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A high-efficiency design exploration framework for hull form has been developed. The framework consists of multiobjective
shape optimization and design knowledge extraction. In multiobjective shape optimization, a multiobjective genetic algorithm
(MOGA) using the response surface methodology is introduced to achieve efficient design space exploration. As a response surface
methodology, the Kriging model, which was developed in the field of spatial statistics and geostatistics, is applied. A new surface
modification method using shifting method and radial basis function interpolation is also adopted here to represent various hull
forms. This method enables both global and local modifications of hull form with fewer design variables. In design knowledge
extraction, two data mining techniques—functional analysis of variance (ANOVA) and self-organizing map (SOM)—are applied
to acquire useful design knowledge about a hull form.The present framework has been applied to hull form optimization exploring
the minimum wave drag configuration under a wide range of speeds. The results show that the present method markedly reduced
the design period. From the results of data mining, it is possible to identify the design variables controlling wave drag performances
at different speed regions and their corresponding geometric features.

1. Introduction

In order to find the combination of design variables that gen-
erates a hull form with optimal hydrodynamic performance
(e.g., drag and seakeeping), a tremendous number of perfor-
mance evaluations are required. However, it is obvious that
an increase in the number of evaluations causes an exces-
sive increase in both the cost and time of the design pro-
cess. Recently, computational-fluid-dynamics-(CFD-) based
optimization techniques have become promising alternative
tools in ship hydrodynamic design. To be competitive in
the shipbuilding market, a practical and efficient CFD-based
ship hydrodynamic optimization tool is essential in the
preliminary and early design stages to aid in prompt and
accurate design.

CFD-based hull form hydrodynamic optimization con-
sists of a CFD solver that computes the flow field and eval-
uates the performance of hull form (objective functions), hull
form modeling with design variables, and an optimization

technique that explores the combination of the design param-
eters generating the hull formwith the optimumperformance
under the given constraints.

Recently, optimization techniques that mimic the course
of biological evolution and themovement of living organisms,
which is known as evolutionary algorithms (EAs), have been
widely used in the field of ship design. The typical examples
of methodology are genetic algorithms (GAs) [1, 2] and par-
ticle swarm optimization [3]. Lowe and Steel [4] applied a
genetic algorithm to search for a hull form satisfying pre-
scribed primary and secondary form parameters within the
design space. Tahara et al. [5–7] used a combination of suc-
cessive quadratic programming and multiobjective genetic
algorithm to optimize tanker stern, Delta Catamaran, and so
on. Gammon [8] studied hull form optimization of fishing
vessels using multiobjective genetic algorithm. Three perfor-
mance indices for resistance, seakeeping, and stability were
considered in this multiobjective optimization. In particular,
automatic selection of a few Pareto optimal solutions was
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developed so that the designer can easily choose the more
favorable candidates. More recently, Knight et al. [9] applied
particle swarm optimization to incorporate uncertainty in
parameters into the optimization of a planning craft.

However, the number of CFD runs required in these
methods is too large. Furthermore, if these methods are com-
bined with a time-consuming high fidelity CFD solver, it is
difficult to complete the design process in reasonable time.
Therefore, it is very important to either have a highly efficient
CFD tool or to use an accurate approximation model (e.g.,
response surface) to partially replace the CFD runs for the
CFD-based optimization tool to be useful in practical ship
design.

The response surface method is a well-established ap-
proach for creating approximation models based on sample
data that can be obtained from physical experiments and
computer simulations [10]. A major advantage of using the
response surface method in CFD-based design optimization
is to reduce the computational costs associated with the CFD
runs. A given optimization problem can be approximated by
the response surface method with smooth functions that can
improve computational efficiency in the optimization pro-
cess. The response surface method has been applied to many
CFD-based aerodynamics optimization problems, including
a centrifugal fan and transonic airfoil, and this approach was
shown to be quite efficient in exploring the design space
[11, 12].

In the present study, the Kriging response surface model
[13–15] is implemented in the CFD-based ship hydrodynam-
ics optimization tool to provide the objective function values
associated with the hydrodynamics performance efficiently.
The Kriging model has a sufficient flexibility to represent
the nonlinear and multimodal functions which are often
appeared in hydrodynamic performances. Another merit of
Kriging model is that it predicts not only function value but
also the uncertainty of the estimated function value. Based
on both the function value and its uncertainty, it is possible
to improve the accuracy of Kriging model during the design
process.

In this study, the Kriging model based multiobjective
shape optimization method is applied to the optimal hull
form design to minimize wave drag over a wide range of
design speeds. For the modeling of hull form, a surface mod-
ificationmethod using shiftingmethod and radial basis func-
tion interpolation is introduced.The shiftingmethodmakes it
possible to realize a smooth junction of the modified portion
with the original design. The radial basis function is used
for the local modifications of hull form.Thus, these methods
enable both global and local modification of hull form with
fewer design variables. In design knowledge extraction, two
data mining techniques—functional analysis of variance
(ANOVA) [16] and self-organizing map (SOM) [17]—are
applied to acquire useful design knowledge about a hull form.
Functional analysis of variance (ANOVA) shows effect of
each design variable on objective functions. Self-organizing
map (SOM) identifies the design variables controlling the
trade-off between high-speed wave drag and low-speed wave
drag. Numerical results show that the design exploration
framework not only can explore superior hull forms within

a short computational time but also supplies the insight of
the effect of each design variable on the drag performance at
different design speeds.

The remainder of this paper is organized as follows. In
the next two sections, design problem definition and design
exploration used in this studywill be introduced, respectively.
This will be followed by results of shape optimization and
design knowledge extraction.

2. Design Problem Definition

2.1. Hull Form Definition and Design Variables. An accurate
and effective hull surface representation and modification
technique plays an important role in theCFD-basedhull form
hydrodynamic optimization. In the present study, the Series-
60 (block coefficient: 𝐶𝑏 = 0.6) [18, 19] hull model is adopted
as the initial hull form and modified to represent a new hull
form using the shifting method [20–22] and the radial basis
function (RBF) interpolation [23] during shape optimization.
These methods make it possible to represent both global and
localmodifications of hull formwith smaller design variables.

First, the sectional area curve of the initial hull form is
modified using the shiftingmethod, whichmoves the stations
of the initial hull form along the longitudinal direction. The
amount of movement is determined by comparing the
modified sectional area curve with the original curve. In
this study, the sectional area curve of the initial hull form is
modified using (1a) and (1b):

𝑓
𝑛
(𝑥) = 𝑓

0
(𝑥) + 𝑔 (𝑥, 𝛼1, 𝛼2) (1a)

𝑔 (𝑥, 𝛼1, 𝛼2)

=

{{{{{{{

{{{{{{{

{

𝛼1√0.5 (1 − cos(2𝜋
𝑥 − 𝑥1

𝛼2 − 𝑥1

)), 𝑥1 ≤ 𝑥 ≤ 𝛼2,

−𝛼1√0.5 (1 − cos(2𝜋
𝑥 − 𝛼2

𝛼2 − 𝑥2

)), 𝛼2 ≤ 𝑥 ≤ 𝑥2,

0, elsewhere,
(1b)

where 𝑓𝑛(𝑥) and 𝑓0(𝑥) denote the sectional area curve of
the new and initial hull forms, respectively, [21, 22]. Thus,
𝑔(𝑥, 𝛼1, 𝛼2) indicates the amount of shape modification at
position x, and 𝑥1 and 𝑥2 are fixed points.

As shown in Figure 1, the slope of the sectional area
curve is defined by 𝛼1 and the location of the fixed sta-
tion is controlled using 𝛼2. By changing the parameters 𝛼1
and 𝛼2, various sectional area curves can be obtained. In
comparison with the spline polynomial representation, this
formulation can prevent the generation of unrealistic hull
forms associated with oscillation of the new sectional area
curve. In this study, the sectional area curves of both fore
and aft bodies are modified simultaneously using four design
variables: entrance angle (𝛼1𝑓), run angle (𝛼1𝑎), fore-body
variation (𝛼2𝑓), and aft-body variation (𝛼2𝑎).

Once the modified sectional area curve is obtained,
local modification of the hull form is performed using
RBF interpolation. In this study, the displacement of point
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Table 1: Summary of optimization applications.

Design variable Definition Modification Range
DV1 Fore-body variation 𝛼

2𝑓
0.30 ± 0.2

DV2 Entrance angle 𝛼1𝑓 ±0.5−2

DV3 Aft-body variation 𝛼2𝑎 −0.30 ± 0.2
DV4 Run angle 𝛼1𝑎 ±0.5−2

DV5–DV12 Local body variation 𝑥-coordinate of RBF 1–8 0.050 ± 0.005
DV13 Stem line variation y-coordinate of RBF 9 0.493–0.500
DV14 Stem line variation y-coordinate of RBF 10 0.495–0.501
DV15 Stem line variation y-coordinate of RBF 11 0.499–0.507
DV16 Stem line variation y-coordinate of RBF 12 0.505–0.520
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Figure 1: Section area curves and shape function.

x = (𝑥, 𝑦, 𝑧) on the hull form is described by the following
RBF interpolation:

𝑠 (x) =
𝑁

∑

𝑗=1

𝜆𝑗𝜑 (
󵄩󵄩󵄩󵄩󵄩
x − x𝑗

󵄩󵄩󵄩󵄩󵄩
) + 𝑝 (x) , (2)

where x𝑗 = (𝑥𝑗, 𝑦𝑗, 𝑧𝑗) is the center of the RBF, N is the
number of control nodes (centers), and 𝜑 is a given RBF with
respect to the Euclidean distance ‖x‖. In the present study, the
RBF 𝜑 in (2) is defined in terms ofWendland’s C2 function as
follows:

𝜑 (‖x‖) = (1 − ‖x‖)4 (4 ‖x‖ + 1) , (3)

and the polynomial p in (2) is defined in terms of the linear
polynomial to recover the rotation and translation as follows:

𝑝 (x) = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑦 + 𝑐4𝑧. (4)

The coefficients 𝜆𝑗 in (2) and 𝑐𝑗 in (4) are determined by the
interpolation conditions

𝑠 (x𝑗) = 𝑓𝑗, 𝑗 = 1, . . . , 𝑁 (5)
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Figure 2: RBF control nodes.

with 𝑓𝑗 containing the discrete known values of the displace-
ment on the boundary (control nodes) and the additional
requirements

𝑁

∑

𝑗=1

𝜆𝑗𝑝 (x𝑗) = 0, 𝑗 = 1, . . . , 𝑁. (6)

The values of the coefficients 𝜆𝑗 and 𝑐𝑗 can be obtained by
solving the linear system

(
𝑓

0
) = (

𝑀 𝑃

𝑃
𝑇
0
)(
𝜆

𝑐
) , (7)

where 𝜆 = [𝜆1, 𝜆2, . . . , 𝜆𝑁], 𝑐 = [𝑐1, 𝑐2, 𝑐3, 𝑐4], and 𝑓 =
[𝑓1, 𝑓2, . . . , 𝑓𝑁]

𝑇. The elements of the matrices M and P are
defined as

𝑀𝑖,𝑗 = 𝜑 (
󵄨󵄨󵄨󵄨󵄨
x𝑖 − x𝑗

󵄨󵄨󵄨󵄨󵄨
) , 𝑖, 𝑗 = 1, . . . , 𝑁, (8a)

𝑃𝑖,𝑗 = 𝑝𝑗 (x𝑖) , 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 4. (8b)

In this study, 𝑥-coordinate of eight control nodes RBF 1–
8 and 𝑦-coordinate of four control nodes RBF 9–12 are
defined as design variables for modification of the station
profile and the stemprofile, respectively, as shown in Figure 2.
Table 1 summarizes the design variables and their range used
to define the new hull form. All values in this table are
normalized by length of hull form which is unit.
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2.2. Objective Functions. The present study is focused on the
wave drag performance of hull form over a wide speed range.
Therefore, the three objective functions (wave drag perform-
ance at three different speeds) are defined as follows:

𝑓
1

obj =
(𝐶
𝑑

𝑊
− 𝐶
𝑖

𝑊
)

𝐶
𝑖

𝑊

at 𝐹𝑁 = 0.22, (9a)

𝑓
2

obj =
(𝐶
𝑑

𝑊
− 𝐶
𝑖

𝑊
)

𝐶
𝑖

𝑊

at 𝐹𝑁 = 0.27, (9b)

𝑓
3

obj =
(𝐶
𝑑

𝑊
− 𝐶
𝑖

𝑊
)

𝐶
𝑖

𝑊

at 𝐹𝑁 = 0.305, (9c)

where F𝑁 is Froude number. 𝐶𝑖
𝑊

and 𝐶𝑑
𝑊

denote the wave
drag coefficient of the initial hull form and the hull form
obtained during the optimization process, respectively. The
CFD tool for evaluating the wave drag (objective function)
is the steady ship flow (SSF), which is based on Neumann-
Mitchell (NM) theory [24]. Even though NM theory is a low
fidelity method, the wave drag/total drag from this method
shows a fairly good agreement with experimental measure-
ments [25].

3. Design Exploration Framework

Design exploration framework suggested in this study con-
sists of multiobjective shape optimization and design knowl-
edge extraction. In themultiobjective shape optimization, de-
sign space is explored using multiobjective genetic algorithm
and response surface model to find the optimum solutions.
In the design knowledge extraction, data mining techniques
are applied to obtain the useful design information, which is
helpful for understanding of design problem. Figure 3 shows
the overall procedure the design exploration framework in
this study. The details of each method are explained in the
following subsections.

3.1. Multiobjective Shape Optimization

3.1.1. Initial Sample Selection. The initial sample points are
selected by Latin hypercube sampling (LHS) [26] to construct
the response surface model for each objective function. It is
desirable to distribute sample points uniformly in the design
space. The sample points distributed by LHS satisfied the
orthogonal condition, which means that points do not over-
lap for all design variables. Thus, it is possible to distribute
points evenly in the design space with a small number of sam-
ple points. In this study, 60 points are selected as initial sample
points and wave drag performances of these hull forms are
evaluated using SSF code.

3.1.2. Response Surface Model Construction. With the initial
sample points selected in the previous step, the response
surface model is constructed for each objective function.The
response surface model adopted in this study is the Kriging
model [11, 13], which was developed in the field of spatial

statistics and geostatistics.The Kriging predictor is expressed
as follows:

𝑦 (x) = 𝛽 + r𝑇R−1 (y − 1𝛽) , (10)

where x = 𝑥1, 𝑥2, . . . , 𝑥𝑚 is an m-dimensional vector of
the design variable, y is an n-dimensional column vector of
sampled response data, 1 is an n-dimensional unit column
vector, and R is the correlation matrix whose (𝑖, 𝑗) element
is given by

R (x𝑖, x𝑗) = exp[−
𝑚

∑

𝑘=1

𝜃𝑘

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑖

𝑘
− 𝑥
𝑗

𝑘

󵄨󵄨󵄨󵄨󵄨

2

] , 𝑖, 𝑗 = 1, . . . 𝑛. (11)

The correlation vector between x and the n sampled data is
expressed as

r𝑇 (x) = [R (x, x1) ,R (x, x2) , . . . ,R (x, x𝑛)] . (12)

The 𝛽 can be calculated using the following equation:

𝛽 =
1𝑇R−1y
1𝑇R−11

. (13)

The unknown parameter, 𝜃, for the Kriging model can be
estimated by maximizing the following likelihood function:

ln (𝛽, 𝜎̂2, 𝜃) = −𝑛
2
ln (𝜎̂2) − 1

2
ln (|R|) , (14)

where 𝜎2 can be calculated as follows:

𝜎̂
2
=

(y − 1𝛽)
𝑇

R (y − 1𝛽)
𝑛

.
(15)

Maximization of the likelihood function is anm-dimensional
unconstrained nonlinear optimization problem. A simple
genetic algorithm is used to determine 𝜃.

The accuracy of the predicted value largely depends on
the distance from sample points. Intuitively speaking, the
closer point x is to the sample point, the more accurate is the
prediction 𝑦(x). This intuition is expressed as

𝑠
2
(x) = 𝜎̂2 [

[

1 − r󸀠R−1r +
(1 − 1R−1r)

2

1󸀠R−11
]

]

, (16)

where 𝑠2(x) is the mean squared error of the predictor and it
indicates the uncertainty of the predicted value.

Once the Kriging model is constructed, cross-validation
is performed to validate the accuracy of the model as shown
in Figure 4. The objective function values estimated by the
Krigingmodel show good agreement with those estimated by
SSF solver.

3.1.3. Design Space Exploration and Additional Sample Points
Selection. In the constructed Kriging model, the minimum
wave drag hull form (nondominated solutions and Pareto
solutions) has been explored using a multiobjective genetic
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Figure 3: Overall procedure of design exploration framework.

algorithm (MOGA). The number of populations and gener-
ations of MOGA were 512 and 100, respectively. Figure 5(a)
shows the nondominated solutions obtained after MOGA
operation in Figure 3. To investigate the performance of these
nondominated solutions and select additional sample points,
the 𝐾-means clustering method [27, 28] is applied to the
nondominated solution obtained.The𝐾-meansmethod sub-
groups the nondominated solutions based on the similarity
of three objective function values of solutions. Figure 5(b)
shows the nondominated solution after clustering analysis.
The solutions with the same color have similar objective
function values.The center of each cluster is selected as repre-
sentative of cluster and the wave drag of these points is eval-
uated by SSF to check the performance. Then, these points

are used as additional sample points for the update of Krignig
model. This process is iterated until the Pareto front of the
nondominated solutions is converged.

3.2. Design Knowledge Extraction. Two data mining tech-
niques [16, 29], analysis of variance (ANOVA) and self-organ-
izing map (SOM), are applied to the results of multiobjective
shape optimization to extract knowledge of hull design.
Details of these will be introduced in following sections.

3.2.1. Analysis of Variance (ANOVA). ANOVA is a commonly
used statistical analysis method, which uses the variance
model to show the effects of each variable on the function.The
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Figure 4: Cross validation.

ANOVA employed in this study decomposed the total vari-
ance of the model into the variance due to each design vari-
able on the Kriging response surfacemodel used in themulti-
objective shape optimization.

The total mean (𝜇total) and the variance (𝜎̂2total) of the
model are as follows:

𝜇total ≡ ∫ ⋅ ⋅ ⋅ ∫ 𝑦 (𝑥1, . . . , 𝑥𝑚) 𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑚, (17)

𝜎̂
2

total ≡ ∫ . . . ∫ [𝑦 (𝑥1, . . . , 𝑥𝑚) − 𝜇total]
2
𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑚. (18)
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Figure 5: Nondominated solutions obtained fromMOGA.

The main effect (𝜇𝑖(𝑥𝑖)) and variance (𝜎̂2
𝑖
(𝑥𝑖)) of variable 𝑥𝑖

can be given as

𝜇𝑖 (𝑥𝑖)

≡ ∫ ⋅ ⋅ ⋅ ∫ 𝑦 (𝑥1, . . . , 𝑥𝑚) 𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑖−1𝑑𝑥𝑖+1 ⋅ ⋅ ⋅ 𝑑𝑥𝑚 − 𝜇total,

(19)

𝜎̂
2

𝑖
(𝑥𝑖) = ∫ [𝜇𝑖 (𝑥𝑖)]

2
𝑑𝑥𝑖. (20)

The proportion of the variance due to design variable x𝑖 to
total variance of the model can be calculated by dividing (18)
by (20).This value indicated the effect of design variable x𝑖 on
the objective function:

𝜎̂
2

𝑖

𝜎̂
2

total
=

∫ [𝜇𝑖(𝑥𝑖)]
2

𝑑𝑥𝑖

∫ ⋅ ⋅ ⋅ ∫ [𝑦 (𝑥1, . . . , 𝑥𝑚) − 𝜇total]
2
𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑚

. (21)

Thus, if this value is large, x𝑖 has a large effect on the objective
function. If not, x𝑖 can be considered as less important design
variable for the objective function.

3.2.2. Self-Organizing Map (SOM). SOM is an unsupervised
neural network technique that classifies, organizes, and visu-
alizes large data sets. SOM is a nonlinear projection algorithm
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Figure 6: Self-organizing map (SOM).

fromhigh- to low-dimensional space.This projection is based
on self-organization of a low-dimensional array of neurons.
In the projection algorithm, the weights between the input
vector (input data) and the array of neurons are adjusted to
represent features of the high-dimensional original data on
the low-dimensional map. The closer two-input data are in
the original space, the closer the response of two neighboring
neurons is in the low-dimensional space.Thus, SOM reduces
the dimension of input data, while preserving their features.

A neuron used in SOM is associated with weight vector
w𝑖 = [𝑤𝑖1, 𝑤𝑖2, . . . , 𝑤𝑖𝑚] (𝑖 = 1, . . . , 𝑁) where 𝑚 is equal
to the dimension of the input vector and N is the number of
neurons. Each neuron is connected to adjacent neurons by a
neighborhood relation and usually forms a two-dimensional
hexagonal topology as shown in Figure 6.

The learning algorithmof SOM[17] is startedwith finding
the best-matching unit (w𝑐), which is the closest to the input
vector f = [𝑓1, . . . , 𝑓𝑚] as follows:

󵄩󵄩󵄩󵄩f − w𝑐
󵄩󵄩󵄩󵄩 = min 󵄩󵄩󵄩󵄩f − w𝑘

󵄩󵄩󵄩󵄩 (𝑘 = 1, . . . , 𝑁) . (22)

Then, the weight vector of the best-matching unit and its
neighbors is adjusted to make its location much closer to the
input vector. Repeating this learning algorithm, the weight
vectors become smooth not only locally but also globally. As
a result, the sequence of close vectors in the original space
results in a sequence of corresponding neighboring neurons
in the two-dimensional map.

4. Results

4.1. Results of Shape Optimization. In this study, the mul-
tiobjective shape optimization process shown in Figure 3 is
iterated three times. Figure 7 shows the initial sample points
used to construct the Kriging model and the nondominated
solutions obtained after three iterations of the multiobjective
shape optimization. It can be confirmed that the obj1-obj2 and
obj1–obj3 show a strong trade-off relation, while obj2-obj3
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Figure 7: Results of shape optimization.

shows a linear relation. This implies that the performance in
terms of wave drag at the low-speed design speed (F𝑁 = 0.22)
is opposed with those at both intermediate (F𝑁 = 0.27) and
high design speeds (F𝑁 = 0.305) and that the performance in
terms of wave drag at intermediate design speed is consistent
with that at high design speed. The total computational time
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taken to obtain the nondominated solutions was 20min on
a PC (2.66GHz Intel Xeon, 4 Gbytes RAM, Mac OS). If this
shape optimization had been performed without the Kriging
model, even though the computational time of SSF for one
case is 10 seconds, the total computational time taken to
obtain the solutions would be about 18 days (10 seconds × 512
populations × 100 generations × 3 iterations).

Among the nondominated solutions, three typical opti-
mum solutions—Case 1, Case 2, and Case 3—are selected to
investigate wave drag performance over a wide speed range
as shown in Figure 7. Case 1 is the solution with low wave
drag performance at low design speed. Case 2 is the solution
with low wave drag performance at high design speed.
Case 3 is a compromise solution between Case 1 and Case
2. Figure 8 compares the wave and total drag coefficient (𝐶𝑊
and 𝐶𝑇) between the initial and each of these three solutions.
Case 1 shows the best drag performance in the low-speed
regime, while Case 2 shows the best drag performance in the
high-speed regime. As expected, Case 3 shows intermediate
drag performance at all speed ranges. Table 2 shows the
percentages of wave and total drag coefficient variation from
those of baseline configuration.The friction drag is calculated
according to the International Towing Tank Conference
(ITTC) model-ship correlation line [30]:

𝐶𝐹 =
0.075

(log
10
Re−2)2

, (23)

where Re is Reynolds number for the respective temperature.
Table 3 displays variations in geometric properties. Even

though each optimum hull exhibits very small changes in
the wetted surface area (𝑆wet: the amount of area of hull that
is under water) and displacement (∇: the volume of fluid
displaced by hull), the wave performance of these hull forms
is improved very much.

4.2. Results of Design Knowledge Mining

4.2.1. Analysis of Variance (ANOVA). To investigate the ef-
fects of design variables on each objective function, ANOVA
is applied to the results of shape optimization. According to
results, DV10 and DV11 have a large effect on 𝑓1obj, while DV8
and DV12 have large effects on 𝑓2obj and 𝑓

3

obj as shown in
Figure 9. 𝑓1obj is the drag performance at relatively low speed,
and 𝑓2obj and 𝑓

3

obj are those at high speed.
Figure 10 compares the profile plan of the initial hull

form with that of Case 1 (low-speed hull form) and Case 2,
which has good drag performance at low and high speeds,
respectively. Compared with initial hull form, Case 1 has a
slightly wider section shape of the lower part (near DV11)
and a narrower waterline in the bow part (near DV10),
while Case 2 has a narrower waterline near DV12 and DV8.
According to the general knowledge about ship design, hull
form with a wide section shape shows the good wave drag
performance at the low speedwhile thatwith a narrow section
shape shows the good wave drag performance at the high
speed. Thus, the information (design knowledge) obtained
through ANOVA corresponds to the general knowledge
about ship design.
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Figure 8: Comparison of the wave and total drag coefficient for the
initial and three typical solutions.

Table 2: Percentage of wave and total drag coefficient variation.

Δ𝐶
1

𝑊
Δ𝐶
2

𝑊
Δ𝐶
3

𝑊
Δ𝐶
1

𝑇
Δ𝐶
2

𝑇
Δ𝐶
3

𝑇

Wave drag (%) Total drag (%)
Case 1 −70.90 −0.65 −14.62 −17.14 −0.32 −8.87

Case 2 23.20 −56.60 −56.60 5.60 −27.47 −34.14

Case 3 −43.17 −32.18 −32.18 −10.44 −15.70 −22.61

Table 3: Variation of wetted surface area (𝑆wet) and displacement
(∇).

𝑆wet (%) ∇ (%)
Case 1 0.82 −0.04

Case 2 0.60 −0.27

Case 3 0.16 −0.19

4.2.2. Self-Organizing Map (SOM). To identify the param-
eter controlling the trade-off between low- and high-speed
geometries, SOM is applied to the nondominated solutions
obtained from shape optimization. The number of solutions
used for SOM is 1024. Figure 11 shows the SOMobtained after
clustering based on the objective functions. As described in
Section 3.2.2, SOM consists of a large number of neurons that
have a hexagonal topology and the same dimensional vector
value as the input data. Thus, SOM can be colored by each
objective function value and design variable value. Figure 12
shows the SOMs colored by each objective function value.

The solutions on the left-hand side have a preferable 𝑓1obj
and unfavorable 𝑓2obj and 𝑓

3

obj, while the solutions on the
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Figure 9: Results of ANOVA.

right-hand side have an unfavorable 𝑓1obj and preferable 𝑓2obj
and 𝑓3obj. Thus, it can be seen that there is a severe trade-off
between low-speed wave drag (𝑓1obj) and high-speed wave
drag (𝑓2obj and 𝑓

3

obj) performances. This trade-off was also
confirmed in Figure 7. To identify the relation between objec-
tive functions and design variables, the SOM is also colored
by each design variable value.

Figure 13 shows the SOMs colored by DV4, DV7, DV8,
DV10, DV11, and DV12, which have relatively large effects
on objective functions according to the ANOVA results in
Figure 9.
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Figure 10: Comparison of the profile plan.

Figure 11: SOM obtained after clustering based on the similarity of
objective functions.

The solutions on the left-hand side have relatively large
values of DV4, DV7, DV8, and DV11, while those of the
right-hand side have relatively small values. Thus, the low-
speed geometry should have a wider section shape, while the
high-speed geometry should have a narrower section shape.
This corresponds to general knowledge of ship hull design.
Although DV10 and DV12 have large effects on objective
functions according to ANOVA, the values of both DV10
and DV12 are always small regardless of low- or high-speed
geometry. It seems that small DV10 and DV12 (narrower



10 Mathematical Problems in Engineering

Obj1

−0.85 −0.72 −0.58 −0.45 −0.32 −0.18 −0.05 0.08 0.22 0.35

(a) 𝑓1obj

Obj2

−0.6 −0.51 −0.43 −0.35 −0.26 −0.18 −0.09 −0.01 0.07 0.16

(b) 𝑓2obj

Obj3

−0.6 −0.54 −0.47 −0.41 −0.35 −0.28 −0.22 −0.16 −0.09 −0.03

(c) 𝑓3obj

Figure 12: SOMs colored by objective functions.

waterline in the bow region) are necessary conditions for a
nondominated solution.

Thus, the design knowledge obtained through the present
data mining can be summarized as follows (Figure 14).

(1) A narrower waterline in the bow region (small DV10
and DV11) is a necessary condition for a nondomi-
nated solution.

(2) A wider section shape (large DV4, DV7, DV8, and
DV12) is preferable for low-speed performance, while
a narrower section shape (small DV4, DV7, DV8, and
DV12) is necessary for high-speed performance.

5. Conclusion and Future Works

In this study, a high-efficiency design exploration framework
consisting of multiobjective shape optimization and design
knowledge extraction has been suggested for hull form de-
sign. In the multiobjective shape optimization, a multiobjec-
tive genetic algorithm (MOGA) using the response surface
methodology was adopted. The present framework has been
applied to hull form optimization exploring the minimum
wave drag configuration over a wide range of speeds. The
results show that the present method markedly reduces the
design period.

In design knowledge extraction, two data mining tech-
niques, functional analysis of variance (ANOVA) and self-
organizing map (SOM), are applied to acquire useful design
knowledge regarding hull form. The results of data mining
revealed the design variables controlling wave drag perfor-
mance and its corresponding geometric features.
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Figure 13: SOMs colored by design variables.
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Figure 14: Design knowledge obtained from data mining.

As a futurework, the presentmethodwill be applied to the
nonlinear dynamics of ocean wave, local sea level fluctuation
[31, 32], and seakeeping problems for the further validation.
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