖th particle; 𝑝
𝑖
is the best position found by

𝑖th particle (personal best); 𝐺 is the best position found by
the swarm (global best, best of personal best); 𝛾

1𝑖
, 𝛾
2𝑖
are the

random numbers on the interval [0, 1] applied to the 𝑖th
particle.

The PSO supplies random initial parameters, hence, it
is an initial parameters’ conductor. These initial parameters
are then converged locally by the BP method and the best
solution for the initial model/controller is chosen. Finally,
the global optimal solution of parameters can be found
every time. Hence, this idea has been named the random-
local-optimization (RLO) algorithm. The RLO algorithm is
a composite of the BP algorithm and a random initialization
procedure of evaluating fitness value 1/(Ξ + 0.01), where Ξ =
𝜌 ⋅ Ξ
1
+ (1 − 𝜌) ⋅ Ξ

2
, 𝜌 ∈ [0, 1]. The total of absolute training

error Ξ
1
is obtained by BP via the training data, and Ξ

2
is the

total of absolute testing error of the model/controller output
via the testing data input. In this paper, offline RLO is used
as a learning algorithm for the feedforward structure model
(28) due to the online tuning parameters of the recursive
structure of the plant model being not converged. After the
offline training stage, in order to tune the online parameters
of the plant model (30) recursively, 𝑑𝑦

𝑘
/𝑑(𝑊
𝑃
)
𝑘
of (14) needs

to be calculated as follows:

𝑑𝑦
𝑘

𝑑(𝑊
𝑃
)
𝑘

= 𝜕𝑦
𝑘

𝜕(𝑊
𝑃
)
𝑘

+
𝑝
𝑢∑
𝑖=0

𝜕𝑦
𝑘

𝜕𝑢
𝑘−𝑖

𝑑𝑢
𝑘−𝑖

𝑑(𝑊
𝑃
)
𝑘

+
𝑝
𝑦

∑
𝑖=1

𝜕𝑦
𝑘

𝜕𝑦
𝑘−𝑖

𝑑𝑦
𝑘−𝑖

𝑑(𝑊
𝑃
)
𝑘

.
(34)

Similarly, in order to tune the online parameters of the
controller (31) recursively, and 𝑑𝑦

𝑘
/𝑑(𝑊
𝐶
)
𝑘
of (24) needs to

be calculated as follows:

𝑑𝑦
𝑘

𝑑(𝑊
𝐶
)
𝑘

=
𝑝
𝑢∑
𝑖=0

𝜕𝑦
𝑘

𝜕𝑢
𝑘−𝑖

𝑑𝑢
𝑘−𝑖

𝑑(𝑊
𝐶
)
𝑘

+
𝑝
𝑦

∑
𝑖=1

𝜕𝑦
𝑘

𝜕𝑦
𝑘−𝑖

𝑑𝑦
𝑘−𝑖

𝑑(𝑊
𝐶
)
𝑘

, (35)

where

𝑑𝑢
𝑘

𝑑(𝑊
𝐶
)
𝑘

= 𝜕𝑢
𝑘

𝜕(𝑊
𝐶
)
𝑘

+
𝑐
𝑢∑
𝑖=1

𝜕𝑢
𝑘

𝜕𝑢
𝑘−𝑖

𝑑𝑢
𝑘−𝑖

𝑑(𝑊
𝐶
)
𝑘

. (36)

Hence, the following algorithm adapts a NARMAX neural
controller for a NARMAX neural model of plant.

Step 1. Back propagate through 𝐶
𝐹
to form 𝜕𝑢

𝑘
/𝜕𝑢
𝑘−𝑖

and
𝜕𝑢
𝑘
/𝜕(𝑊
𝐶
)
𝑘
in (36). If update 𝑑𝑢

𝑘
/𝑑(𝑊
𝐶
)
𝑘
of (36) and shift

𝑑𝑢
𝑘−𝑖
/𝑑(𝑊
𝐶
)
𝑘
down in (35), then go to Step 2.
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Figure 3: (a)The learning curve of the summation of𝑊
𝑃
, (b) the learning curve of the summation of𝑊

𝐶
, (c) the tracking control performance,

(d) the modeling error 𝑦
𝑘
− 𝑦
𝑘
= 𝑦
𝑁𝑘
− 𝑦
𝑘
, (e) the trajectories of predictive input signal 𝑢

𝑋
, and (f) total input signal 𝑢 of Case 3.
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Figure 4: (a) The tracking control performance and (b) the
parameters 𝜙, 𝑎, 𝑏 whose learning curves of Case 2.

Step 2. Back propagate through 𝑃̂ to form 𝜕𝑦
𝑘
/𝜕𝑢
𝑘−𝑖

and
𝜕𝑦
𝑘
/𝜕𝑦
𝑘−𝑖

in (35). If update 𝑑𝑦
𝑘
/𝑑(𝑊
𝐶
)
𝑘
of (35) and shift

𝑑𝑦
𝑘−𝑖
/𝑑(𝑊
𝐶
)
𝑘
down in (35), then go to Step 3.

Step 3. Compute (Δ𝑊
𝐶
)𝑇
𝑘
= −𝜂
𝐶
(𝑘)(𝑦
𝑘
− 𝑟
𝑘
)(𝑑𝑦
𝑘
/𝑑(𝑊
𝐶
)
𝑘
). If

we update weights

(𝑊
𝐶
)
𝑘+1

= (𝑊
𝐶
)
𝑘
+ (Δ𝑊

𝐶
)
𝑘
,

(𝑊
𝑃
)
𝑘+1

= (𝑊
𝑃
)
𝑘
+ (Δ𝑊

𝑃
)
𝑘
, (37)

then go to Step 1.

To clarify this method, in [20], a robust and adaptive
method was used to allow learning to occur online, tuning
performance as the system runs. But, [20] did not consider
the prediction, modeling error, global optimal initialization
of control parameters, the problem of lengthy convergence

time of online control, delayed terms, uncertainties in plant,
and DT-CT problems. Moreover, the choice method of initial
parameters of the online controller still lacks the ability to
overcome the overfitting problem of the controller. Hence,
the offline stage is proposed for an RLO learning algorithm
to choose the initial weights and biases of the online neural
controller in the simulation example of the power plant, as
shown in the following case study.

4. Cases Study

First, the conventional PWM buck converter, by using AM-
OTS-DS [28] methodology, is modeled to the equivalent cir-
cuit plant. In this paper, the robustness of this control system
is emphasized, so uncertainty and delay are considered in
(1b). The state is 𝑥(𝑡) = 𝑥 = [𝑖

𝐿
(𝑡), V
𝐶
(𝑡)]𝑇, and the output

is 𝑦(𝑡) = V
𝑜
(𝑡) in this power system.

Referring to Figure 2, and the above sections about two-
stage control structure, it can be seen how to model the CT
plant dynamics fromFigure 2(a) by considering themodeling
error, and how to use the DT neural model of plant to adapt a
DT fuzzy controller and predict theDT compensation of total
control input 𝑢

𝑘
from Figure 2(b).

To compare with other methods, the following cases are
introduced.

Case 1. This case is in [28], and its digital controller is a kind
of fuzzy controller with integral term shown in (38).

Case 2. This case is in [30], and its controller is a kind of single
neuron shown in (39) without multilayer structure, and this
CT controller is discretized to DT controller to compare with
Case 3.

Case 3. This is the control method presented here, and the
proposed neural-model-based fuzzy controller is adaptive,
predictive, and globally optimal.

The detail designs of the Cases 1–3 are as follows.
Case 1 is an LMI control method of original example for

this power plant. The control parameters of Case 1 are solved
by the LMI toolbox as follows.

𝐾
11

= 𝐾
21

= [0.0476, 0.9348]𝑇 and 𝐾
12

= 𝐾
22

=
−426.4969 are referred to [28], and this T-S fuzzy controller
of Case 1 is designed as

𝑢
𝑘
= −ℎ
1𝑘
⋅ (𝐾
11
𝑥
𝑘
+ 𝐾
12
∑
𝑘

𝑒
𝑘
𝑇
𝑠
)

− ℎ
2𝑘
⋅ (𝐾
21
𝑥
𝑘
+ 𝐾
22
∑
𝑘

𝑒
𝑘
𝑇
𝑠
) ,

(38)

where ∑
𝑘
𝑒
𝑘
𝑇
𝑠
is integral term.

Case 2 is an adaptive control method. This neural con-
troller is designed as

𝑢
𝑘
= 𝑎 ⋅ (1 − 𝑒−𝑏⋅net)

1 + 𝑒−𝑏⋅net , net = 𝐼 − 𝜙, (39)

where 𝐼 = 𝑒
𝑘
is a net input of single neuron.
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Figure 5: (a)(b) Comparison of the output trajectories for Cases 1 to 3, and (b) is the detail view of (a). (c) Comparisons of 𝑒
𝑘
= 𝑟
𝑘
− 𝑦
𝑘
and

(d) ∑
𝑘
|𝑒
𝑘
| of the control performances for Cases 1 to 3.

And the design parameters 𝑃
2
= 1200 and learning rate

𝜂 = 1 for this neuron of Case 2 are referred to [30].
Case 3 is also an adaptive control method, but its

NARMAX fuzzy control design method with neural-model-
based prediction is very different from Case 2.The predictive
controller of Case 3 is 𝑢

𝑋
= 𝐾
1
𝑒
𝑘
, where𝐾

1
= 0.1.

First, the sampling time of the model/controller is set for
𝑇
𝑠
= 10−4 sec to simulate the proposed adaptive prediction

control system, the initial state 𝑥(0) = [0, 0]𝑇, and the
reference signal 𝑟

𝑘
= 12 sin(30𝑘 ⋅ 𝑇

𝑠
). Case 3 uses NN

structure 5-8-1 of the NARMAX plant model, it has 5 inputs,
[𝑢
𝑘
, 𝑢
𝑘−1
, 𝑢
𝑘−3
, 𝑦
𝑘−1
, 𝑦
𝑘−2
], 8 tansig(⋅) neurons in the hidden

layer, and 1 purelin(⋅) neuron in the output 𝑦
𝑘
layer.

The adaptive weights and biases, 𝑊
𝑃
, are trained as

follows by selecting a suitable scaling factor 𝑆
𝑢
= 1, 𝑆
𝑦
= 1/24

of the plant model. The summation 𝑊PS of adaptive plant
model parameters 𝑊

𝑃
is updated as shown in Figure 3(a).

The summation 𝑊CS of adaptive fuzzy control parameters
𝑊
𝐶
is updated as shown in Figure 3(b). The tracking control

performances 𝑒
𝑘
= 𝑟
𝑘
− 𝑦
𝑘
and ∑

𝑘
|𝑒
𝑘
| of Case 3 are shown

in Figures 3(c) and 5.Theboundedmodeling error of Case 3 is
shown in Figure 3(d).The trajectory of predictive input signal
𝑢
𝑋
of Case 3 is shown in Figure 3(e). Note that this predictive

control input signal is just the minor portion of total control
signal. It works to control the CT system precisely. To clarify
this difference between predictive control input and total
control input, the figure of total control signal is shown in
Figure 3(f).

And the tracking control performance of Case 2 is shown
in Figures 4(a) and 4(c), and the controller of Case 2 includes
the adaptive parameters 𝜙, 𝑎, 𝑏 whose learning curves are
shown in Figure 4(b). From Figures 3(d) and 5(d), the offline
training scheme of Case 3 does let the neural model be
optimized globally to make the adaptive laws of Case 3
converge faster than that of Case 2. Therefore, the more
precise result from Case 3 is made as shown in Figure 5.

Finally, the control performances of Cases 1–3 are com-
pared, as shown in Figure 5. Figure 3 shows the precise fuzzy
control performance of Case 3. Figure 4 shows the digital
adaptive neural control performance of Case 2. Figure 5
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shows the LMI control performance of Case 1. From the
control results of Cases 1 and 3 shown in Figure 5(d), the
proposed adaptive and predictive laws do let the proposed
controllers adapt and predict themself to overcome these
problems about robustness as the delay, uncertainty, and
nonlinearity.

It is clear that the two-stage scheme, Case 3, for the
proposed adaptive controller and predictive controller has
excellent tracking performance when compared with Cases
1 and 2.

5. Conclusion

The proposed two-stage adaptive prediction control con-
verges very fast, works highly effective, and precise. It
simplifies the complex model-based adaptive control design,
and works for nonlinear delayed plants with uncertainty.
The proposed recursive and feedforward control scheme
is partitioned into two stages that can be independently
optimized. First, an offline neural model of continuous-time
(CT) nonlinear power plant is made. Second, a constrained
offline digital fuzzy controller is generated; then, an adaptive
plant model is made, and an adaptive NARMAX prediction
tracker is generated. Finally, all processes may continue
concurrently, and robustness and adaptive prediction design
with DT-CT problems for a power plant are solved. Although
this power system is only a simulation, the control strategy
can be extended to LED dimmer systems and time-delay
robot systems based on visual servo, and is within my plans
of future research.
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